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Abstract: <span>| will recall the

main motivations for considering spin foam modelsin their Group Field Theory
(GFT) versions, which are quantum field theories defined on group manifolds. As
for any other quantum field theory, afully consistent definition of the latter
must involve renormalization. | will briefly review a specific class of GFTSs,
called tensorial, for which progressin this direction has recently been possible.
A new just-renormalizable model, in three dimensions and on the SU(2) group,
will be presented. Interestingly, it includes the geometric constraint of the
Boulatov model, and might as such be related to Euclidean quantum gravity in
three dimensions. Furthermore, this opens the way to asimilar analysis of
current 4d gravity spin foam models. <br>

<br></span>
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Introduction and motivations

TGFTs are an approach to quantum gravity, which can be justified by two
complementary logical paths:

@ The Tensor track : matrix models, tensor models

1/N expansion , universality
renormalization of tensor field theories...

@ The Group Field Theory approach to Spin Foams
e Quantization of simplicial geometry.

e No triangulation independence =- lattice gauge theory limit or sum over
foams.

GFT provides a prescription for performing the sum: simplicial gravity path integral =
Feynman amplitude of a QFT.

Amplitudes are generically divergent = renormalization?

Need for a continuum limit = many degrees of freedom = renormalization (phase
transition along the renormalization group flow?7)

Big question

Can we find a renormalizable TGFT exhibiting a phase transition from discrete
geometries to the continuum, and recover GR in the classical limit?

Sylvain Carrozza (AEl & LPT Orsay) Renormalizing TGFTs: a 3d example on SU(2) 05/12/2012 2/ 30

Pirsa: 12120007 Page 3/30



Purpose of this talk

@ State of the art: several renormalizable TGFTs
e U(1l) model in 4d: just renormalizable up to ¢

-6

interactions, asymptotically free

-4

e U(1l) model in 3d: just renormalizable up to % interactions, asymptotically free

e even more renormalizable models

@ Question: does this formalism have the potential to accommodate interesting spin
foam models (i.e. with geometric content)?

Main message of this talk

Yes it does, at least if:

@ non-trivial propagators and a well-behaved class of foams are used;

o key QFT notions are generalized.

This is supported by recent studies of models with gauge invariance:

Nice example in this class: a just-renormalizable Boulatov-type model for SU(2) in d = 3!
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Boulatov model and its mutations

o Boulatov model and its mutations
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o Boulatov model and its mutations

Q A class of dynamical models with gauge symmetry

© SU(2) model in d
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Boulatov model: initial formulation

A model for Euclidean 3d quantum gravity: gauge group SU(2).
o Real scalar field on SU(2)?*: o(g1.82.83).
@ Gauge invariance:
vh € SU(2), o(hgy, hg>. hgs) = (g1, 82.83)

Interpretation: ¢ as a quantized triangle.

Action:
Siinl¥] /[=lg,]3 (&1, 82.83)9(&81.82.83).

Sinel¥] A /[~1g;]" oler.82.83)¢(&3.85.84)

o(&s.82.86)(8a.86.81)

/.‘l/:.,u(,‘.,‘)e (] — Z w_4;-}<(g:) (4)

=- Sum over discrete quantum spacetimes (triangulations dual to 2-complexes), with
Ponzano-Regge weights.
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Boulatov model: main issues

@ Combinatorics / Topology: which triangulations are summed over?

o all possible topological manifolds;
e very singular topologies: extended singularities X
e the 2-complex does not fully capture the topology of the triangulation

@ Divergences:

e a cut-off on large spins needs to be introduced (e.g. heat kernel regularization):

o(&g) = D_ (2 +1)x(&) — Ka(g) = D _ e NMNU(2j + 1)x (&)

-

J - J*! -~

e complicated structure of divergences, not captured by topological invariants
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Boulatov model: colored version and 1/N expansion

Four complex fields, with color labels ¢: o, . fe {1.--- .4}

Restrict the interaction to fields with 4 different colors:

5["*]—2./'i;»|3+f\‘/7 Prp2p3ps + €.C (6)

= amplitudes unchanged, but restricted class of simplicial complexes summed over:
pseudo-manifolds only, full cellular homology...

