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Abstract: <span>| consider a class of

simple classical systems which exhibit motion in their lowest-energy states and thus spontaneously break time-translation symmetry. Their
Lagrangians have nonstandard kinetic terms and their Hamiltonians are multivalued functions of momentum, yet they are perfectly consistent and
amenable to quantization. Field theoretical generalizations of these systems may have applications in condensed matter physics and
cosmol ogy .</span>
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Time crystals?

» Crystals: periodic arrays in space G-
— in ground state 'i
— spontaneously break space-translation
symmetry e
* Time crystals: periodic behavior in time
— in ground state
— spontaneously break time-translation
symmetry
* |s this even possible?

— It’s not obvious...
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Spontaneous space Crystals

Field ¢(t.x) angle-valued \Ug.joi SN
Potential | 000& |
Vi(d I r/f,'i ‘ ‘ A f/rf) L O C}'&‘O O
2 2 (rf.r) ‘ [ (rh‘) 'r OO 0 '
| | C o ’.0_(') O

Minimized by | /A o

del o VA

[k
Min-energy solution ¢ \f L+ o

spontaneously breaks x-translation down to

Tr — T+ .271'\/}\ n
... a crystal!
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Spontaneous space Crystals
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Min-energy solution ¢ V3t %o
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Try to break f-symmetry

by doing a similar thing with kinetic term

v 5 A
H(p. o) = — f)/)- + ll)l
Minimized b\/ Pmin — \/H
A
But velocity . gy _)
(‘_;") - = - H/) | /\[)" . [)
()[) ‘” l”llllll

So minimum-energy solution is static, /-translation
symmetry is unbroken.

This is a theorem...
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Lagrangian approach

* Trylagrangian [ = _i’_;'({;)z n ’_}(E)-I

. - ()IJ I1' D] :;/\ *
Energy function £ = -~ — L — ¢* b
1910 2 |

| K

— Minimized by ¢ V3

This is not static. How did we evade theorem?

Momentum and velocity are nonlinearly related

P = —K (,) - /\ (,-‘"‘I)";

— Hamiltonian a multivalued function of p
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Hamiltonian H(p,¢) not differentiable at minimal!
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Swallowtail catastrophe

/ pir 2 ' swallowtail

' ' = catastrophe

Plot £'vs. p vs. kK : one of the fundamental “catastrophes” of Thom’s
Catastrophe Theory.

In our case the catastrophe is associated with the transition from positive
to negative values of Kk = which results in the formation of a time crystal.

Get higher catastrophes from higher-order polynomials in b .
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Add potential energy

We have constructed a Lagrangian with minimum energy solutions that
are periodic in time (if ¢ is angular) — time crystals.

What happens if we add a potential energy term?

Then ¢ wants to minimize KE and PE at the same time — incompatible:

. - "I‘ ’}v .
can’t satisfy ¢ = ¢nin and o \ simultaneously.

[ 3\
Even for non-minimum energy solution there is a problem:
— Equation of motion (3A\¢* — k)b = —V/(9)
is problematic when o = - \:\

— Requires infinite acceleration.
* tryto solve anyway...
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Turning points

o
t(o) / r

_:_\" h{ t \((L{)_ T l,.|l \[rl\]
* Argument of inner square root is non-negative iff
V(ig) < =+E=A

WL
V3

¢ runs right into hard potential wall, flips over

- K : K
from ¢ =+ \/ to ¢=—\/5
3 | 3

— For these values of velocity, infinite

* At turning point

acceleration is consistent with egn of motion.
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Nearly minimum-energy solutions

Close to the bottom of potential
velocity is i\/

Y

3

A
v

with equality at turning points.

