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A need for new physics

What is the dynamic origin of the observed baryon asymmetry of the universe?

n=ng/s~ 10"
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A need for new physics

What is the dynamic origin of the observed baryon asymmetry of the universe?

n=ng/s~ 107"

Can be generated by a mechanism that accommodates:
® B violation
e CP violation

® Departure from thermal equilibrium
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A need for new physics

What is the dynamic origin of the observed baryon asymmetry of the universe?

n=ng/s~ 10"

Can be generated by a mechanism that accommodates:
® B violation

® CP violation

® Departure from thermal equilibrium

Many proposals: Electroweak, GUT, Affleck-Dine....
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A need for new physics

What is the dynamic origin of the observed baryon asymmetry of the universe?
—10
n=ng/s~ 10

Can be generated by a mechanism that accommodates:
® B violation

® CP violation

® Departure from thermal equilibrium

Many proposals: Electroweak, GUT, Affleck-Dine....

Our Proposal: A complex scalar field undergoes a percolating first order phase transition;
tunneling across a B and CP violating barrier results in bubbles that carry an asymmetry in their
walls. The walls collide, the asymmetry spreads, and can migrate to the standard model.
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Qutline of talk

|) Introduction to the mechanism: how to get baryons from bounces
and bubbles.

2) Model independent: general requirements and statements about the
asymmetry production, the effects of bubble collisions and washout.

3) Toy Model

4) Potential signals and Future Directions
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Baryons from Scalar Fields

Consider a complex scalar field (‘,‘-/) — ‘l'(’m
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Baryons from Scalar Fields

Consider a complex scalar field (,/) — ‘I'("O

Noether current associated with re-phasing:  .J,, = (0, 0" — @10, )
Associated charge density is identified with baryon number density:
o -
np = J() = r<f

Must have “angular momentum™ in field space to generate baryon number

Require: Im(o)
e Displaced from the origin 7" 7# ()

Re(o)
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Baryons from Scalar Fields

Consider a complex scalar field (,/) = ‘I'("O

Noether current associated with re-phasing:  .J,, = i(0,0' — @10, )
Associated charge density is identified with baryon number density:

] o
np ::.]U = r<f
» Must have “angular momentum” in field space to generate baryon number

Require: Im(o)
e Displaced from the origin 7" 7# ()

® Motion in field space () # 0 ®

I‘:{‘(U)
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Baryons from Scalar Fields

Consider a complex scalar field (,/) — ‘I'("O

Noether current associated with re-phasing: J,, = !'((,‘-’)('),,(.,:')T — (‘,‘-’)".(');,(;"))
Associated charge density is identified with baryon number density:

|) b
np = Jo = r<f

®» Must have “angular momentum” in field space to generate baryon number

Require: Im(o)
e Displaced from the origin 7° 7# ()
® Motion in field space () # 0 ®
dV Re
Can be achieved if the potential has B-violating terms 70 # 0 te()

Pirsa: 12110091 Page 12/88



Baryons from Scalar Fields

Baryon asymmetry is dynamically generated as the field journeys from a B-violating
region of the potential in the early universe to the B-symmetric origin today.
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Baryons from Scalar Fields

Baryon asymmetry is dynamically generated as the field journeys from a B-violating
region of the potential in the early universe to the B-symmetric origin today.

If there exists a classically allowed trajectory (phase transition is second order or higher)
then the field rolls to the origin; this is Affleck-Dine
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Baryons from Scalar Fields

Baryon asymmetry is dynamically generated as the field journeys from a B-violating
region of the potential in the early universe to the B-symmetric origin today.

If there exists a classically allowed trajectory (phase transition is second order or higher)
then the field rolls to the origin; this is Affleck-Dine

Im(¢)

Re(¢)

B violating terms result in a curved trajectory through field space 0 # ()
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Baryons from Scalar Fields

Baryon asymmetry is dynamically generated as the field journeys from a B-violating
region of the potential in the early universe to the B-symmetric origin today.

If there exists a classically allowed trajectory (phase transition is second order or higher)
then the field rolls to the origin; this is Affleck-Dine

Im(¢)

Re(¢) Greatly studied!

