Title: Renormalizing TGFTs: a 3d example on SU(2)

Date: Dec 06, 2012 02:30 PM

URL: http://www.pirsa.org/12120007

Abstract: I will recall the

br>

Pirsa: 12120007 Page 1/30

Renormalizing TGFTs: a 3d example on SU(2)

Sylvain Carrozza

AEI & LPT Orsay

05/12/2012

Perimeter Institute

Joint work with Daniele Oriti and Vincent Rivasseau.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

1/30

Pirsa: 12120007 Page 2/30

Introduction and motivations

TGFTs are an approach to quantum gravity, which can be justified by two complementary logical paths:

- The Tensor track [Rivasseau '12]: matrix models, tensor models [Sasakura '91, Ambjorn et al. '91, Gross '92], 1/N expansion [Gurau, Rivasseau '10 '11], universality [Gurau '12], renormalization of tensor *field* theories... [Ben Geloun, Rivasseau '11 '12]
- The Group Field Theory approach to Spin Foams [Rovelli, Reisenberger '00, ...]
 - Quantization of simplicial geometry.
 - No triangulation independence ⇒ lattice gauge theory limit [Dittrich et al.] or sum over foams.
 - GFT provides a prescription for performing the sum: simplicial gravity path integral = Feynman amplitude of a QFT.
 - Amplitudes are generically divergent ⇒ renormalization?
 - Need for a continuum limit ⇒ many degrees of freedom ⇒ renormalization (phase transition along the renormalization group flow?)

Big question

Can we find a renormalizable TGFT exhibiting a phase transition from discrete geometries to the continuum, and recover GR in the classical limit?

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

2 / 30

Pirsa: 12120007 Page 3/30

Purpose of this talk

- State of the art: several renormalizable TGFTs
 - U(1) model in 4d: just renormalizable up to φ^6 interactions, asymptotically free [Ben Geloun, Rivasseau '11, Ben Geloun '12]
 - U(1) model in 3d: just renormalizable up to φ^4 interactions, asymptotically free [Ben Geloun, Samary '12]
 - even more renormalizable models [Ben Geloun, Livine '12]
- Question: does this formalism have the potential to accommodate interesting spin foam models (i.e. with geometric content)?

Main message of this talk

Yes it does, at least if:

- non-trivial propagators and a well-behaved class of foams are used;
- key QFT notions are generalized.

This is supported by recent studies of models with gauge invariance: [Oriti, Rivasseau, SC '12], [Samary, Vignes-Tourneret '12], [Oriti, Rivasseau, SC, in preparation].

Nice example in this class: a just-renormalizable Boulatov-type model for SU(2) in d=3!

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

3 / 30

Pirsa: 12120007

Boulatov model and its mutations Boulatov model and its mutations Sylvain Carrozza (AEI & LPT Orsay) Renormalizing TGFTs: a 3d example on SU(2) 05/12/2012 5 / 30

Pirsa: 12120007 Page 5/30

Outline

- Boulatov model and its mutations
- A class of dynamical models with gauge symmetry
- 3 SU(2) model in d=3

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

Boulatov model: initial formulation

A model for Euclidean 3d quantum gravity: gauge group SU(2). [Boulatov '92]

- Real scalar field on $SU(2)^3$: $\varphi(g_1, g_2, g_3)$.
- Gauge invariance:

$$\forall h \in SU(2), \quad \varphi(hg_1, hg_2, hg_3) = \varphi(g_1, g_2, g_3) \tag{1}$$

Interpretation: φ as a quantized triangle.

Action:

$$S_{kin}[\varphi] = \int [dg_i]^3 \varphi(g_1, g_2, g_3) \varphi(g_1, g_2, g_3),$$
 (2)

$$S_{int}[\varphi] = \lambda \int [dg_i]^6 \varphi(g_1, g_2, g_3) \varphi(g_3, g_5, g_4) \varphi(g_5, g_2, g_6) \varphi(g_4, g_6, g_1)$$
 (3)

Partition function:

$$\mathcal{Z} \equiv \int d\mu_{inv}(\varphi, \overline{\varphi}) e^{-S[\varphi]} = \sum_{\mathcal{G}} \frac{\lambda^{N_{\mathcal{G}}}}{\operatorname{sym}(\mathcal{G})} \mathcal{A}_{PR}(\mathcal{G})$$
(4)