1/N expansion : appropriate scaling of A such that

Zp = [KA(1)]?Z0(AX) + O([Ka(D)]Y) (7)

Zo: contains only triangulations of the sphere, associated to melonic graphs

1/N expansion: unique scaling of A such that manifolds dominate over singular
pseudo-manifolds
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A class of dynamical models with gauge symmetry

o A class of dynamical models with gauge symmetry
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Structure of a TGFT

@ Dynamical variable: rank-d complex field

with G a (compact) Lie group.

@ Partition function:

e S5(p.7) is the interaction part of the action, and should be a sum of local terms

e Dynamics + geometrical constraints contained in the Gaussian measure dj ¢ with
covariance C (i.e. 2nd moment)

/Flm-( 2.7) p(&e)P(&l) = Clge: &h)
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Locality I: simplicial interactions

@ Natural assumption in d dimensional Spin Foams: elementary building block of
space-time = d-simplex.
In GFT, translates into a »“"! interaction, e.g. in 3d:

S(p.P) x /[‘lg]"",-(gl-g:-ga);(ga-gs-gé);(g-:-g:‘gr:»);(gs-g-:w-gl) + c.c.

Problems:

e Full topology of the simplicial complex not encoded in the
2-complex -

e (Very) degenerate topologies.

@ A way out: add colors

S(p,P) /[‘lg]",‘.(gl-g_--gs); (g3,85.8:)¢3(85.82.86)v:(8a.86.81) + c.c.

then uncolor i.e. d auxiliary fields and 1 true
dynamical field =- infinite set of tensor invariant effective interactions.
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Locality Il: tensor invariance

@ Instead, start from tensor invariant interactions. They provide:

e a good combinatorial control over topologies: full homology, pseudo-manifolds only
etc
analytical tools: 1/N expansion, universality theorems etc.

@ S is a (finite) sum of connected tensor invariants, indexed by d-colored graphs
(d-bubbles):

S(.?) =D _ (. 7).

be B

@ d-colored graphs are regular (valency d), bipartite,
edge-colored graphs.

@ Correspondence with tensor invariants:

e white (resp. black) dot « field (resp. complex conjugate
field);

e edge of color £ ++ convolution of f-th indices of » and &.
' 12 — :
[ 412 o(er. &2, 3. )P (1. 2. &3, 25) (e

P(gs.

. £10. 212, . £10. Y2 (&1
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Gaussian measure |: constraints

general, the Gaussian measure has to implement the geometrical constraints:
e gauge invariance

vh € G, > hgq) = o(&1....84):
e simplicity constraints.

= (C expected to be a projector, for instance

. 3
C(g1.82.82:81.85.83) = /(”?H"(g-hg.' )

i 1

the Boulatov model.

But: not always possible in practice...
e In 4d, with Barbero-lmmirzi parameter: simplicity and gauge constraints don't
commute — C not necessarily a projector.
Even when C is a projector, its cut-off version is not = differential operators in
radiative corrections e.g. Laplacian in the Boulatov-Ooguri model

@ Advantage: built-in notion of scale from C with non-trivial spectrum.
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Gaussian measure |l: non-trivial propagators

We would like to have a TGFT with:
@ a built-in notion of scale i.e. a non-trivial propagator spectrum;
@ a notion of discrete connection at the level of the amplitudes.
Particular realization that we consider:

@ Gauge constraint:

vhe G, hga) = o(&1, .. . &d)

@ supplemented by the non-trivial kernel (conservative choice, also justified by

)

1

(m: —_ Z,A)
f=1

This defines the measure dji¢:

/dm-(;.;) Ae)Pel) = Clerigh) = [ dae ™ [an]] Ka(gchei™).
. J 0O - F 1
where K. is the heat kernel on G at time «r.
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Gaussian measure |l: non-trivial propagators

We would like to have a TGFT with:
@ a built-in notion of scale i.e. a non-trivial propagator spectrum;
@ a notion of discrete connection at the level of the amplitudes.
Particular realization that we consider:

@ Gauge constraint:

vhe G, ¢ hga) = v(&1,...8d)