¢ oscillates back and forth with nearly constant speed.
At bottom, ¢ oscillates with infinite frequency.
Reconciles apparently contradictory conditions

i / : Y
@ = Pmin and ¢ = j:\/.;\
L™ g

Quantum effects will lift minimum energy state away from
minimum.,
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Nearly minimum-energy solutions

* Close to the bottom of potential
velocity is i\/*

e)

A
Y

with equality at turning points.
* ¢ oscillates back and forth with nearly constant speed.
* At bottom, ¢ oscillates with infinite frequency.
* Reconciles apparently contradictory conditions

i / : Y
@ = Pmin and ¢ = j:\/.;\
L g
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Nearly minimum-energy solution

Close to t\he bottom of potential
velocity is 4 ~ + fo

a9
5

with equality at turning points.
¢ oscillates back and forth with nearly constant sp
At botto?, ¢ oscillates with infinite frequency.

d. @

Reconcilds apparently contradictory conditions
. |
@ = @Omin and
Quantum effects will lift minimu
minimum.
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Nearly minimum-energy solutions

Close to the bottom of potential
velocity is ) ~ i\/

Y

3

A
v

with equality at turning points.

¢ oscillates back and forth with nearly constant speed.
At bottom, ¢ oscillates with infinite frequency.
Reconciles apparently contradictory conditions

i / ; Y
@ = Qmin and ¢ = j:\/.;\

Quantum effects will lift minimum energy state away from
minimum.

Page 16/66



Semiclassical quantization

* BS formula

S = (f[)f/(i — / l:t_':{*h'uf\f/f: = '_’,Th[H+f'i)

— use 0= 1 for hard-wall potential

— approximate SR
| V 3
| 2

— turning points for V(o) &~ 5o —og)”

* Ground state energy

A
v

— keeps ground state away from the cusp
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Semiclassical quantization

* BS formula

S = %!Jf/w - / (03 — ko)dod = 2mh(n + 9)

— use 0= 1 for hard-wall potential

— approximate S
| V 3\
1 2

— turning points for V(o) &~ 5p(o— og)

* Ground state energy

02 1,2
277 h=p

IZH H')’

hm'm

A
Y

— keeps ground state away from the cusp

Pirsa: 13020121 Page 18/66



Semiclassical quantization

* BS formula

S = f})f/u — / I:r_a:{fj.‘('):\ffw — '_),Th[ll+f”

— use 0= 1 for hard-wall potential

— approximate G |
| V 3\

— turning points for V(o) &~ 5p(o— og)

* Ground state energy

A
Y

— keeps ground state away from the cusp
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Generalizations

« Two degrees of freedom

L =

(2 2 \ 2
(V] + 5 — K)

e | =

* e.g. ‘Double Mexican Hat”

) l . ‘ )
V = _! (::'f+:'.‘f}+
OJ -
1/ -2 2192 N2, M9 N 4 b,
f, — T"/) T~ )@ ——f.) +3/J — —p = o

™ e, /':,.;_-._._‘ﬂ ..r“I/ ; ; .""-
NS o

« Has minimum-energy solutions without turning points:
— just go around bottom of hat at constant velocity

(a) re— :b \/H/:;[)(]

Pirsa: 13020121 Page 20/66



Generalizations

« Two degrees of freedom

[ = “l_) 1 (:: — K :)")

s | —

* e.g. ‘Double Mexican Hat”

v 1 9 A
***J(_flJri'-:}* ]{

1 -2 2 192 N2, Mo , =
L=3(p"+p70" —r)"+ 5 l = =
« Has minimum-energy solutions without turning points:

— just go around bottom of hat at constant velocity

(a) — :b \/H/:;[)(]
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Generalizations

« Two degrees of freedom

L =

(2 2 \ 2
(V] + 5 — K)

s | —

* e.g. ‘Double Mexican Hat”

SRR
« Has minimum-energy solutions without turning points:
— just go around bottom of hat at constant velocity

(a) — :b \/H/:;[)(]
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Fields

Fields ¢ (¢, x)
Can consider both higher-order time derivatives and higher-

order gradient terms
— can get space-time crystals by mixing these, i.e. waves:

!/ / ‘
K t o ) (l(,-‘!) 9 2
F = —((,-’f — V(= _) oA
2\ (r/..*‘)
— Get propagating waves as minimum-energy solutions.
— Can engineer charge-density waves etc.

Set v = ¢ to get relativistic fields...
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Relativistic fields

_ . l 5
« Quartic in derivatives S (0u0)” A AOud)* + -
— higher derivative terms arise naturally in effective field theories

* Energy density

£ i((f}nf})'—’ - (V0)%) 43X ((000)* + (V0)?) ((9he)* = (Vo)?)