B violating terms result in a curved trajectory through field space 0 # ()
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Baryons from Scalar Fields

Our Proposal: consider the case of a potential without a classically allowed trajectory

Field tunnels to the symmetric vacua via bubble nucleation I'/V = K as

V(o)

r ()

Baryon
violating

Baryon
symmetric

¢

Coleman:The instanton solution gives the most likely bubble to nucleate and its decay rate.
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Recall Coleman’s overshoot/undershoot method for a real scalar field:
SO(4) symmetric bounce will have profile @(p) where p = /1% — 12

d*o { 3do dV (o)
if/l*} f? Hr/J (fu

-V(®)

Mechanical Analog - ball moving in negative potential
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Resulting field profile:

6(x)

OF

X

Spherical bubbles of true vacuum nucleate inside a false vacuum
background and quickly expand.
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. I
Generalize to a complex scalar field &(p) = r(p)e'”"”

Sample numerical two field profile: Tunneling in the angular direction results in a
curved trajectory though field space

P Re(¢)

In analog to Affleck-Dine we expect baryon number to be generated when
instanton arcs in field space.
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I 1
Generalize to a complex scalar field ¢(x,t) = r(x,t)e’” ™

N
X \lm :Fh

Re ¢

Specifically it is the bubble walls which take a curved trajectory through field
space; walls accumulate baryon number as the bubble expands.
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. o
Generalize to a complex scalar field ¢(x,t) = r(x,t)e’? "

\"“ ¢

Re ¢

Specifically it is the bubble walls which take a curved trajectory through field
space; walls accumulate baryon number as the bubble expands.

Multiple bubble nucleations result in a spatially inhomogeneously distributed asymmetry
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One bubble is not enough:

Re(o)

Baryon Baryon
symmetric symmetric

Baryon Violating

Need many bubbles to nucleate and eventually collide since the universe must completely transit

from B-violating to B-symmetric phase and the asymmetry must not run off to infinity.

i.e. percolating first order phase transition

%} Motivates choice of effective potential
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The Potential

B-symmetric vacua must be stable today; B-violating vacuum must disappear at late times
so that no region of the universe is stuck there.

V(o))

Late times

Percolation

{of

Early times
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The Potential

B-symmetric vacua must be stable today; B-violating vacuum must disappear at late times
so that no region of the universe is stuck there.

V(o))

Late times

Percolation

{of

Early times
Two ways:

e  Percolation after reheating: via couplings of the scalar to the big bang plasma.

e Percolation before reheating: via couplings of the scalar to the inflaton field.

M. Dine, L, Randall, S, Thomas [hep-ph/9507453]
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Summary of requirements

e Asymmetry: B and CP violating terms in the potential must arc the instanton
solution and accommodate the observed baryon asymmetry.

e Percolation: The potential must admit a percolating first order phase transition
so that the universe today has been fully converted to the B-symmetric vacua.

e Washout: After percolation the asymmetry must persist; any washout effects
must be under control.

® Decays: The generated asymmetry must migrate to the standard model sector.

asSic .!l
Washout
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Summary of requirements

e Asymmetry: B and CP violating terms in the potential must arc the instanton
solution and accommodate the observed baryon asymmetry.

e Percolation: The potential must admit a percolating first order phase transition
so that the universe today has been fully converted to the B-symmetric vacua.

e Washout: After percolation the asymmetry must persist; any washout effects
must be under control.

® Decays: The generated asymmetry must migrate to the standard model sector.

assical
Washout
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The Asymmetry

U(1)s symmetric and CP conserving potential:

9 £, 0+ const

9 £ _p

Im(¢)

Re(¢)
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The Asymmetry

U(1)s symmetric and CP conserving potential:
B
0 — 0+ const

9“5 _p

barrier -

Im(¢)

local minima /

Re(¢)
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The Asymmetry

U(1)s symmetric and CP conserving potential:

0 25 0 f const
o <5 —0
§
E
Re(o)
Radial bounce 720 = () »  No baryons

Page 30/88
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How to get “curvey” bounces:

dV

U(1)g violating and CP conserving: 70 £0 eg o°+¢'+he.

Im(9)

Re(¢)
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How to get “curvey” bounces:

v 2
(”} 7[ 0O eg. ¢° { (,-"')l - h.c.
(

U(1)g violating and CP conserving:

Im(¢)

«© \—Y

Re(¢)

Curvey bounces possible...
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How to get “curvey” bounces:

U(1)g violating and CP conserving: - #0 eg 0" +¢" +he.

