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Abstract: <span>|

will discuss superhorizon fluctuations in de Sitter space. The first part of

the talk will focus on computing entanglement entropies of field theoriesin a
fixed de Sitter background. Those computations are done for free theories and
also theories with gravity duals. If time permits, | will also discuss
superhorizon fluctuations in cosmological backgrounds. In particular, | focus
on showing that subhorizon fluctuations can not produce any significant
backreaction on superhorizon modes. If those late time effects existed, onein
principle could not trust the scale invariant spectrum of inflationary theories
to be the source of the spectrum of thermal fluctuations of the CMB.</span>
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Superhorizon Fluctuations in dS
and in Cosmology
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Outline

* Superhorizon Fluctuations and the
Wavefunction

* Entanglement entropy in de Sitter space
* |Inflationary correlators and IR effects
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Superhorizon Fluctuations

* dSis the most symmetric expanding solution
to Einstein’s equations — nice toy model for
Cosmology

* |n flat space we study scattering amplitudes

— Observables encoded in the S matrix
— What about dS?
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De Sitter space
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De Sitter space

* |n flat slices, translation symmetry along the
spatial directions — momentum modes;

* Fixed comoving distance corresponds to
physical distance that expands exponentially
inﬁmeﬁ;

. Physical%vavelength of modes of constant
comoving momentum get stretched;
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Observables in dS

* Observables determined from the
wavefunction of the universe ¥ |[¢];

* We fix boundary conditions ¢ at asymptotic
future” = Oand impose boundary conditions
in the past to select the vacuum —just like the
flat space 7¢ prescription;
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Bunch-Davies vacuum

* |f one follows a comoving wavenumber k well
into the past, at some point its physical
wavelength is very small — field feels as if in
flat space — BD/Hartle-Hawking/Chernikov-
Tagirov vacuum; ¢ ~ """ n — —o0

* Different combinations of positive and
negative frequency modes correspond to «
vacua Mottola-Allen
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Superhorizon modes

* We are computing the wavefunction at late
times;
 Comoving wavelength modes are all stretched

beyond the Hubble radius — modes have
“exited the horizon”;

* The wavefunction of the universe computes
guantities that can NOT be measured by a
local observer in dS;

So why bother computing it??
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We observe superhorizon fluctuations
in the CMB!

* Great triumph of inflationary theory (not by design):
generates spectrum of anisotropies in the CMB temperature;

* After inflation is over, we can observe a larger part of
reheating surface, so we have access to superhorizon modes.
Us

CMB

Reheating

Inflation
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Superhorizon modes

* These modes probe the geometry of

spacetime. Subhorizon modes feel almost like
in flat space.

* |n particular, we could ask how much

entanglement is there in a superhorizon size
region?
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Entanglement Entropy

* EE =Von Neumann entropy for density matrix
associated to an entangling surface and a
given state;

* Thereis a need to introduce some UV
regulator to make sense of this entropy. In
principle it is infinite for QFTs; tHoo"

’ Bombelli, Koul, Lee, Sorkin
Srednicki
Callan, Larsen, Wilczek
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Entanglement Entropy in dS

Maldacena, GP

* Goalis to understand superhorizon

correlations of fields in the BD-HH-CT vacuum
of dS;

* Take a spherical region of fixed comoving
radius, such that the physical region is much
bigger than dS radius, and find EE for the HH-
BD-CT vacuum;
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Entanglement Entropy in dS

* Compute the entropy for this sphere for
different theories:

— Free scalars;
— Theories with holographic duals (CFTs and slightly
deformed CFTs).

* Important: Metric does NOT fluctuate
throughout these calculations (QFT in a curved
background). We always take dS to be 4-
dimensional.
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General Remarks on EE

e Structure of UV divergences is the same
regardless of background being dS or flat
space:

A
S = 016—2 + co logeH + Sintr

* We focus on the “interesting” part of the
entropy.
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General Remarks on EE

e Structure of UV divergences is the same

regardless of background being dS or flat
space:

A
S = 616—2 + ¢ logeH + Sipir

* We focus on the “interesting” part of the
entropy.
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Interesting Entropy

* For massive theories in flat space  erubers, wilczek
S’int’r' ~ Area

* For theories at finite temperature
Siner ~ Volume

* dSis seen as a thermal state in static
coordinates. What is the form of the entropy?
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Interesting Entropy in dS

* Recall general form of the entropy

A ,
S = (316—2 + cologeH + S,
 FordS, it turns out that

A -
Sintr = d1 el + d logn +- finite Why 727

* The structure of the terms is the same but the
coefficients are different. We focus on
computing do»
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Why???