— Not bounded below: wrong sign of (Vo)
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Relativistic fields

- B l 5
* Quartic in derivatives » 5(0,0)° 4 AOup)* + -
— higher derivative terms arise naturally in effective field theories

* Energy density

| 9 D ) 9 ¢ 2 2
£ =3 ((.«‘)W)- + (m,r) | :;,\((a),.(,))- + (vu)-) ((f)[,u)- (Tur)
— Not bounded below: wrong sign of (Vo)

« Problem is cured at next order! 2n"-order term gives

)

Ean = ((2n = 1)(D0)* + (Vo)) ((Dod)* — (Vo))"

— For stability: highest order should be 44+2.

— For some parameter ranges minimum energy solutions are
homogeneous V¢ = () - solution are pure time crystals.
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Cosmology

« Such L’s have been proposed as a source of inflationary
vacuum energy:
— k-inflation [Armendariz-Picon, Damour, Mukhanov 99]
— ghost condensation [Arkani-Hamed, Cheng, Luty, Mukohyama 04]

— interesting but different:
* non-equilibrium, external t-dependent background
« typically a potential for ¢ is forbidden by PQ symmetry

- but PQ symmetries get broken..

« Could some of the characteristic features of higher-
derivative Lagrangians (such as hard-wall turning points)
lead to observable cosmological signatures, like
bounces?

Pirsa: 13020121 Page 26/66
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Quantization

* Problem: momentum is not a good operator
— ¢ isbetter
— So use noncanonical phase space coordinates (¢, o)

with symplectic form w = do A dp (:'}(,jﬁj K)dd N dd

: |
and Poisson bracket {¢.0} = —;
D= A
. . ] vh ()
. Quantlze' ‘(,J, U‘ “f : :D ) — —
30% — K 3= — Kn dob
* Hamiltonian:
ih ()

H = 3¢ — 56% + V(

- :;fl)g Il {’){.‘)

‘)

— for Vi) L[H,J'

1 () 5 3
7 .I,;r ( _‘f} r_ ) K2 2
& 3= — Ko = |
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Quantization

Problem: momentum is not a good operator

— ¢ is better

— So use noncanonical phase space coordinates (. ¢)

with symplectic form w

and Poisson bracket

Quantize: [0.9]

Hamiltonian:

— for V(o)

H

)

‘IHHU'

H

do A dp = (3¢° — k)do A do
- |
[ o)
‘l(,J. () 5
l :))f‘IJ" IaY
S 4 ih ()

:;r'lj K f)f_‘;

. 12 ; .'h {)

30 kb

Page 30/66



Quantization

* Problem: momentum is not a good operator

— ¢ s better
— So use noncanonical phase space coordinates (. ¢)

with symplectic form w = do A dp (3(,?;2 K)dd N dd

: |
and Poisson bracket {¢.0} = =
D= A
) . ] vh ()
. Quantlze' ‘r,:, r,:‘ “f : :D ) — —
30% — K 3= — K o
* Hamiltonian:
ih ()

H = 3¢ — 54% + V(

- :;fl)g IaY {’){‘)

)

— for V() L‘”U;

1 ) o 3
H .',/r( — (.) £i% 4+ <
= :)).l"' At I')I = I
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Quantization

* Problem: momentum is not a good operator

— ¢ s better
— So use noncanonical phase space coordinates (. o)

with symplectic form w = do A dp (:‘}(,jﬁj K)dd N dd

: |
and Poisson bracket {¢.0} =
D= A
; . ] - vh ()
. Quantlze' ‘r,:_ r,:‘ “f : :D ) — —
30% — K 3= — Kw do
e Hamiltonian:
ih ()

l/ f:(i}l .";r)..’ | "(

- 3h? K )

)

— for Vi) L)HU;'

ho0 .3
H .',;f( - ’_) B2 D
2M\ 352~ £ 0z 2 |
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Branched Quantization

