Title: A robust constraint on cosmic textures from the cosmic microwave background Date: Dec 11, 2012 01:00 PM URL: http://www.pirsa.org/12120034 Abstract: Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early universe, and which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry out an optimal test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky. Pirsa: 12120034 Page 1/42 With: Hiranya Peiris (UCL), Matt Johnson (Perimeter Institute), Jason McEwen (UCL), Daniel Mortlock (Imperial College London) Image credit: V. Travieso and N. Turok Pirsa: 12120034 Page 2/42 ### **Outline** ### Background - Topological defects - Textures - Modeling textures #### Analysis - Framework - Implementation - Testing - Calibration & Sensitivity - Results Pirsa: 12120034 Page 3/42 ### **Outline** ### Background - Topological defects - Textures - Modeling textures #### Analysis - Framework - Implementation - Testing - Calibration & Sensitivity - Results Pirsa: 12120034 Page 4/42 ### **Topological Defects** - Formed when medium undergoes symmetry-breaking phase transition - Medium can take multiple configurations afterwards - Large separations ⇒ different configurations - Defects form at interfaces - (usually) stable - medium stuck in high-energy state Pirsa: 12120034 Page 5/42 ### **Topological Defects** - Formed when medium undergoes symmetry-breaking phase transition - Medium can take multiple configurations afterwards - Large separations ⇒ different configurations - Defects form at interfaces - (usually) stable - medium stuck in high-energy state Pirsa: 12120034 Page 6/42 ### **Topological Defects** - Formed when medium undergoes symmetry-breaking phase transition - Medium can take multiple configurations afterwards - Large separations ⇒ different configurations - Defects form at interfaces - (usually) stable - medium stuck in high-energy state Pirsa: 12120034 Page 7/42 #### **Terrestrial Defects** Ferromagnetic materials • Above Curie temperature (T_c) magnetic field randomly oriented Below T_c, field ordered locally, but different directions in different domains Defects at domain walls Credit: Man, Altman & Poppa Surface Science (2001) Pirsa: 12120034 Page 8/42 ### **Cosmological Defects** - The Universe is cooling - Undergoes phase transitions - If symmetries broken: cosmological defects! Potential energy gravitates in GR: affect Universe's evolution Pirsa: 12120034 Page 9/42 ### **Cosmological Defects** - The Universe is cooling - Undergoes phase transitions - If symmetries broken: cosmological defects! Potential energy gravitates in GR: affect Universe's evolution Pirsa: 12120034 Page 10/42 ### **Cosmological Defects** - The Universe is cooling - Undergoes phase transitions - If symmetries broken: cosmological defects! Potential energy gravitates in GR: affect Universe's evolution Pirsa: 12120034 Page 11/42 #### **Cosmic Textures** Formed when complex global symmetries are broken (e.g. SU(2)) • Extended, dynamical tangles of fields Eventually collapse and explode • (see Turok, PRL, 63, 2625, 1989) Pirsa: 12120034 Page 12/42 #### Textures in the CMB • Cosmic Microwave Background (CMB) back-lights textures - Collapse / explosion creates time-varying potential - collapse ⇒ red-shift ⇒ cold spot - explosion ⇒ blue-shift ⇒ hot spot Roughly spherically symmetric: circular, additive modulation Pirsa: 12120034 Page 13/42 ## **Texture Profile** • Described by $\, heta_0,\phi_0, heta_c,p,\epsilon\,$ Pirsa: 12120034 Page 14/42 #### **Texture Populations** - Single phase transition, common amplitude, ε - related to energy scale of transition (up to inflation!) - Different average number, $\langle N \rangle$, of textures produced - Λ CDM is $\langle N \rangle = 0$ - Differentiate theories with "global" parameters: $\langle N \rangle$, ϵ - Other "local" params describe individual properties Pirsa: 12120034 Page 15/42 Pirsa: 12120034 Page 16/42 Pirsa: 12120034 Page 17/42 Pirsa: 12120034 Page 18/42 Pirsa: 12120034 Page 19/42 ### **Comparing Theories** Given current data, is Universe ΛCDM plus textures or pure ΛCDM? • Model selection! Need $\Pr(\langle N \rangle, \epsilon | \mathbf{d})$ • If peak is at $\langle N \rangle = 0$, we conclude Λ CDM favoured