Im(¢)

\ \\S=P 77

Re(¢)

Curvey bounces possible... but will be cancel
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How to get “curvey” bounces:

U(1)s and CP violating:

Im(¢)

\
F |

Re(¢)
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Asymmetry in the Bubble Walls

Total charge of the inhomogeneous scalar field is identified with baryon number

B = /JU(/";.." — /1'2()rl3.1' ~ 4m L /;'2(H)
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Asymmetry in the Bubble Walls

Total charge of the inhomogeneous scalar field is identified with baryon number

B = /./U(/";.r = /:'2()rl:{.z' ~ 4 L*? /;'2(”)

p
=) np=DB/V = —/1?/]; where J1° = / r2df ~ ery.
Jo

r

Where € is a dimensionless number characterizing B and CP violation
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Asymmetry in the Bubble Walls

Total charge of the inhomogeneous scalar field is identified with baryon number

B = /JU(/";.." — /:'E(M"{.r ~ 4 L*? /;'2(”)

O
=P np=B/V=—p?/L where W = / r2df ~ ery.
J

-
Where € is a dimensionless number characterizing B and CP violation

o R Surface Area o
In general: B ~ (Surface Area) x p~ np ~ , X
Volume
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Asymmetry in the Bubble Walls

Total charge of the inhomogeneous scalar field is identified with baryon number

B = /J()(/:;J' = /1'2()rl:{.1' ~ 4L /1'2(/()

0
=) N = B/‘ = _/’-‘B/L where /"-) = / ridf ~ ”'7)"
Jo

-
Where € is a dimensionless number characterizing B and CP violation

Surface Area 5

In general: B ~ (Surface Area) x p* npg ~ X -

Volume
Note: no asymmetry is generated if only a single bubble nucleates

Baryon number density vanishes [, — oC Need many bubbles i.e. percolation
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Simulated spacetime evolution of bubble walls:

Ns f

Conformal Time
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Simulated spacetime evolution of bubble walls:

Ns f

Ignore post-collision
dynamics for now.

Conformal Time
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Simulated spacetime evolution of bubble walls:

Ns f

Bubble wall nucleates
atrestB =0
/ ()

Conformal Time
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N

Bubbles approximately expands to a volume ~ |/I? before colliding again:

ng ~ —p® x I' e~ A5
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\

Bubbles approximately expands to a volume ~ |/I? before colliding again:

ng ~ —pu® x I' e

Number density is exponentially suppressed

== Easy to accommodate 10"/ asymmetry.
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Bubbles approximately expands to a volume ~ |/I? before colliding again:

- A‘ST

ng ~ —pu® xI'oce

Number density is exponentially suppressed

== Easy to accommodate 10"/ asymmetry.

At percolation there is on average one bubble wall stretched across each Hubble volume.

np e 25 ~ H,
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Percolation

Dynamics of the moment of collision:

Colliding walls are fast moving and very thin; they cross are very short time scales

&+ 3Hd . V()
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Percolation

Dynamics of the moment of collision:

Colliding walls are fast moving and very thin; they cross are very short time scales

1
()

o+ 3Ho = \'f{f,'}) . N b — o ()

a(t)=

Linear superposition is an exact solution and the walls generically pass through each other
roughly conserving baryon number at the moment of the collision
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Percolation

Dynamics of the moment of collision:

Colliding walls are fast moving and very thin; they cross are very short time scales

¢+ 3H¢ == V() e — ¢ =0

a(t)=

Linear superposition is an exact solution and the walls generically pass through each other
roughly conserving baryon number at the moment of the collision

Not a
vacuum state

) "0)))

(’(((((

Re(¢)
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Profiles at a fixed time:

Pre collision: two walls accelerating
towards each other

Re(d)

( J|.
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Profiles at a fixed time:

Pre collision: two walls accelerating
towards each other

The moment of collision: field is thrown to
other side of the potential.

Re(d)

Re(d)

I'J|.

PR
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Profiles at a fixed time:

Pre collision: two walls accelerating ~ - .
towards each other &
b
X
The moment of collision: field is thrown to
other side of the potential. o
«|l-

DR

Post collision: superposition no longer
holds and field oscillation about the true
minimum.