* Another approach: work directly with “bad” momentum

* Solve Hamiltonian

H(o,p) =Sw(p)+ V(o)

where Sw(p) is the multivalued “swallowtail” function

H i H " \\‘ : f
* Requires “unfolding” the catastrophe: \\ /
— Break wavefunction y(p) into 3 pieces /
/
{ . -~ f/r
U1 (p) — o0 < p <K Py /
2(p) p— <SP <Py

V3(p) p- S P <X '
,,/ \,
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Branched Quantization

* Another approach: work directly with “bad” momentum

* Solve Hamiltonian

H(o,p) =Sw(p)+ V(o)

where Sw(p) is the multivalued “swallowtail” function

H " H " \\‘ . /
* Requires “unfolding” the catastrophe: \\ /
— Break wavefunction y/(p) into 3 pieces //
/
| o /
U1 (p) -0 <P < P4 /
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Branched Quantization

* Another approach: work directly with “bad” momentum

* Solve Hamiltonian

H(o,p) =Sw(p)+ V(o)

where Sw(p) is the multivalued “swallowtail” function

* Requires “unfolding” the catastrophe: \ /

— Break wavefunction y/(p) into 3 pieces /

Y1(p)  — oo <p<py /
ho(p) p— <P Py

V3 (p) p- < p< X /
N\
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Branched Quantization

* Impose consistent boundary conditions at endpoints of these 3
intervals: conservation of probability current, i.e. unitarity.

* Probability density on each branch ¢ = 1,2.3

dpy o o 1O * )21 )4
o = (r,'/‘/lr,'/, (H r,'/‘)r"‘”) — > (,. o o 9
* Continuity equation for total probability » = p,

dp  Dj _ i, Loy, O
F 0 (18 Wy,
Jdt - dp / Z 2 ( " Op dp 2
1
* A consistent choice identifies enpoints of adjacent branches:
A i

i (py) Vo py) op (p4) o (p4)
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* Probability density on each branch ¢ = 1,2.3

dpy o e 1O * )2 )4
o (Wl — (H™ ) 0,) = ) (¢, op? Op? Y
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Branched Quantization

* Impose consistent boundary conditions at endpoints of these 3
intervals: conservation of probability current, i.e. unitarity.

* Probability density on each branch ¢ = 1,2.3

dpy. (o i o, %)) 0%
()f = 1 (f,'/‘llf,'/i. (/l f,'/‘)f"‘”) — 2 (‘. " ()/)‘; ()/)_, 7
« Continuity equation for total probability » = >_ py

dp  j _ i, Oy, O
F 0 (18 Wy,
dat - dp / Z 2 ( " Op op ! )
H
* A consistent choice identifies enpoints of adjacent branches:

oI o
i (py) Volpy) —(p+)
op

(’|)

(')p f
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Branched Quantization

* Another approach: work directly with “bad” momentum

* Solve Hamiltonian

H(o,p) =Sw(p)+ V(o)

where Sw(p) is the multivalued “swallowtail” function

~

- [ - I \
* Requires “unfolding” the catastrophe: \ /

— Break wavefunction y/(p) into 3 pieces /

1 (p) — 00 <P < Py / /

Po(p) P- <P X PH

Vs(p) P < p< X /
f’/ \,
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Branched Quantization

* Impose consistent boundary conditions at endpoints of these 3
intervals: conservation of probability current, i.e. unitarity.

* Probability density on each branch ¢ = 1,2.3

dpy o "y 1O * )2 D4
o (Wl — (H ) 0,) = ) (¢, op> Op? \
* Continuity equation for total probability » = >,

dp  0j _ i, Loy, O
F 0 (18 Wy,
dt - dp / Z 2 ( " Op dp 2
1
* A consistent choice identifies enpoints of adjacent branches:
A i

i (py) Volpy) op (P4 ) o (p4)
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Self-adjointness

These boundary conditions insure unitarity,
self-adjointness of the Hamiltonian.

— They define a self-adjoint extension of //
But they are not the only possible choice.
— e.g. reflecting boundary conditions
Yp)=yYp)=0
» suggested by “brick wall” solutions
In fact there are many consistent choices
— Neumann, periodic, twisted...

— each of these leads to a physically inequivalent quantization
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Quantum Wires

* Consider two semi-infinite wires with endpoints ¢ and b:

a b

 What are all the possible unitary boundary conditions?