Marginalize over local params as they don't distinguish theories Pirsa: 12120034 Page 20/42 #### **Analysis Framework** Model selection: need Bayesian methods $$\Pr(\langle N \rangle, \epsilon | \mathbf{d}) \propto \Pr(\langle N \rangle, \epsilon) \times \Pr(\mathbf{d} | \langle N \rangle, \epsilon)$$ - d = CMB data: specifically WMAP 7-year data - Likelihood is very complex: $$\Pr(\mathbf{d}|N,\epsilon) \propto \int \exp\left[- rac{1}{2}\left(\mathbf{d} - rac{\Delta T}{T}_1 - rac{\Delta T}{T}_2... ight)\mathbf{C}^{-1}\left(\mathbf{d} - rac{\Delta T}{T}_1 - rac{\Delta T}{T}_2... ight)^T ight]$$ - 1) likelihood zero outside most-texture-like patches - 2) these patches are uncorrelated Pirsa: 12120034 Page 22/42 - 1) likelihood zero outside most-texture-like patches - 2) these patches are uncorrelated Pirsa: 12120034 Page 23/42 - 1) likelihood zero outside most-texture-like patches - 2) these patches are uncorrelated Pirsa: 12120034 Page 24/42 - 1) likelihood zero outside most-texture-like patches - 2) these patches are uncorrelated Pirsa: 12120034 Page 25/42 ### **Approximated Posterior** - Process each patch separately, fitting single texture template - Calculate Pr(1 texture, ε|d_{patch}) - Combine to approximate full posterior Pirsa: 12120034 Page 26/42 • Combinations of artificial Gaussian posteriors Pirsa: 12120034 Page 27/42 • Combinations of artificial Gaussian posteriors Pirsa: 12120034 Page 28/42 • Combinations of artificial Gaussian posteriors Pirsa: 12120034 Page 29/42 • Combinations of artificial Gaussian posteriors Pirsa: 12120034 Page 30/42 #### **Priors** - Locations: isotropic (theory) - Sign: either hot or cold (theory) - Size: $1/\theta_c^3$ between 2° (swamped by CMB) and 50° (template overlaps) - Number: uniform between 0 and 10 - Turok sims: ~7 per CMB - assume order of mag for similar theories - Amplitude: uniform in range 2.5E-5 (swamped by CMB) to 1E-4 (post-inflationary) Pirsa: 12120034 Page 31/42 #### **Priors** - Locations: isotropic (theory) - Sign: either hot or cold (theory) - Size: $1/\theta_c^3$ between 2° (swamped by CMB) and 50° (template overlaps) - Number: uniform between 0 and 10 - Turok sims: ~7 per CMB - assume order of mag for similar theories - Amplitude: uniform in range 2.5E-5 (swamped by CMB) to 1E-4 (post-inflationary) Pirsa: 12120034 Page 32/42 ### **Patch Definition** - Convolve with grid of different-sized filters - Candidates = scales & locations where filtered map > threshold Pirsa: 12120034 Page 33/42 ### **Patch Definition** - Convolve with grid of different-sized filters - Candidates = scales & locations where filtered map > threshold Pirsa: 12120034 Page 34/42 ## Degradation • "Mild" degradation (i.e. pixel scale << feature scale): expect same answer Pirsa: 12120034 Page 35/42 ## Degradation • "Mild" degradation (i.e. pixel scale << feature scale): expect same answer Pirsa: 12120034 Page 36/42 ## 3rd Test: Neglected Correlations Large-scale: compare patch versus full-sky Small-scale: compare results for patches up to 30° radius All cases: consistent to sampling precision Pirsa: 12120034 Page 37/42 ### **Calibration: Unknown Systematics** - Can't include all systematics in likelihood: some not released - Calibrate effects using WMAP7 W-band end-to-end sim Pirsa: 12120034 Page 38/42 #### **WMAP 7-Year Conclusions** - Posterior peaked at $\langle N \rangle$ = 0: Λ CDM favoured - Can rule out models predicting > 6 textures at 95% - Probing interesting parameter space. Bump at $\epsilon \approx 7.5E-5$ Pirsa: 12120034 Page 39/42 #### **WMAP 7-Year Conclusions** - Posterior peaked at $\langle N \rangle$ = 0: Λ CDM favoured - Can rule out models predicting > 6 textures at 95% - Probing interesting parameter space. Bump at $\epsilon \approx 7.5E-5$ Pirsa: 12120034 Page 40/42 ### The Future - No textures in WMAP, will answer change for Planck? - factor of 30 improvement in noise & resolution - near-ideal power spectrum - Include polarization • Different signals? Pirsa: 12120034 Page 41/42 ### The Future - No textures in WMAP, will answer change for Planck? - factor of 30 improvement in noise & resolution - near-ideal power spectrum - Include polarization • Different signals? Pirsa: 12120034 Page 42/42