⇒ Sum over discrete quantum spacetimes (triangulations dual to 2-complexes), with Ponzano-Regge weights.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Boulatov model: main issues

- Combinatorics / Topology: which triangulations are summed over?
 - all possible topological manifolds;
 - very singular topologies: extended singularities [Gurau '09];
 - the 2-complex does not fully capture the topology of the triangulation [Baratin, Girelli, Oriti '10; Bonzom, Smerlak '12].
- Divergences:
 - a cut-off on large spins needs to be introduced (e.g. heat kernel regularization):

$$\delta(g) = \sum_{j \in \mathbb{N}/2} (2j+1)\chi_j(g) \to K_{\Lambda}(g) = \sum_{j \in \mathbb{N}/2} e^{-\Lambda j(j+1)} (2j+1)\chi_j(g)$$
 (5)

 complicated structure of divergences, not captured by topological invariants [Bonzom, Smerlak '12].

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

7 / 30

Pirsa: 12120007 Page 8/30

Boulatov model: colored version and 1/N expansion

- Four complex fields, with color labels ℓ : φ_{ℓ} , $\ell \in \{1, \dots, 4\}$
- Restrict the interaction to fields with 4 different colors:

$$S[\phi] = \sum_{\ell} \int |\varphi_{\ell}|^2 + \lambda \int \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4} + c.c$$
 (6)

⇒ amplitudes unchanged, but restricted class of simplicial complexes summed over: pseudo-manifolds only, full cellular homology... [Gurau '10]

• 1/N expansion [Gurau '10 '11; Gurau, Rivasseau '11]: appropriate scaling of λ such that

$$\mathcal{Z}_{\Lambda} = [K_{\Lambda}(\mathbf{1})]^{2} \mathcal{Z}_{0}(\lambda \overline{\lambda}) + O([K_{\Lambda}(\mathbf{1})]^{1})$$
 (7)

 \mathcal{Z}_0 : contains only triangulations of the sphere, associated to melonic graphs [Bonzom, Gurau, Riello, Rivasseau '11]

1/N expansion: unique scaling of λ such that manifolds dominate over singular pseudo-manifolds [Oriti, SC '11 '12]

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

A class of dynamical models with gauge symmetry 2 A class of dynamical models with gauge symmetry Sylvain Carrozza (AEI & LPT Orsay) Renormalizing TGFTs: a 3d example on SU(2) 05/12/2012 9 / 30

Pirsa: 12120007 Page 10/30

Structure of a TGFT

• Dynamical variable: rank-d complex field

$$\varphi: (g_1, \ldots, g_d) \ni G^d \mapsto \mathbb{C},$$

with G a (compact) Lie group.

• Partition function:

$$\mathcal{Z} = \int \mathrm{d}\mu_{\mathcal{C}}(\varphi, \overline{\varphi}) \, \mathrm{e}^{-S(\varphi, \overline{\varphi})} \,.$$

- $S(\varphi, \overline{\varphi})$ is the interaction part of the action, and should be a sum of local terms.
- Dynamics + geometrical constraints contained in the Gaussian measure $\mathrm{d}\mu_{\mathcal{C}}$ with covariance C (i.e. 2nd moment):

$$\int \mathrm{d}\mu_{\mathcal{C}}(\varphi,\overline{\varphi})\,\varphi(g_{\ell})\overline{\varphi}(g_{\ell}') = \mathcal{C}(g_{\ell};g_{\ell}')$$

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Locality I: simplicial interactions

 Natural assumption in d dimensional Spin Foams: elementary building block of space-time = d-simplex.