— I|dentification Ola) (D)
M) ) Xk b)
o (a r').:'()
. Nl
Dirichlet/Neumann | av(a@) + 82L ()
A
0 i(b) + 622 (b)
A

— Combinations...
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Quantum Wires

* Consider two semi-infinite wires with endpoints ¢ and b:

a b

* What are all the possible unitary boundary conditions?

— Identification Ola) (D)
M) ) ) b)
A% G r').:'()
. Nl
Dirichlet/Neumann 0 () 4 I),r.f (a)
o
0 b(b) + 622 ()
onE

— Combinations...
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General boundary conditions

o Define v = (v(a) v(b) 2(a) 2(b))

* Use projection operator Il to enforce boundary conditions

u = 11¢
* For example:
Dirichlet ldentification
0000 L1 0 0
0000 N N )
lp 0010 11 > o0 1 |
000 1 00 —1 1

Pirsa: 13020121 Page 45/66



General boundary conditions

1

* Define u (¢(a) @(b) SE(a) S2(b))

* Use projection operator Il to enforce boundary conditions

u = 11¢
* For example:
Dirichlet ldentification
0000 L1 0 0
0000 A I | )
lp 0010 11 2100 1 1
O 0 0 1 0 0 | |

Pirsa: 13020121 Page 46/66



General boundary conditions

* Define u (0(a) (b) 22(a) 22(b))

* Use projection operator Il to enforce boundary conditions

u = 11¢
* For example:
Dirichlet ldentification
0000 L1 0 0
0000 N )
lp 0010 11 2100 1 1
O 0 0 1 0 0 | |
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General boundary conditions

o Define v = (v(a) ¢(b) 2(a) 2(b))

* Use projection operator Il to enforce boundary conditions

u = 11¢
* For example:
Dirichlet ldentification
0000 L1 0 0
0000 N )
lp 0010 11 2100 1 1
O 0 0 1 0 0 | |
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General boundary conditions

e Define v = (v(a) v(b) 2(a) 2(b))

* Use projection operator Il to enforce boundary conditions

u = 11¢
* For example:
Dirichlet ldentification
0000 L1 0 0
0000 N O R )
lp 0010 11 2100 1 1
O 0 0 1 0 0 | |
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General boundary conditions

With v = (v(a) (b)) 2%(a) 22(b))

i

conservation of probability =
0 0 10

0 0 01
I 0 00
0 [l O 0

WJu o= 0 where J

A hermitian symplectic condition.

— Projection onto a Lagrangian subspace

Projected u = II¢ will satisfy condition if TI'.JII = 0
— II,and IT. work.

In fact, a whole U(2) of unitary boundary conditions

— U(n) for n endpoints.

[Balachandran et. al. 1995]

Page 50/66



Interpolating boundary conditions

* Can smoothly interpolate between Dirichlet and Identification

conditions:
- r"‘ S S
] (S 'S S
“(U) -2 cs s 14 5 °
cSs S ? 1+ s°

* Smoothly changes topology from

to

* Similarly identify multiple
endpoints to make a vertex,

build a wire network.
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Operator deformations

Topology change is smooth in Hilbert space; interpolating
b.c.’s do not have a purely geometric interpretation in real
space.

Equivalently to above, can deform Hamiltonian by boundary
operators.

Cut a wire by adding a potential term

Vir) = vo(x — a)
— interpolate between identification and Dirichletas v — 00
Implement Neumann with V = §'(x — a)

Identification requires a nonlocal operator

v(d(x — a)(a) + d(x — b)y(b)
—d(x — a)(b) — §(x = b)y(a))
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Operator deformations
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Extensions

* Higher dimensions, surgery
* Applications:
— change topology of compactified spaces

— Make parameters dynamical —a U(n) sigma-model in
uncompactified space.

* in 4D, “instantons” m3(U(n)) mediate topology change.

— String vertex? — o

* Change of topology from one circle to two.
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Back to time crystals

* The answer, after a long diversion, is that we can
quantize time crystals in many consistent ways.

* It will be interesting to find out which (if any) of
these quantizations are realized in nature.
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