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Why are preparations represented by density operators?

Why are measurements represented by POVMs?

Why the Born rule? (Why a rule that’s linear in the state?)
Why is composition of systems represented by tensor product?
Why Hilbert space over the complex field?

Why Hilbert space at all?
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

§
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Preparation Measurement
-~ M

[ Pr(1|P,Mq) \
Pr(2/P,Mq)
Pl’(l P, |\/|2)
Pr(2|P,M>)
PI’(3 P, |\/|2)

‘
A framework for convex operational theories:
See: L, Hardy, quant-ph/0101012
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

O
B 0O LD
© ©
Preparation Measurement
P M
[ Pr(1|P,M1) ) (0 )
Pr(2|P,Mq) 0
| Pr(1|P,My) v —= | O
SP= 1 pr(2|P, M>) M)A 1
Pr(3|P, M>) \ 0 /

P’I'(A:‘P, M) — rj\_[’[]: *Sp
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State tomography for a single qubit
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012
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Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

0
® B B @@
Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

Pr(pass|P,M1)
Pr(pass|P, M»)

Sl):

Pl’(pass\ P, M[\-)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

§
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Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

Pr(pass|P,M1)

Pr(pass|P, M>») “operational state”
Sp — .

Pr(pass|P, M)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

§
® ) B @@
Preparation Measurement
P M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

Pr(pass|P,M1)

Pr(pass|P, M>») “operational state”
Sp — o

Pl’(pass\ P, I\/IA-)

Pr(k|P,M) = furr(sp)
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A framework for convex operational theories
See: L. Hardy, quant-ph/0101012

0
® B 0 @@
Preparation Measurement
= M

Suppose there are K fiducial measurements (pass-fail mmts from
which one can infer the statistics for all mmts)

Pr(pass|P,M1)

Pr(pass|P, M>») “operational state”
Sp — o

Pl’(pass\ = I\/IA-)

Pr(M P, M) — f/\[’;}:(sl)) What can we say about f?
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Operational states form a convex set

PN
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Operational states form a convex set

AN mts, SO SPH = w Sp + (1 = w) SPI
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Operational states form a convex set

PN

® - M

VM, k : p(k|P”", M) =w p(k|P,M)+(1—w) p(k|P’,M)
f(spr) =w f(sp) + (1 —w) f(spr)

Also true for fiducial mmts, so  Spr = w Sp + (1 — w) Spy/
Closed under convex combination —> a convex set

fwsp+(1—-w)sp) =w f(sp)+(1—w) f(Spr) Convex linear
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Convex linearity implies linearity

If f is convex linear on opt'l states
SI=gsi = f(S) =" wi(s) 0 <y < Iandiy

Then f is linear on opt'l states
s=Y;a;s; = f(s) =%;if(si) o €ER
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Convex linearity implies linearity

If f is convex linear on opt'l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w; <1land >,w, =1
Then fis linear on opt'l states

s= ;8 = f(s)=20;f(s;) a; € R

Note that the fiducial mmts are clearly represented by linear functions
[0
Pl’(pass‘P,Ml) 0
Pr(pass|P, M»)

Sp = I'M;.pass —

O+~ O

Pr(pass|P, M)

\ )

Pr(pass|P, M;) = 'M;,pass " Sp
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Convex linearity implies linearity

If f is convex linear on opt’l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w; <1land >,w,=1
Then fis linear on opt'l states

s=q;8 = f(s)=3;a,f(s;) a; € R

Proof: s = Y, ;S
s+ jer lojls; = 2l oy [s;
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Convex linearity implies linearity

If f is convex linear on opt'l states i
s=Y,wis; = f(8)=X;wif(s;) O0<w;<1and3;w;=1
Then f is linear on opt'l states

s=Y;a8; = f(s) =Zicuf(si) a; ER

Note that the fiducial mmts are clearly represented by linear f‘mtions

/8\

Pr(pass|P, Mq)
r(pass|P, M>) ; e
. IM,-.pass o

Pr(pass|P, M)

Pr(pass“:’, M;) = 'M;,pass ° Sp
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Convex linearity implies linearity

If f is convex linear on opt’l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w;<1land >,w;, =1
Then fis linear on opt'l states

s=q;8 = f(s)=7;a,f(s;) a; € R

Proof: s = Y, ;S
s+ Z.jEl ‘(V]‘bj = Zie]_{_ ’(Yj_|5-3"

Consider a coarse-graining of all 1 = 2_; &;
the outcomes of a fiducial mmt.
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Convex linearity implies linearity

If f is convex linear on opt’l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w;<1land >,w;, =1
Then fis linear on opt'l states

s=iq;8 = f(s) =2 0;f(s;) a; € R

Note that the fiducial mmts are clearly represented by linear functions
(0
Pl’(pass‘P’Ml) 0
Pr(pass|P, M»)

Sp = I'M;.pass =

O+~ O

Pr(pass|P, M)

\ i/

P?I'(DGSS“:), M,) e rM“DaSS : S[)
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Convex linearity implies linearity