In GFT, translates into a φ^{d+1} interaction, e.g. in 3d:

$$S(\varphi, \overline{\varphi}) \propto \int [\mathrm{d}g]^6 \varphi(g_1, g_2, g_3) \varphi(g_3, g_5, g_4) \varphi(g_5, g_2, g_6) \varphi(g_4, g_6, g_1) + \mathrm{c.c.}$$

Problems:

- Full topology of the simplicial complex not encoded in the 2-complex [Baratin, Girelli, Oriti '10; Bonzom, Smerlak '12];
- (Very) degenerate topologies.
- A way out: add colors [Gurau '09]

$$S(\varphi, \overline{\varphi}) \propto \int [\mathrm{d}g]^6 \varphi_1(g_1, g_2, g_3) \varphi_2(g_3, g_5, g_4) \varphi_3(g_5, g_2, g_6) \varphi_4(g_4, g_6, g_1) + \mathrm{c.c.}$$

... then uncolor [Gurau '11; Bonzom, Gurau, Rivasseau '12] i.e. d auxiliary fields and 1 true dynamical field \Rightarrow infinite set of tensor invariant effective interactions.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Locality II: tensor invariance

- Instead, start from tensor invariant interactions. They provide:
 - a good combinatorial control over topologies: full homology, pseudo-manifolds only etc.
 - analytical tools: 1/N expansion, universality theorems etc.
- S is a (finite) sum of connected tensor invariants, indexed by d-colored graphs (d-bubbles):

$$S(\varphi,\overline{\varphi}) = \sum_{b\in\mathcal{B}} t_b I_b(\varphi,\overline{\varphi}).$$

- d-colored graphs are regular (valency d), bipartite, edge-colored graphs.
- Correspondence with tensor invariants:
 - white (resp. black) dot ↔ field (resp. complex conjugate field);
 - edge of color $\ell \leftrightarrow$ convolution of ℓ -th indices of φ and $\overline{\varphi}$.

$$\int [\mathrm{d}g_i]^{12} \varphi(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_4) \overline{\varphi}(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3, \mathbf{g}_5) \varphi(\mathbf{g}_8, \mathbf{g}_7, \mathbf{g}_6, \mathbf{g}_5)$$

$$\overline{\varphi}(\mathbf{g}_8, \mathbf{g}_9, \mathbf{g}_{10}, \mathbf{g}_{11}) \varphi(\mathbf{g}_{12}, \mathbf{g}_9, \mathbf{g}_{10}, \mathbf{g}_{11}) \overline{\varphi}(\mathbf{g}_{12}, \mathbf{g}_7, \mathbf{g}_6, \mathbf{g}_4)$$

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Gaussian measure I: constraints

- In general, the Gaussian measure has to implement the geometrical constraints:
 - gauge invariance

$$\forall h \in G, \quad \varphi(hg_1, \dots, hg_d) = \varphi(g_1, \dots g_d); \tag{8}$$

- simplicity constraints.
- \Rightarrow C expected to be a projector, for instance

$$C(g_1, g_2, g_3; g_1', g_2', g_3') = \int dh \prod_{\ell=1}^3 \delta(g_\ell h g_\ell'^{-1})$$
(9)

in the Boulatov model.

- But: not always possible in practice...
 - In 4d, with Barbero-Immirzi parameter: simplicity and gauge constraints don't commute $\rightarrow C$ not necessarily a projector.
 - Even when C is a projector, its cut-off version is not ⇒ differential operators in radiative corrections e.g. Laplacian in the Boulatov-Ooguri model [Ben Geloun, Bonzom '11].
- Advantage: built-in notion of scale from C with non-trivial spectrum.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Gaussian measure II: non-trivial propagators

We would like to have a TGFT with:

- a built-in notion of scale i.e. a non-trivial propagator spectrum;
- a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

• Gauge constraint:

$$\forall h \in G, \quad \varphi(hg_1, \ldots, hg_d) = \varphi(g_1, \ldots, g_d), \qquad (10)$$

supplemented by the non-trivial kernel (conservative choice, also justified by [Ben Geloun, Bonzom '11])

$$\left(m^2 - \sum_{\ell=1}^d \Delta_\ell\right)^{-1} . \tag{11}$$

This defines the measure $\mathrm{d}\mu_{\mathcal{C}}$:

$$\int d\mu_{\mathcal{C}}(\varphi,\overline{\varphi})\,\varphi(g_{\ell})\overline{\varphi}(g_{\ell}') = C(g_{\ell};g_{\ell}') = \int_{0}^{+\infty} d\alpha\,e^{-\alpha m^{2}} \int dh \prod_{\ell=1}^{d} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1}), \quad (12)$$

where K_{α} is the heat kernel on G at time α .