Re(d)
j
l

DR

Page 51/88
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Simulated collision and subsequent field oscillations:

Bubble wall
separating vacua

) Conformal Time
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Simulated collision and subsequent field oscillations:

Bubble wall
separating vacua

) Conformal Time
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Simulated collision and subsequent field oscillations:

Subsequent oscillations

) Conformal Time

Field is back in a B-violating region - additional asymmetry generation via localized Affleck-Dine.
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Baryon number generated by the collision:

Field at the collision site has been “thrown” back to a B-violating region of the potential resulting
in a localized Affleck-Dine condensate forming and dissolving at the collision site.

. . AD __ ._’0 2
Affleck-Dine mechanism: 7l / ~ Tpem

B(t)
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Baryon number generated by the collision:

Field at the collision site has been “thrown” back to a B-violating region of the potential resulting
in a localized Affleck-Dine condensate forming and dissolving at the collision site.

2 A 9
Affleck-Dine mechanism: 1 'l‘,“ p— )"'0 ~ )"!'.‘( m Time it takes the field to evolve from -¢y to
’ zero aka the spatial width of the condensate.
- 1111 ) )
AD | Mini Al R Af”‘ 2

2 2
N B collision ~ Ny ~ ETRIM X ~erpH,

B(1)

F

~ ! > At ~ 1/m \/ t
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Baryon number generated by the collision:

Field at the collision site has been “thrown” back to a B-violating region of the potential resulting
in a localized Affleck-Dine condensate forming and dissolving at the collision site.

) 2 A 9
Affleck-Dine mechanism: n /E’l = )"'0 ~ )"!'_‘( m Time it takes the field to evolve from -¢y to
zero aka the spatial width of the condensate.
- 1111 ) )
D | Mini Al R A”L 2

2 2
I B collision ™~ ”[)’ ~ (',']‘.'!” X li i ’I'I"Il*

R

L2
N B instanton ™~ "B collision ™~ €1 |"II+

B(t)

Pirsa: 12110091 Page 57/88



Corresponding baryon number density:  np = N B.instanton + M B.collision

Ne

Localized Affleck-Dine \

Conformal Time
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Corresponding baryon number density:  np = N B.instanton + M B.collision

Ne f

Walls “pass through"
each other

/

Conformal Time
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Corresponding baryon number density:  np = 7 B.instanton + M B.collision

Ne

[ Boosted walls no longer
\ solutions of e.o.m; broaden
and dissolve,

Field quanta become soft
and can decay.

Conformal Time
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Washout and Decay

Model dependent classical washout effects can be avoided

’ 2 12 (2 i (higher dimensional operators
" Cm (‘“‘ - €Q” + h.c ) have even less of an effect)

Induces an “ellipticity” to the potential which splits the mass eigenstates causing the field
to precess as it orbits the origin. Baryon asymmetry oscillates around its initial value.

Nucleation

4
+%

A J
~

~ H,
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Washout and Decay

Model dependent classical washout effects can be avoided

’ 2 12 (2 i (higher dimensional operators
" Cm (‘U‘ - €Q” + h.c ) have even less of an effect)

Induces an “ellipticity” to the potential which splits the mass eigenstates causing the field
to precess as it orbits the origin. Baryon asymmetry oscillates around its initial value.

Want field quanta t«

/ decay her

Collision

B(t)

1ssical

Washout

Nucleation

4
<%

~ H,

A J
~
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The Potential

Treat B and CP violation as small perturbation: V' (7, 6) = Vy(r) + eV (r.0)

B and CP symmetric: [H; = !HZ\(,‘)\B - ;Hrf)‘:{ F Ao ])
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The Potential

Treat B and CP violation as small perturbation: V' (7, 6) = Vy(r) + €V, (r.0)

B and CP symmetric: [1}; = !Hz\(,‘)\;’ ;Hrf)‘:{ + A|o| 1)

Couplings to the inflaton result in a time-varying potential (like Affleck-Dine)

- IxIPlef? (2 — 21722 Infl :
egsusy K C p = |F|” = 3H mip ™00 o

2 -9 .'{H"’mf,,

‘)

U(l)e is spontaneously broken at early times but restored in the present day: A2 >0 m?* >0
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Cosmological History

