Title: Beyond the Search for Majorana
Date: Nov 30, 2012 09:30 AM
URL: http://pirsa.org/12110088
Abstract: The search for Majorana zero-modes in condensed matter system has attract increasing research interests recently. Looking for Majorna zero-mode is actually looking for topologically protected ground state degeneracy. The topological degeneracies on closed manifolds have been used to discover/define topological order in many-body systems, which contain excitations with fractional statistics. In this talk, I will present our recent work on new types of topological degeneracy induced by condensing anyons along a line in 2D topological ordered states. Such topological degeneracy can be viewed as carried by each end of the line-defect, which is a generalization of Majorana zero-modes. The ends of line-defects carry projective non-Abelian statistics even though they are produced by condensation of Abelian anyons, and braiding them allow us to perform fault tolerant quantum computations.

- Majorana Zero-Modes in Condensed Matter System
- Fermion Models

- ID: Kitaev Majorana Chain (spinless p-wave SC)
- 2D: $\mathrm{p}+\mathrm{ip}$ superconductor with π-vortex
- Non-Abelian statistics \rightarrow Topological Quantum
$0+$ Make Presenter Audio \quad IE= Computation (against decoherence)
- Practical Realizations J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)
- TI-FM-SC interface
- SOC wire with magnetic field and pairing
- $\mathrm{v}=5 / 2 \mathrm{FHQ}$
- 3D TI + s-wave SC + FM/vortices

Z_{2} Plaquette Model

- Hilbert Space
- Square lattice of qubits
- Each qubit (spin): $|0\rangle,|1\rangle$
- Qubit operator

$$
\sigma^{2}=\left(\begin{array}{cc}
|0\rangle & |1\rangle \\
0 & 0 \\
0 & -1
\end{array}\right)
$$

- Hamiltonian
- 4-qubit Interaction

$$
H_{0}=-\sum_{p} O_{p}
$$

Plaquette operator $O_{p}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{z} \sigma_{4}^{x}$

- They all commute
$\forall p, p^{\prime}: O_{p} O_{p^{\prime}}=O_{p^{\prime}}$
- Beyond Majorana zero-mode
- Why in the Fermion system? \rightarrow Boson/Spin system?
- By lattice dislocations in Z_{2} plaquette model (H. Bombin, 2010)
- Why each pair associated to 2 fold? $\rightarrow 3,4,5 \ldots$ fold?
- By anyon condensation (You, Wen, 2012;You, Jian,Wen, 2012)
- And many other approaches ...

Z_{2} Plaquette Model

- Hilbert Space
- Square lattice of qubits
- Each qubit (spin): $|0\rangle,|1\rangle$
- Qubit operator

$$
\begin{aligned}
|0\rangle & |1\rangle \\
\sigma^{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma^{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Plaquette operator
$O_{p}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{z} \sigma_{4}^{x}$

- They all commute
$\forall p, p^{\prime}: O_{p} O_{p^{\prime}}=O_{p^{\prime}} O_{p}$
- Eigenvalues $O_{p} \rightarrow \pm 1$
- Commutation relation

$$
\sigma^{x} \sigma^{z}=-\sigma^{z} \sigma^{x}
$$

X.-G.Wen, Phys. Rev. Lett. 90, 016803 (2003).

- Hamiltonian
- 4-qubit Interaction

$$
H_{0}=-\sum_{p} O_{p}
$$

Z_{2} Plaquette Model

- Hilbert Space
- Square lattice of qubits
- Each qubit (spin): $|0\rangle,|1\rangle$
- Qubit operator

$$
\begin{aligned}
|0\rangle & |1\rangle \\
\sigma^{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma^{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

- Commutation relation

$$
\sigma^{x} \sigma^{z}=-\sigma^{z} \sigma^{x}
$$

Plaquette operator
$O_{p}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{z} \sigma_{4}^{x}$

- They all commute
$\forall p, p^{\prime}: O_{p} O_{p^{\prime}}=O_{p^{\prime}} O_{p}$
- Eigenvalues $O_{p} \rightarrow \pm 1$
X.-G.Wen, Phys. Rev. Lett. 90, 016803 (2003).
- Hamiltonian
- 4-qubit Interaction

$$
H_{0}=-\sum_{p} O_{p}
$$

round State

$$
O_{p}=+1 \text { for all plaquettes }
$$

- Excitation

$$
O_{p}=-1 \text { for some plaquettes }
$$

Z_{2} Plaquette Model

- Hilbert Space
- Square lattice of qubits
- Each qubit (spin): $|0\rangle,|1\rangle$
- Qubit operator

$$
\begin{aligned}
|0\rangle & |1\rangle \\
\sigma^{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma^{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

- Commutation relation

$$
\sigma^{x} \sigma^{z}=-\sigma^{z} \sigma^{x}
$$

Plaquette operator
$O_{p}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{z} \sigma_{4}^{x}$

- They all commute
$\forall p, p^{\prime}: O_{p} O_{p^{\prime}}=O_{p^{\prime}} O_{p}$
- Eigenvalues $O_{p} \rightarrow \pm 1$
X.-G.Wen, Phys. Rev. Lett. 90, 016803 (2003).
- Hamiltonian
- 4-qubit Interaction

$$
H_{0}=-\sum_{p} O_{p}
$$

round State

$$
O_{p}=+1 \text { for all plaquettes }
$$

- Excitation

$$
O_{p}=-1 \text { for some plaquettes }
$$

Excitations

- Rules of Z2 plaquette model

$$
\cdots=-\lambda \quad O=++
$$

- Open string creates excitations in pairs at its ends.