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Gaussian measure II: non-trivial propagators

We would like to have a TGFT with:

- a built-in notion of scale i.e. a non-trivial propagator spectrum;
- a notion of discrete connection at the level of the amplitudes.

Particular realization that we consider:

• Gauge constraint:

$$\forall h \in G, \quad \varphi(hg_1, \ldots, hg_d) = \varphi(g_1, \ldots, g_d), \qquad (10)$$

supplemented by the non-trivial kernel (conservative choice, also justified by [Ben Geloun, Bonzom '11])

$$\left(m^2 - \sum_{\ell=1}^d \Delta_\ell\right)^{-1} . \tag{11}$$

This defines the measure $\mathrm{d}\mu_{\mathcal{C}}$:

$$\int d\mu_{\mathcal{C}}(\varphi,\overline{\varphi})\,\varphi(g_{\ell})\overline{\varphi}(g_{\ell}') = C(g_{\ell};g_{\ell}') = \int_{0}^{+\infty} d\alpha\,\mathrm{e}^{-\alpha m^{2}} \int dh \prod_{\ell=1}^{d} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1})\,, \quad (12)$$

where K_{α} is the heat kernel on G at time α .

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Amplitudes and gauge symmetry

ullet The amplitude of $\mathcal G$ depends on oriented products of group elements along its faces:

$$\mathcal{A}_{\mathcal{G}} = \left[\prod_{e \in L(\mathcal{G})} \int d\alpha_{e} \, e^{-m^{2}\alpha_{e}} \int dh_{e} \right] \left(\prod_{f \in F(\mathcal{G})} K_{\alpha(f)} \left(\overrightarrow{\prod_{e \in \partial f}} h_{e}{}^{\epsilon_{ef}} \right) \right)$$

$$\left(\prod_{f \in F_{\text{ext}}(\mathcal{G})} K_{\alpha(f)} \left(g_{s(f)} \left[\overrightarrow{\prod_{e \in \partial f}} h_{e}{}^{\epsilon_{ef}} \right] g_{t(f)}^{-1} \right) \right),$$

$$= \left[\prod_{e \in L(\mathcal{G})} \int d\alpha_{e} \, e^{-m^{2}\alpha_{e}} \right] \{ \text{Regularized Boulatov-like amplitudes } \}$$

where $\alpha(f) = \sum_{e \in \partial f} \alpha_e$, $g_{s(f)}$ and $g_{t(f)}$ are boundary variables, and $\epsilon_{ef} = \pm 1$ when $e \in \partial f$ is the incidence matrix between oriented lines and faces.

• A gauge symmetry associated to vertices $(h_e \mapsto g_{t(e)} h_e g_{s(e)}^{-1})$ allows to impose $h_e = \mathbf{1}$ along a maximal tree of (dotted) lines.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Amplitudes and gauge symmetry

ullet The amplitude of ${\cal G}$ depends on oriented products of group elements along its faces:

$$\mathcal{A}_{\mathcal{G}} = \left[\prod_{e \in L(\mathcal{G})} \int d\alpha_{e} \, e^{-m^{2}\alpha_{e}} \int dh_{e} \right] \left(\prod_{f \in F(\mathcal{G})} K_{\alpha(f)} \left(\overrightarrow{\prod_{e \in \partial f}} h_{e}{}^{\epsilon_{ef}} \right) \right)$$

$$\left(\prod_{f \in F_{ext}(\mathcal{G})} K_{\alpha(f)} \left(g_{s(f)} \left[\overrightarrow{\prod_{e \in \partial f}} h_{e}{}^{\epsilon_{ef}} \right] g_{t(f)}^{-1} \right) \right),$$

$$= \left[\prod_{e \in L(\mathcal{G})} \int d\alpha_{e} \, e^{-m^{2}\alpha_{e}} \right] \{ \text{ Regularized Boulatov-like amplitudes } \}$$

where $\alpha(f) = \sum_{e \in \partial f} \alpha_e$, $g_{s(f)}$ and $g_{t(f)}$ are boundary variables, and $\epsilon_{ef} = \pm 1$ when $e \in \partial f$ is the incidence matrix between oriented lines and faces.