1 First order ‘J|\:"1
V(r) i \/ ﬁ._} ‘.' transition lost
Percolating regime

A 9 Thin-Wall limit
mA

1§

lrue m nimum 1S dbaryor

number violating
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B and CP violating terms

o o . 9 2 \'f(){l}} )
Numerical check: np ~ /l“”, ~ H'}‘_-H‘ with r=(p) dp (ap
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B and CP violating terms

o o . 9 9 \'f(){l}}
Numerical check: np ~ [l"”,c ~ (I"i_-l]* with r=(p) dp

dp

‘1-1 f'."|ljr~l2” { I"Il\ | 1':::|}:- (30)

0.6 A/mA 1.9

0.0
0.00 0.02 0.04 0.06 (.08
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B and CP violating terms

o o . 9 2 \'f(){l}}
Numerical check: np ~ [l"”,c ~ H",‘_-H‘ with r=(p) do dp

‘1-1 f'."l'ljh lfl’-’ = T | ) - 1'::: 0Os ':::U )

0.6 A/mA [.9

l!'-' 0.4
2
€l o 0.3
0.2
0.1
0.0
0,00 0.02 .04 006 008
Assume: €

e B violation is sourced by the inflaton alone; B violating operators shut off after the
inflaton decays and thus thermal washout is evaded.

e At least two B breaking operators are required otherwise all CP phases can be removed
by a field redefinition.
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The Asymmetry

Compute the asymmetry: 5. instanton ™~ "B collision ~ €I'p 4,
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The Asymmetry

2
Compute the asymmetry: 73 instanton ™~ 1B collision ™ ¢ riH,

| - L r ASZm! e 2 2 3HZmi,
Percolation approximately occurs:  H, ~ e T ' A2

V i7re
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The Asymmetry

)
Compute the asymmetry: 7B instanton ™~ "B collision ™ crp

| . L r ASZm! e 2 2 3HZmi,
Percolation approximately occurs:  H ~ e T y A2

V i7re

Numerically compute the symmetric Euclidean action from field profile at a given time in the cosmological
evolution. Then solve for the value of the model parameters at percolation.
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The Asymmetry

)
Compute the asymmetry: 7B instanton ™~ "B collision ™ crpH,

_ ) . I’ AS?m! AS m2 = il 3HImi,
Percolation approximately occurs:  H, ~ ;¢ T ' A2

Numerically compute the symmetric Euclidean action from field profile at a given time in the cosmological
evolution. Then solve for the value of the model parameters at percolation.

10°
104 - )
arge enough to ncz{ommodntc S — 00 as minima
1000 asymmetry become degenerate
& 100
~
10
|
| S - 0as transition
0.1 | becomes second order
{]
V32/9

A/mA
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The Asymmetry

D)
Compute the asymmetry: 75 instanton ™~ "B collision ~ €I'p 4,

| . L r AS2! N 2 2 3HZm;i,
Percolation approximately occurs:  H, ~ ;¢ T ' A2

Numerically compute the symmetric Euclidean action from field profile at a given time in the cosmological
evolution. Then solve for the value of the model parameters at percolation.

Reheating occurs after percolation; the 10°
asymmetric yield at the time of reheating is:

104
large enough to accommodate

S

» 00 as minima

np ll[': 1000 asymmesry become degenerate
g Y
sp M © 100
T ~
emy IR ‘
10
‘ =5 .
A mpA V/nr/m:’ l
1
For a given point in parameter space, ! 'S — 0 as transition
requiring n ~ 10" fixes the reheat 0.1}]' becomes second order
temperature V3279

A/mA
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Parameter Space

A |, ¢ 0.1.m A

] 50 30 10
10
|
10 Allowed
10"
10
-
.-.: ]“\I
10°°
10
10
1010
80 60 40 20
107
10" 10 10" 10 10"

A (GeV)
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Parameter Space

A |, ¢ 0.1.m A

Reheating occurs after

percolation:
74 ;
10 I“ ~ f)l\' ~ /j.
I 1010 GeV x A2\ %"
10 Allowed * ‘\( \ )
10"
10
-~
.-.: ]“\I
103
Action 10
104
1010
hI0) 6O 40 20
107 l
i , R
1010 10} 10 100 108

A (GeV)
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Fast decays and washout

Asymmetric yield must be transferred from the scalar field into Standard Model fields.
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Fast decays and washout

Asymmetric yield must be transferred from the scalar field into Standard Model fields.

e.g. SUSY W coUDD/M M < A
l m?