Wavefunction becomes time-independent at late times. Only time dependence
for EE has to come from local terms. We wrote all possible local terms just as in
UV divergent piece.

Entanglement had already been established itself in the past. Pair is created and
one particle is outside of entangling surface at late times.
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Interesting Entropy in dS

* Recall general form of the entropy

A
S = c1— + C2 loge H + 5,4,
€
 FordS, it turns out that

A .
Sintr = dq 0—2 + ds log n + finite Why 727

* The structure of the terms is the same but the
coefficients are different. We focus on
computing do
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Interesting Entropy in dS

* Recall general form of the entropy

A
S = 616—2 =r & log eH + S’int’r'

e FordS, it turns out that

A .
S = @) ? + ds log n + finit

© . Why???

* The structure of the terms is the same but the
coefficients are different. We focus on

computing do
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Free Theories

* dSisometry group is SO(4,1). Entangling
surface leaves an SO(3,1) invariance at late
times.

* We exploit this isometry to calculate the
density matrix for the free theory.
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Mapping equivalent problems in
different slicings
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Mapping equivalent problems in
different slicings

So‘
/
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Free Theories

* Hyperbolic slicing has explicit SO(3,1)
symmetry of the slices;

 Wavefunctions were determined in the

context Of open inﬂaﬁon; Sasaki, Tanaka ,Yamamoto
Bucher, Goldhaber, Turok

* Due to a mixing of the UV and IR cutoffs in
hyperbolic coordinates, (; is not captured by
this procedure, but we can extract the
coefficient of do2 logn .
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Free Theories (Result fords)
Sintr/Sv=l/2
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EE in Holographic Duals of dS QFTs

* EE for a theory with an AdS holographic dual is
given by solution to a minimal area problem in
the bulk geometry. Ryu, Takayanag

Hubeny, Rangamani, Takayanagi

* For CFTs in dS, result is the same as in flat
space.
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EE in Holographic Duals of dS QFTs

* For non-CFTs in dS, there are two distinct
cases:

— “Small” deformations — Coleman-de Luccia
geometry;

— “Large” deformations — Cigar geometry;
(deformation parameter compared to Hubble)

Strominger, Maldacena, Hawking

Buchel, Langfelder, Walcher

Aharony, Fabinger, Horowitz, Silverstein,
Balasubramanian, Ross, Cai, Titchener,
Alishahiha,Karch,Tong,Larjo, Simon,
Hirayama,He, Rozali, Hutasoit, Kumar, Rafferty,
Marolf, Rangamani, Van Raamsdonk

Hertog, Horowitz
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Cigar Geometry

* “Bubble of nothing” — Area law

\ Hubeny, Rangamani, Takayanagi
AdS-Schw Klebanov, Kutasov, Murugan

r=w | | )r=ry

* To leading order in N, no logarithmic term.
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Coleman-de Luccia geometry

Contributes to
Area term

Interesting piece is all

Behind the horizon!

r=oo
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Coleman-de Luccia geometry

¢

Contributes to /

Area term

Interesting piece is all
Behind the horizon!

F=cs
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Coleman-de Luccia geometry

T

Contributes to /

Area term

Interesting piece is all
Behind the horizon!
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Coleman-de Luccia geometry

* Interesting piece of the EE coming solely from
region behind the horizon (of the bulk
geometry)!

 Superhorizon correlations in dS are probing
the cosmology of the FRW universe
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Conclusions

EE in dS has new UV finite pieces that can be
computed by standard methods;

In 4D: Area law and logarithmic piece in
conformal time;

Log piece has long range entanglement
information;

For holographic duals, logarithmic piece in EE
is all due to region behind the horizon...
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