• A gauge symmetry associated to vertices $(h_e \mapsto g_{t(e)} h_e g_{s(e)}^{-1})$ allows to impose $h_e = \mathbf{1}$ along a maximal tree of (dotted) lines.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

New notion of connectedness

Spin Foam wisdom: lines \rightarrow faces; faces \rightarrow bubbles.

Amplitudes depend on holonomies along faces, built from group elements associated to lines \Rightarrow new notion of connectedness: incidence relations between lines and faces instead of incidence relations between vertices and lines.

Definition

- A subgraph $\mathcal{H} \subset \mathcal{G}$ is a subset of (dotted) lines of \mathcal{G} .
- Connected components of \mathcal{H} are the subsets of lines of the maximal factorized rectangular blocks of its ϵ_{ef} incidence matrix.

Equivalently, two lines of \mathcal{H} are elementarily connected if they have a common internal face in \mathcal{H} , and we require transitivity.

- ullet $\mathcal{H}_1=\{\mathit{I}_1\},\;\mathcal{H}_{12}=\{\mathit{I}_1,\mathit{I}_2\}$ are connected;
- $\mathcal{H}_{13} = \{l_1, l_3\}$ has two connected components (despite the fact that there is a single vertex!).

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Contraction of a subgraph

• The contraction of a line is implemented by so-called dipole moves, which in d=4 are:

Definition: k-dipole = line appearing in exactly (k-1) closed faces of length 1.

ullet The contraction of a subgraph $\mathcal{H}\subset\mathcal{G}$ is obtained by successive contractions of its lines.

Net result

The contraction of a subgraph $\mathcal{H} \subset \mathcal{G}$ amounts to delete all the internal faces of \mathcal{H} and reconnect its external legs according to the pattern of its external faces.

⇒ well-suited for coarse-graining / renormalization steps!

Remark Would be interesting to analyze these moves in a coarse-graining context [Dittrich et al.].

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

18 / 30

Pirsa: 12120007 Page 20/30

General form

• Dynamical variable: rank-3 complex field

$$\varphi: (g_1, g_2, g_3) \ni \mathrm{SU}(2)^3 \mapsto \mathbb{C}.$$

Partition function:

$$\mathcal{Z}_{\Lambda} = \int \mathrm{d}\mu_{\mathcal{C}^{\Lambda}}(\varphi, \overline{\varphi}) \, \mathrm{e}^{-S(\varphi, \overline{\varphi})} \,.$$

• $S(\varphi, \overline{\varphi})$ is a sum of tensor invariants:

$$S(\varphi,\overline{\varphi}) = \sum_{b \in \mathcal{B}} t_b I_b(\varphi,\overline{\varphi}),$$

with maximum valency: v_{max} .

ullet $\mathrm{d}\mu_{\mathcal{C}^{\wedge}}$ with covariance:

$$C^{\wedge}(g_1, g_2, g_3; g_1', g_2', g_3') = \int_{\Lambda}^{+\infty} d\alpha e^{-m^2 \alpha} \int dh K_{\alpha}(g_1 h g_1'^{-1}) K_{\alpha}(g_2 h g_2'^{-1}) K_{\alpha}(g_3 h g_3'^{-1})$$

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

General form Dynamical variable: rank-3 complex field $\varphi: (g_1, g_2, g_3) \ni SU(2)^3 \mapsto \mathbb{C}$. Partition function: $\mathcal{Z}_{\Lambda} = \int \mathrm{d}\mu_{\mathcal{C}^{\Lambda}}(\varphi, \overline{\varphi}) \, \mathrm{e}^{-S(\varphi, \overline{\varphi})} \,.$ • $S(\varphi, \overline{\varphi})$ is a sum of tensor invariants: $S(\varphi,\overline{\varphi}) = \sum_{b \in \mathcal{B}} t_b I_b(\varphi,\overline{\varphi}),$ with maximum valency: Vmax. dμ_C^Λ with covariance: $C^{\Lambda}(g_1, g_2, g_3; g_1', g_2', g_3') = \int_{\Lambda}^{+\infty} d\alpha e^{-m^2 \alpha} \int dh K_{\alpha}(g_1 h g_1'^{-1}) K_{\alpha}(g_2 h g_2'^{-1}) K_{\alpha}(g_3 h g_3'^{-1})$ Renormalizing TGFTs: a 3d example on SU(2) Sylvain Carrozza (AEI & LPT Orsay)