@ supplemented by the non-trivial kernel (conservative choice, also justified by

)

1

(m: —_ i&)
f=1

This defines the measure dji¢:
[ duc(o.?) (ep(el) = Cler &)
where K. is the heat kernel on G at time «r.
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Amplitudes and gauge symmetry

@ The amplitude of G depends on oriented products of group elements along its

Ag H /‘(lu,.e m o /.tlf'-',a H Koy ﬁh,}"'
ec OFf

ecL(G)° ) FeEF(G)

]_—I Koy | &) ﬁ‘he'“' gur’lw
e OF

FEFere(G)

I I da. e e { Regularized Boulatov-like amplitudes }

ecL(G)°

where «(f) = s (e, s(fy and gy are boundary variables, and ¢ =1 when

e Jf is the incidence matrix between oriented lines and faces.

A

e A gauge symmeltry associated to vertices (h. +— g”,_.,heg:;(;:) allows to impose
h. = 1 along a maximal tree of (dotted) lines.
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Amplitudes and gauge symmetry

@ The amplitude of G depends on oriented products of group elements along its

Ag H /‘(Iu,,e m o /.tlh,a H Koy ﬁh,}"'
ec OFf

ecL(G)" ) FeEF(G)

]_—[ Koy | &) ﬁ‘he"' grwlx
e OF

feFox(G)

I I dcv. e ““e | { Regularized Boulatov-like amplitudes }

ecL(G)°

where «(f) = ve., g5y and g.ry) are boundary variables, and ¢ =1 when
o Jdf is the incidence matrix between oriented lines and faces.

LveacOF

e A gauge symmetry associated to vertices (h. +— g”,_.,h,,.g:;(;:) allows to impose
h. = 1 along a maximal tree of (dotted) lines.
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New notion of connectedness

Spin Foam wisdom: lines — faces; faces — bubbles.

Amplitudes depend on holonomies along faces, built from group elements associated to
lines = new notion of connectedness: incidence relations between lines and faces instead
of incidence relations between vertices and lines.

@ A subgraph H < G is a subset of (dotted) lines of .

e Connected components of H are the subsets of lines of the maximal factorized
rectangular blocks of its €.r incidence matrix.

Equivalently, two lines of ‘H are elementarily connected if they have a common internal
face in H, and we require transitivity.

e Hy ={hLh}, Hi> = {hh.I2} are connected,;

@ Hiz = {/l;.5} has two connected components (despite the fact
that there is a single vertex!)
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Contraction of a subgraph

@ The contraction of a line is implemented by so-called dipole moves, which in d = 4
are:

Definition: k-dipole = line appearing in exactly (kK — 1) closed faces of length 1.

@ The contraction of a subgraph H < G is obtained by successive contractions of its
lines.

Net result

The contraction of a subgraph H C & amounts to delete all the internal faces of H and
reconnect its external legs according to the pattern of its external faces.

—=- well-suited for coarse-graining / renormalization steps!

Remark Would be interesting to analyze these moves in a coarse-graining context
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General form

Dynamical variable: rank-3 complex field

> (g1.82.83) 2 SU(2)?) — C.

Partition function:

ZA = /tl;.-(-\(,‘.?)e (e ?)

S(p.P) is a sum of tensor invariants:
S( rA'T) — E t!,)’l1(r~-j)-
be B

with maximum valency: va..

djtan with covariance:

= O

CMer. g2, 85 8. 85.83) = / dae—™"® /'ihK‘.(gmg: YKo (g2hgl ') Ko (g3 he’

A
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General form

o Dynamical variable: rank-3 complex field

2 (g1.82.8) 3 SU(2*~ C.

@ Partition function:

—\ .=5(.7
3A=fdﬂcﬂ(¢‘-u?)e gl

e S(¢.9) rs! a sum of tensor invariants:

\ S(¢, %) = Z tb’b(‘.,‘a‘.;") ’
el
with maximum valency: Vmax.
o duca with covariance:
CMer. g2 83:81-82:8) = |
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Strategy: multi-scale analysis

1) Decompose amplitudes according to slices of "momenta” (Schwinger parameter);
2) Replace high divergent subgraphs by effective local vertices;

3) lterate.