- $O_{p}=-1$: the plaquette is excited
- Each excitation carries 2 units of energy

$$
H_{0}=-\sum_{p} O_{p}
$$

- Excitation can be moved around by open string
- String going in the diagonal direction: connecting only one set of plaquette
- Even (red) plaquette: electric charge (e-charge)
- Odd (blue) plaquette: magnetic charge (m-charge)
- Bound state of e \& $m \rightarrow$ emergent fermion!
- Mutual statistics and fermion statistics
- Can we make a Majorana chain?

You are viewing: Yi-Zhuang You's Application

- Beyond Majorana zero-mode
- Why in the Fermion system? \rightarrow Boson/Spin system?
- By lattice dislocations in Z_{2} plaquette model (H. Bombin, 2010)
- Why each pair associated to 2 fold? $\rightarrow 3,4,5 \ldots$ fold?
- By anyon condensation (You,Wen, 2012;You, Jian, Wen, 2012)
- And many other approaches ...
X.-G.Wen, Phys. Rev. Lett. 90, 016803 (2003).
- Hilbert Space
- Square lattice of qubits
- Each qubit (spin): $|0\rangle,|1\rangle$
- Qubit operator

$$
\sigma^{z}=\left(\begin{array}{cc}
|0\rangle & |1\rangle \\
1 & 0 \\
0 & -1
\end{array}\right)
$$

Plaquette operator
$O_{p}=\sigma_{1}^{z} \sigma_{2}^{X} \sigma_{3}^{z} \sigma_{4}^{X}$

- They all commute
$\forall p, p^{\prime}: O_{p} O_{p^{\prime}}=O_{p^{\prime}}$

4 Chat
 Hi there $\begin{aligned} & \text { Troy Schlueter to Everyone: } \\ & \text { Her }\end{aligned}$

can you hear me?
(9) C 메 중 (3)

V You are viewing: Yi-Zhuang You's Application
 String Representation

- Qubit state $|+\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
- Qubit operators

$$
\begin{aligned}
\sigma^{z}|+\rangle & \left.=\left|\langle \rangle, \sigma^{x}\right|+\right\rangle=|\boldsymbol{\iota}\rangle \\
\sigma^{x} \sigma^{z} & =-\sigma^{z} \sigma^{x} \\
\aleph & =-\lambda
\end{aligned}
$$

- Rule I: strings crossing through each other let out a minus sign
- Hamiltonian
$H_{0}=-\sum_{p} O_{p}$
- Plaquette Operator

$$
O_{p}=\bigcap_{1}^{4} \underbrace{3}_{2}=\sigma_{1}^{z} \sigma_{2}^{x} \sigma_{3}^{z} \sigma_{4}^{x}
$$

- Ground State $O_{p}=+1$
$\forall p: O_{p} \mid$ grnd $\rangle=\mid$ grnd \rangle

$$
O=+
$$

- Rule II: close strings can be added/removed freely from the ground state (vacuum)

V) You are viewing: Yi-Zhuang You's Application

- Rules of Z2 plaquette model

$$
\cdots=-\lambda \quad O=++
$$

- Open string creates excitations in pairs at its ends.
- $O_{p}=-1$: the plaquette is excited
- Each excitation carries 2 units of energy $\quad H_{0}=-\sum_{p} O_{p}$
- Excitation can be moved around by open string
- String going in the diagonal direction: connecting only one set of plaquette
- Even (red) plaquette: electric charge (e-charge)
- Odd (blue) plaquette: magnetic charge (m-charge)

Chat

Hrom Troy Schlueter to Everyone:
Hithere
from Troy Schlueter to Everyone:
can you hear me?

- Rules of Z2 plaquette mode

- Open string creates excitations in pairs at its ends.
- $O_{p}=-1$: the plaquette is excited
- Each excitation carries 2 units of energy $\quad H_{0}=-\sum_{p} O_{p}$
- Excitation can be moved around by open string
- String going in the diagonal direction: connecting only one set of plaquette
- Even (red) plaquette: electric charge (e-charge)
- Odd (blue) plaquette: magnetic charge (m-charge)
- Bound state of e \& m \rightarrow emergent fermion!
- Mutual statistics and fermion statistics


```
4Q Participants of x
Speaking: Troy Schlueter (Host)
    \Omega}\mathrm{ (roy Schlueter (Host, me)
    |y %
```

(1) Yi-Zhuang You


```
Chat
    C
    Hithere
    l
    can you hear me?
```

Send to: Everyone