Strategy: multi-scale analysis

- 1) Decompose amplitudes according to slices of "momenta" (Schwinger parameter);
- 2) Replace high divergent subgraphs by effective local vertices;
- 3) Iterate.
- ⇒ Effective multi-series (1 effective coupling per interaction at each scale).

Can be reshuffled into a renormalized series (1 renormalized coupling per interaction).

Advantages of the effective series:

- Physically transparent, in particular for overlapping divergences;
- No "renormalons": $|A_{\mathcal{G}}| \leq K^n$.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

21 / 30

Pirsa: 12120007 Page 23/30

Decomposition of propagators

• The Schwinger parameter α determines a momentum scale, which can be sliced in a geometric way. One fixes M>1 and decomposes the propagators as

$$C = \sum_{i} C_{i}, \qquad (13)$$

$$C_0(g_\ell; g_\ell') = \int_1^{+\infty} d\alpha \, \mathrm{e}^{-\alpha m^2} \int dh \prod_{\ell=1}^3 K_\alpha(g_\ell h g_\ell'^{-1})$$
 (14)

$$C_{i}(g_{\ell};g_{\ell}') = \int_{M^{-2i}}^{M^{-2(i-1)}} d\alpha \, e^{-\alpha m^{2}} \int dh \prod_{\ell=1}^{3} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1}).$$
 (15)

• A natural regularization is provided by a cut-off on i: $i \leq \rho$.

$$C^{\wedge} = \sum_{i \leq \rho} C_i \,, \tag{16}$$

with: $\Lambda = M^{-2\rho}$

• The amplitude of a connected graph \mathcal{G} is decomposed over scale attributions $\mu = \{i_e\}$ where i_e runs over all integers (smaller than ρ) for every line e:

$$\mathcal{A}_{\mathcal{G}} = \sum_{\mu} \mathcal{A}_{\mathcal{G},\mu} \,.$$

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Abelian power-counting

Theorem

(i) If G has dimension D, there exists a constant K such that the following bound holds:

$$|\mathcal{A}_{\mathcal{G},\mu}| \le K^{L(\mathcal{G})} \prod_{(i,k)} M^{\omega[\mathcal{G}_i^{(k)}]}, \tag{17}$$

where the degree of divergence ω is given by

$$\omega(\mathcal{H}) = -2L(\mathcal{H}) + 3(F(\mathcal{H}) - r(\mathcal{H})) \tag{18}$$

and $r(\mathcal{H})$ is the rank of the ϵ_{ef} incidence matrix of \mathcal{H} .

- (ii) These bounds are optimal when \mathcal{H} is contractible.
 - Subgraphs with $\omega < 0$ are convergent i.e. have finite contributions when $\rho \to \infty$.
 - Subgraphs with $\omega \geq 0$ are divergent and need to be renormalized. Traciality (or at the very least contractiblity) of divergent subgraphs is therefore needed for renormalizability to hold.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

25 / 30

Page 25/30

Classification of graphs

Question: what are the divergent graphs in this model?

Notations:

- $n_{2k}(\mathcal{H}) = \text{number of vertices with valency } 2k \text{ in } \mathcal{H};$
- $N(\mathcal{H}) = \text{number of external legs attached to vertices of } \mathcal{H}$;
- ullet $\mathcal{H}/\mathcal{T}=$ contraction of \mathcal{H} along a tree of lines (gauge-fixing).

Proposition

Let \mathcal{H} be a non-vacuum subgraph. Then:

$$\omega(\mathcal{H}) = 3 - \frac{N}{2} \tag{19}$$

$$-\sum_{k=1}^{v_{max}/2} (6-2k) n_{2k}$$
 (20)

$$+ 3 \rho(\mathcal{H}/\mathcal{T}), \qquad (21)$$

with

$$\rho(\mathcal{G}) \le 0 \quad \text{and} \quad \rho(\mathcal{G}) = 0 \Leftrightarrow \mathcal{G} \text{ is a melopole.}$$
(22)

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Classification of graphs

Question: what are the divergent graphs in this model?