= Effective multi-series (1 effective coupling per interaction at each scale).
Can be reshuffled into a renormalized series (1 renormalized coupling per interaction).

Advantages of the effective series:
@ Physically transparent, in particular for overlapping divergences;

@ No "renormalons’”: | Ag| < K".
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Decomposition of propagators

@ The Schwinger parameter v determines a momentum scale, which can be sliced in a
geometric way. One fixes M > 1 and decomposes the propagators as

c = S G. (13)

Colgr: gt) / " dae ™ /rthK..(g,hg,’ %) (14)
J1 . y 1

M — =l

Ci(ge:gt) /u | dae ™ /.mHK..(g,hg; . (15)
EY A | - - I’ 1

@ A natural regularization is provided by a cut-off on /: 7 < p.
ch=> "¢,
with: A = M 27

@ The amplitude of a connected graph ¢ is decomposed over scale attributions
it = {i.} where i. runs over all integers (smaller than p) for every line e:

.-‘\_.: — Z ..—l\_.: T
Iz
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Abelian power-counting

Theorem

(i) If G has dimension D, there exists a constant K such that the following bound
holds:

Agul < KO T m=1971 (17)
(

ik)

where the degree of divergence w is given by
wW(H) = —2L(H) +3(F(H) — r(H))

and r(H) is the rank of the €.+ incidence matrix of 7.

(ii) These bounds are optimal when H is contractible.

@ Subgraphs with w << 0 are convergent i.e. have finite contributions when p — oc.

@ Subgraphs with w = 0 are divergent and need to be renormalized. Traciality (or at
the very least contractiblity) of divergent subgraphs is therefore needed for
renormalizability to hold.
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Classification of graphs

Question: what are the divergent graphs in this model?

Notations:
@ nax(H) = number of vertices with valency 2k in H;
@ N(H) = number of external legs attached to vertices of H;

@ H /T = contraction of H along a tree of lines (gauge-fixing).

Let { be a non-vacuum subgraph. Then:

_ N
w(H) 3 - 5

> (6 —2k)nz
fa=1

3;'(}{ /).

p(G) = 0 <« @ is a melopole.
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Classification of graphs

Question: what are the divergent graphs in this model?

Notations:
@ nak(H) = number of vertices with valency 2k in H;
@ N(H) = number of external legs attached to vertices of H;

e H /T = contraction of H along a tree of lines (gauge-fixing).

Let  be a non-vacuum subgraph. Then:

> (6 —2k)nz
k=1

3;'(‘“' /].

p(G) = 0 <« @ is a melopole.
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Classification of graphs

Just renormalizability = v,,,,. = 6.

,4.(}() = 3 — g — 2!?: — N4 -+ 3,1(}{ T)

—
-~
—

N

"
e

MMMI’\J-&&@Z
= OO0OQO0OOQO0O
OI\JHOD—‘OOE
OO NORO

lable: Classification of non-vacuum divergent graphs for d = D = 3. All of them are melonic

2-point divergences = mass and wave-function renormalization.

Sylvain Carrozza (AEl & LPT Orsay) Renormalizing TGFTs: a 3d example on SU(2)

Pirsa: 12120007 Page 28/30



The ¢® just renormalizable model

Figure: Possible bubble interactions

Sh = t0S, + td,Se 1 + tD2Se o + CTAS,,
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Conclusions and outlook

Summary:

@ Introducing geometric constraints is possible in renormalizable TGFTs.

@ Interesting interplay between spin foam constraints, tensorial structures and QFT
formalism.

@ Just-renormalizable SU(2) model in d = 3.

What's next?

@ TGFTs are new types of field theories which deserves to be studied on their own. An
interesting question: is asymptotic freedom generic?

Flow of the SU(2) model in 3d: asymptotic freedom? exact relation to
Ponzano-Regge?

Generalization to 4d gravity models: EPRL, FK, BO, etc.
e geometry: interplay between simplicity constraints and tensor invariance?
Is there a natural notion of scale in these models?

Propagator with or without Laplacian (or other differential operator)?
Renormalizability?

Asymptotic freedom?
Phase transitions? Interpretation?
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