If f is convex linear on opt'l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w;,<1land >,w;,=1
Then fis linear on opt'l states

s=q;8 = f(s)=3;a,f(s;) a; € R

Proof: S = ) ; ayS;
s+ Yjer_ lojls; = Yier, lails;

Consider a coarse-graining of all 1 = 2_; &;
the outcomes of a fiducial mmt.
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Convex linearity implies linearity
If f is convex linear on opt'l states l
s=Y,wis; = f(s)=X;wif(s;) O0<w;<1andw=1

Then f is linear on opt'l states
s=Y;ai8; = f(s) =Xiaif(si) a; ER

Proof: S |= i oS;
S

Yier_ lajls; = Tier, lailsi

=

Consider a coarse-graining of all 1 = 2i &

the outcomeslof a fiducial mmt.
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Convex linearity implies linearity

If f is convex linear on opt'l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w;<1land Y,w;, =1
Then fis linear on opt'l states

s=iq;8 = f(s) =23 0;f(s;) a; € R

Proof: s = Y, qyS;
s+ X jer_ lajls; = Zig/+ oy [s;

Consider a coarse-graining of all 1 = 2_; &;
the outcomes of a fiducialmmt. 1 457, |oj] = Yier, il = N
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Convex linearity implies linearity

If f is convex linear on opt'l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w; <1land >,w, =1
Then fis linear on opt'l states

s=iq;8 = f(s) =2 0;f(s;) a; € R

Proof: s = Y, ;S
s+ X jer_ lajls; = Zig/+ oy [s;

Consider a coarse-graining of all 1 = 2_; &;
the outcomes of a fiducialmmt. 1 57, ; |o;] = Yier, lail = N

ol
Thus: J%FS + 2 jel ‘7\%

|Hi,j|_

Sj = 2iely ASi
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Convex linearity implies linearity

X linear on opt'l states
= f()=;wif(s;) 0<Lw;<1andj;w=—1

o f(si) a €R

= Yiel, |ailsi

qilig ——— "'\_ o
Consider a coarse-graining of all 1= 2i®i E
the outcomeslof a fiducialmmt. 1+ > ey e = Sei ] =
lajl | A |ail ..
"‘S Ar T 2g€l- NS E:.EI+ N

v (s) + Zjel- 7 l 'lf(SJ) = Yiely N Il £(s;)
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Convex linearity implies linearity

linear on opt'l states
= f(s) =Tiwif(si) O0<Lw;<1and}j]

a; ER

1=
the outcomes]of a fiducialmmt. 1+ > ey lajl = Siels | = N

|oi] e
s+ Tjel- FrSi = &

1 5(e) + Syer. F () = Trer, FHED
f(s) = Tiaif (si)
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Convex linearity implies linearity

If f is convex linear on opt’l states

s=>,w;s; = [f(s)=>,w;f(s;) O<w; <1land >,w, =1
Then f is linear on opt'l states

s=q;8 = f(s)=7;a,f(s;) a; € R

Therefore 3dr: f(S) =r-s

Pirsa: 13010070 Page 28/54



Pirsa: 13010070

A convex operational theory

0
® D&
Preparation Measurement
-~ M
Sp € S rf\/,A:ER
“‘operational states” “operational effects”

R = Interval of
positive cone

S = Convex set

P’I'(k'P, M) m— r/\_/’;.l: *Sp
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Operational classical theory

S can be any probability distribution

S = a simplex

N

(p(1),p(2))
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Operational classical theory

S can be|any probability distribution

S = a simplex

I can be|any vector of conditional probabilities

R = the unit hypercube

i

(p(1),p(2))
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Operational classical theory

S can beany probability distribution
S = a simplex

r can be|any vector of conditional probabilities

R = the unit hypercube

.

(r(1),p(2)) r = (p(pass|1),p(pass|2))
1 0,1) 1 (1.1)

(1.0)
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S can be

S = a simg

I canbe

Operational classical theory

any probability distribution

lex

any vector of conditional probabilities

R = the ur

S —

©,1)|1

it hypercube

.

(»(1),p(2)) r = (p(pass|1),p(pass|2))
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Operational classical theory

S can beany probability distribution

S = a simplex

r can be|any vector of conditional probabilities

R = the unit hypercube ‘

s =|(p(1),P(2)) r = (p(pass|1),p(pPass|2))

A (0,1) s (1,1)

(0,1)

a5

(1,0)

Pr(pass) = s = L; p(2)p(Pas
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Operational classical theory

S can be |any probability distribution
S = a simplex

r can be|any vector of conditional probabilities

R = the unit hypercube

.

s—=(a(1)ip@)pE) (p(pass|1),p(pass|2), p(pass|3))
A + Ot
(0,0,1) (0,0,1) (0,1,1)

(1,0,1)( (1,1,1)
01.0) Qoo ||,

(1,0,0) /(010
(11,0
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any unit-trace positive operator p positive, Tr(p) =1
S = the convex set of such operators
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension
form a real Euclidean vector space of dimension d?