Notations:

- $n_{2k}(\mathcal{H}) = \text{number of vertices with valency } 2k \text{ in } \mathcal{H};$
- $N(\mathcal{H}) = \text{number of external legs attached to vertices of } \mathcal{H};$
- $\mathcal{H}/\mathcal{T} = \text{contraction of } \mathcal{H} \text{ along a tree of lines (gauge-fixing)}.$

Proposition

Let \mathcal{H} be a non-vacuum subgraph. Then:

$$\omega(\mathcal{H}) = 3 - \frac{N}{2} \tag{19}$$

$$-\sum_{k=1}^{v_{max}/2} (6-2k) n_{2k}$$
 (20)

$$+ 3 \rho(\mathcal{H}/\mathcal{T}), \qquad (21)$$

with

$$\rho(\mathcal{G}) \le 0 \quad \text{and} \quad \rho(\mathcal{G}) = 0 \Leftrightarrow \mathcal{G} \text{ is a melopole.}$$
(22)

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

Classification of graphs

Just renormalizability $\Rightarrow v_{max} = 6$.

$$\omega(\mathcal{H}) = 3 - \frac{N}{2} - 2n_2 - n_4 + 3\rho(\mathcal{H}/\mathcal{T})$$
 (23)

Ν	<i>n</i> ₂	<i>n</i> ₄	ρ	ω
6	0	0	0	0
4	0	0	0	1
4	0	1	0	0
2	0	0	0	2
2	0	1	0	1
2	0	2	0	0
2	1	0	0	0

Table: Classification of non-vacuum divergent graphs for d=D=3. All of them are melonic.

2-point divergences \Rightarrow mass and wave-function renormalization.

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

27 / 30

Pirsa: 12120007

The φ^6 just renormalizable model

Figure: Possible bubble interactions.

$$\mathcal{Z}_{\Lambda} = \int d\mu_{C^{\Lambda}}(\varphi, \overline{\varphi}) e^{-S_{\Lambda}(\varphi, \overline{\varphi})}. \tag{24}$$

$$S_{\Lambda} = t_4^{\Lambda} S_4 + t_{6,1}^{\Lambda} S_{6,1} + t_{6,2}^{\Lambda} S_{6,2} + C T_m^{\Lambda} S_m + C T_{\varphi}^{\Lambda} S_{\varphi}^{\varphi}, \qquad (25)$$

with:

$$S_m(\varphi,\overline{\varphi}) = \int [\mathrm{d}g]^3 \varphi(g_1,g_2,g_3)\overline{\varphi}(g_1,g_2,g_3), \qquad (26)$$

$$S_{\varphi}(\varphi,\overline{\varphi}) = \int [\mathrm{d}g]^3 \, \varphi(g_1,g_2,g_3) \left(-\sum_{\ell=1}^3 \Delta_{\ell}\right) \overline{\varphi}(g_1,g_2,g_3) \,. \tag{27}$$

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

28 / 30

Pirsa: 12120007

Conclusions and outlook

Summary:

- Introducing geometric constraints is possible in renormalizable TGFTs.
- Interesting interplay between spin foam constraints, tensorial structures and QFT formalism.
- Just-renormalizable SU(2) model in d=3.

What's next?

- TGFTs are new types of field theories which deserves to be studied on their own. An interesting question: is asymptotic freedom generic?
- Flow of the SU(2) model in 3d: asymptotic freedom? exact relation to Ponzano-Regge?
- Generalization to 4d gravity models: EPRL, FK, BO, etc.
 - geometry: interplay between simplicity constraints and tensor invariance?
 - Is there a natural notion of scale in these models?
 - Propagator with or without Laplacian (or other differential operator)?
 - Renormalizability?
 - Asymptotic freedom?
 - Phase transitions? Interpretation?

Sylvain Carrozza (AEI & LPT Orsay)

Renormalizing TGFTs: a 3d example on SU(2)

05/12/2012

29 / 30

Pirsa: 12120007 Page 30/30