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Abstract: <span>Time poses a fundamental problem in neuroscience, in part, because at its core the brain is a prediction machine: the brain evolved
to allow animals to anticipate, adapt, and prepare for future events. To accomplish this function the brain tells time on scales spanning 12 orders of
magnitude. In contrast to most man made clocks that share a very ssimply underlying principle-counting the "tics' of an oscillator-evolution has
devised many different solutions to the problem of telling time. On the scale of milliseconds and seconds experimental and computational evidence
suggests that the brain relies on neural dynamics to tell time. For this strategy to work two conditions have to be met: the states of the neural
network must evolve in a nonrepeating pattern over the relevant interval, and the sequence of states must be reproducible every time the system is
reengaged. Recurrently connected networks of neurons can generate rich dynamics, but a long standing challenge is that the regimes that create
computationally powerful dynamics are chaotic-and thus cannot generate reproducible patterns. We have recently demonstrated that by tuning the
weights (the coupling coefficients) between the units of artificial neural networks it is possible to generate locally stable trajectories embedded
within chaotic attractors. These stable patterns function as "dynamic attractors’ and can be used to encode and tell time. They also exhibit a novel
feature characteristic of biological systems:. the ability to autonomously "return” to the pattern being generated in the face of perturbations.</span>

Pirsa: 13010117 Page 1/55



Time, Dynamics, Chaos, and the Brain
L

Dean Buonomano - UCLA
Depts. of Neurobiology and Psychology
Integrative Center for Learning and Memory

irsa: 13010117 Page 2/55




Pirsa: 13010117

Time, Dynamics, Chaos, and the Brain
L -,

Dean Buonomano - UCLA
Depts. of Neuroblology and Psychology
Integrative Center for Learning and Memory

PERIMETER
o
INSTITUTE

FOR THEORETICAL PHYSICS

Page 3/55




“What then is time? If no one asks me, | know what it is. If |
wish to explain it to him who asks, | do not know”
Saint Augustine (397)
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“Time is an lllusion, lunchtime doubly so”
Douglas Adams (1979)
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“What then is time? If no one asks me, | know what it is. If |
wish to explain it to him who asks, | do not know”
Saint Augustine (397)

“Time is an lllusion, lunchtime doubly so”
Douglas Adams (1979)

“Maybe it is just as well if we face the fact that time is one of the

things we probably cannot define ... What really matters anyways
is not how we define time, but how we measure it.”
Richard Feynman (1963)
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Microsecond Processing
Sound Localization
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Time Perception
Speech Recognition
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Motor Coordination

Microsecond Processing
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Circadian Rhythms
Sleep-Wake Cycles
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Different Timing Problems have Different Requirements

Precision “Reset” Patterns
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Time Perception 1
Speech Recognition
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Microsecond Processing
Sound Localization ‘ 7 (>10%) easy
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Different Timing Problems have Different Requirements

Precision “Reset” Patterns
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Timing in Speech and Language

“He gave her cat food”
X
“He gave her cat food”
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Motor Timing: Production of Complex Temporal Patterns

Finger 4
Finger 3

Laje, Cheng, Buonomano, 2011
(Front Intergr Neurosci)
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Motor Timing: Production of Complex Temporal Patterns
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Motor Timing: Production of Complex Temporal Patterns
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Signature of the Brain’s Clocks: Weber’s Law
(o2 T linearly with t2)

o°=kT 4o (Generalized Weber’s law)
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Laje et al, 2011 (Front Integr Neurosci)
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How do we build a time keeping device with neurons?
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How do we build a time keeping device with neurons?
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Random Recurrent Neural Networks

VOoLUME 61, NUMBER } PHYSICAL REVIEW LETTERS

Chaos in Random Neural Networks
H. Sompolinsky *' and A. Crisanti

AT & T Bell Laboratories, Murray MHill. New Jersey 0797
Racah Instivute of Physics, The Hebrew Unicersity, 91904 Jerusale

and

H. J. Sommers ™
Fachbe h Physik, Universitat -Gesamihochschule Essen D-4300 Fssen

REPORTS

Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy
in Wireless Communication

Herbert Jaeger® and Harald Haas

Generating Coherent Patterns of Activity
from Chaotic Neural Networks

David Sussillo™" and LF. Abbott"*
'Department of Neuroscience, Department of Physiology
New York, NY 10032-2605, USA

and Caellular Biophysics, Columbia University College of Physicians and Surgeons,