S can be any unit-trace positive operator  p positive, Tr(p)
S = the convex set of such operators

:

Ex: A qubit. lee space of Hermitian operators is spanned by {I,0:,0z,0 )

2

p# 1(50I+s’-0‘)
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any unit-trace positive operator p positive, Tr(p) =1
S = the convex set of such operators

I can be any positive operator less than identity [/, I — I/ positive
R = an interval of the positive cone of such operators

Ex: A qubit. The space of Hermitian operators is spanned by 11,02,00,0y}

‘”},

| —

(sof +8" - 0)

p=

.

-

L

v

S = {S | S0 = 1, ‘S,| § l}
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension
form a real Euclidean vector space of dimension d?

S can be any unit-trace positive operator  p positive, Tr(p) == 1
S = the convex set of such operators

.

Ex: A qubit. The space of Hermitian operators is spanned by {I,0:,04,0y}
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Operational quantum theory

Recall: The Hermitian operators on a Hilbert space of dimension d
form a real Euclidean vector space of dimension d?

S can be any unit-trace positive operator p positive, Tr(p) =1
S = the convex set of such operators

I' can be any positive operator less than identity F, I — [/ positive
R = an interval of the positive cone of such operators

Ex: A qubit. The space of Hermitian operators is spanned by {I,0,,0.,04}

1o
1 :
P = T}'(H()I+s’-0) E=rol+r -0
;ST:{S|.S'():J..‘S,| Sl} R={r|0<rg<1,
| <rp,1—ro}
[1)

Pr(pass) =r-s = Tr(pFE)
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all{r;.} suchthat r.-s >0 Vse S
ZA;rA:-S: 1 vVse S
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all{r;.} suchthat r.-s >0 Vse S
Z;‘;r;ﬁ-S: 1 vVse S

The real vector space is the space of Hermitian operators
The inner productis (A, B) =Tr(AB)
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all{r;.} suchthat r.-s >0 Vse S
ZA;FA:-S: 1 vVse S
The real vector space is the space of Hermitian operators

The inner product is (A, B) =Tr(AB)

Each S is a density operator p
Each set 1k | is a set of Hermitian operators {EL}
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A little bit of axiomatics

Suppose one takes as given that
S = the convex set of positive trace-one operators

Suppose one assumes that every logically possible measurement is
physically possible

Allow all{r;.} suchthat r.-s >0 Vse S
ZA;rA:-S: 1 vVse S

The real vector space is the space of Hermitian operators
The inner product is (A, B) =Tr(AB)

Each S is a density operator p
Each set 1k} is a set of Hermitian operators {EL}

r.-S= (Ey,p) =Tr(Ep) < theform of the Born rule
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Tr(pEr) >0 Vp e S(H)
= (Y|Ex|¥) >0 Vo) € H

— | B} is a positive operator

T Ti@E) =ik o E S

L (] (S B l9) =1 V) € H
>N Ex=1

The logically possible measurements are the set of the POVMs

We have derived:
. R =the set of all ek Qnerators less than identity

. the Born rule
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Operational formulation of quantum theory

Every preparation P is associated with a density operator p

Every logically possible measurement is physically possible

measure {E,}. The probability of M yielding outcome k givena

preparation P is Pr(k|P, M) = Tr( k)

e \pletely-

Every measurement outcome k is associated with a trace-
nonincreasing completely-positive linear map T, such that

T.(p) {1718 Y R
p-—rpkz:r—r-[%—gf(ﬁﬂ where %(I)—Ek

B Every measurement M is associated with a positive ope%ator-valued

Every transfofmation is associated with a trace-pr
positive lineaf map  , — p’ =T (p)

Pirsa: 13010070
Page 49/54



Real versus complex field

real case complex case
Pure preparations rays in Rd rays in (Cd
Complete repeatable d d
measurements Bases for IR Bases for C
Reversible Special orthogonal (rotation) Unitary
transformations

. : Positive unit-trace Positive unit-trace

Mixed preparations real matrix complex matrix

Composition rule Tensor product Tensor product
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State tomography for two qubits

Ox Or
Source of
Uy \qubit pairs Uy
Oz O~
We need 42 -1 = 15 parameters We obtain 42 -1 = 15 parameters

The mixed state of two qubits can be determined from local measurements
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State torJ

nography for a single real-amplitude
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State tamography for two real-amplitude qubi

Source of
pairs

We need 4(4+1)IR - 1 = 9 parameters We obtain 32 -1 = 8 parameters

Oy ® oy mustbe accessed globally

' - itude qubits
mixed state of two real amplitu : :
Iglfnot be determined from local measurements -—a kind of holism
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State tamography for two real-amplitude qubi

Source of

T\pairs JP':C

0

o
~

i

We need 4(4+1)/ - 1 = 9 parameters We obtain 32 -1 = 8 parameters

oy ® oy mustbe accessed globally

| - | bits
ixed state of two real amplitude qu ; :
I::n?t be determined from local measurements —a kind of holism
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