(o — qqq) ~ 19873 ]2
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Fast decays and washout

Asymmetric yield must be transferred from the scalar field into Standard Model fields.

e.g. SUSY W coUDD/M M < A

l m?

(¢ — qqq) 19873 1[2

New scale M is essentially a free parameter; at percolation decay rate can easily be much
greater then Hubble.

The field within each nucleated bubble decays shorty after
percolation thus minimizing classical washout.

Note: the asymmetry can of course be converted to a lepton number asymmetry:

oLH, oLLE QLD
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A Possible Realistic Model

MSSM + Sterile Neutrino: W = /\” L,H, _\.«'J + .I)J.'\[” N; -V_)
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A Possible Realistic Model

|
MSSM + Sterile Neutrino: W = /\f.i L,H, ‘VJ + : J.:\[” N; 'V_)

2

"———{,}" \l — I/\;_;]a.r;’l\r_j‘z { ‘/\;_,]!rrA\"rJ"j { ‘/\,'J]J,[[” { A\[,_}'J\(,‘-

g*+ g
) (

(

Vo |H,|? = |Li|?)”
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A Possible Realistic Model

|
MSSM + Sterile Neutrino: W = /\il; L,H, ‘VJ + : "‘”'.} N; 'V_)

[
=

)

D Vi = [N LilNj[? + [N HuNj * + | NijLiHy + Mij N,

e 7 5 2
Vi 9 (|Hy|? = |Li|?)

Soft SUSY breaking terms receive contributions from inflaton induced couplings:

‘)

Li|*+my, |Ni|*+m¥ |Hy|*+A;jL;H,N;+...4+h.c

, )
Vo = miy,
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A Possible Realistic Model

l
MSSM + Sterile Neutrino: W = ,\” L,H, _\.«'J + 5 ‘,;\/” N, *V_)

=> Vi = |,\,_,/,,f\'_,'|") f "\f_;””‘\;.)"j f l/\f'.;]““” f A\/,_,&'\‘,ﬁ

1)

Rl o 2 5\ 2
Vp 2 (\H,,\ |Li|*)

Soft SUSY breaking terms receive contributions from inflaton induced couplings:

L,

24 fn"“)\;’|j\',‘\"’ f mf,” |H,|* AijLiH,N;+...+h.c

7 2
Vo = m7
> All the necessary ingredients for Bubble Baryogenesis
e L and CP violation
e  Potential has the right form: cubic terms can be made

large in the early universe resulting in global L violating
minima.
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|
MSSM + Sterile Neutrino: W = /\” L,H, _\.«'J + 5 J.:\[” N; -V_)

= \'l" — |,\,_I],,;='\'_,-“') f "\f_;””‘\;.i‘j f l/\,-.,]“//,, f ‘”f’_;’*"\‘f‘z

R i 2 5\ 2
Vp 2 (|Hu| |Li|*)

Soft SUSY breaking terms receive contributions from inflaton induced couplings:

L;|%+4 IIIZ")\;’|‘-"\.,“2 Mnf,” H,|* tA;;LiH,N;+...+h.c

r ]
Vo =m7,

> All the necessary ingredients for Bubble Baryogenesis

] L and CP violation

e Potential has the right form: cubic terms can be made
large in the early universe resulting in global L violating
minima.

Need to solve for multi-dimensional instanton profile. Defer to future work for now.
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Observations and Signals

The presence of bubble collisions open up a variety of possible signals which may not
exist in other mechanisms of baryogenesis

e Gravitational Waves produced by bubble collisions: Since colliding bubbles are
roughly the same size, the spectrum will have a spike at H, Still will be difficult to

see since most of the energy density of the universe is from the inflaton.

® Bubble collisions produce non-topological soliton that depending on the model
may be stable.
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Future Directions

Work out the details of realistic models/multi-field theories.

Bubble Baryogenesis after reheating: Thermal effects from Big Bang plasma could be
used to engineer a potential with appropriate time-dependent couplings. Thermal
washout needs to be avoided.

Theories with large extra dimensions: A single
bubble whose size is smaller then the size of the
extra dimension would wrap around the extra
dimension, colliding with itself, and could explain all
the observed baryon asymmetry. , g own [arxiv0807.0457)

Asymmetric Dark Matter [/ (1) x U(1)pu
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Thank You
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