Neuron 63, 544-557, August 27, 2009 ©2009 Elsevier Inc
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Firing-Rate Models of Recurrent Neural Networks
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Dynamic Regimes within Random Recurrent Networks
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Dynamic Regimes within Random Recurrent Networks

Output

Recurrent Units

Output

Recurrent Units

# Synapses

A

AAV AN NSV

A

1000 1500 2000 2500

LN\L

/
J

0

500

1000 1500 2000 2500
Time (ms)

g

1000

0
0402 0 02
Synaptic Weight

0
04402 0 02
Synaplic Weight

Page 25/55



High Gain Regimes are Chaotic
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High Gain Regimes are Chaotic
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The High Gain Regime has High
Computational “Potential” (e.g., telling time)

e Time (ms)
Supervised Leamning:
Desired Target
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Dynamic Regimes within Random Recurrent Networks
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_IEXBamic Regimes within Random Recurrent KX
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Tuning Recurrent Connections Through “Innate Training”

1. Traditional supervised learning rules require a target pattern
in order to calculate the error (used to adjust the weights)
But what is the target pattern of the recurrent network?

2. In the current framework (SDN / reservoir computing) it does
not matter what the network does! As long as the pattern is
high-dimensional and reproducible.

3. Innate training trains the network to do what it can already
to by picking an “innate” pattern as the target.
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Tuning Recurrent Connections Through “Innate Training”

Train the network to do
what it can already to by
picking an “innate”
pattern as the target.

Supervised Learning:
“Continuous” RLS (FORCE)

w, =W, (f—Af)+error, (t)g: P, . ()r,(7)

P = running inverse correlation of
vector r (presynaptic elements)
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Trained Trajectories are Locally Stable
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Trained Trajectories are Locally Stable
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Trained Trajectories are Locally Stable
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Stable Trajectories can Account for the Experimentally
Observed Variance Signature (Weber’s Law)
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Laje, Buonomano, 2013 (Nat. Neurosci.)
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Stable Trajectories can Account for the Experimentally
Observed Variance Signature (Weber’s Law)
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Using Stable Transient Dynamics to Generate Motor Patterns

_Supervised Leaming: Supervised Leaming:
“innate” trajectory Desired Target

e

Time (ms)

Pirsa: 13010117 Page 38/55




Complex Spatiotemporal Patterns: Handwriting
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“innate” trajectory
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Dynamic Attractor: Return to the Trajectory after Pertubation
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Real Neural Networks are Much More Complicated

Precedmg post. APs
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State-Dependent Networks / Liquid-State Machin
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State-Dependent Networks / Liquid-State Machines

In the sensory domain temporal computations arise from the
interaction between the internal state of neural networks and
incoming stimuli. The state of a network is defined both by it’s
“active” and “hidden” state.

The inherent complexity and size of recurrent neural networks
ensures that virtually any stimulus set is represented in high-
dimensional space—which facilitates the decoding (e.g.,
support vector machines)

Buonomano & Maass, 2009 (Nat. Neuroscience)
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Short-term Synaptic Plasticity

NI

100 ms

yes & Sakmann, 1999
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Synaptic Weights

Short-term Plasticity
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Short-term Plasticity
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Short-Term Synaptic Plasticity Seems to Underlie Neuronal
Interval Selectivity in Some Cases
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Temporal-Pattern Recognition by Single Neurons in a
Sensory Pathway Devoted to Social Communication
Behavior

Bruce A. Carlson
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Neural Trajectories are Time Asymmetric
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Conclusions

« The brain has many different “clocks”. Each specialized for different
temporal scales and functional needs (precision, reset, patterns, ...)
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Conclusions

« The brain has many different “clocks”. Each specialized for different
temporal scales and functional needs (precision, reset, patterns, ...)

Experimental and theoretical evidence that the brain uses neural dynamics
of recurrent neural networks to tell time on the scale of milliseconds and

seconds.

« But these networks have traditionally been subject to chaos. We now know

that we can “tame” chaos through plasticity of the recurrent connections.

Recent shift in thinking about how the brain works: Computations arise from
the voyage through state space, as opposed to a destination in state space
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