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Abstract: <span>A quantum communication channel can be put to many uses: it can transmit
classical information, private classical information, or quantum information.

It can be used alone, with shared entanglement, or together with other

channels. For each of these settings there is a capacity that quantifies a

channel's fundamental potential for communication. & nbsp;In this introductory

talk, I will discuss what we known about the various capacities of a quantum

channel, including a discussion of synergies between different channels and

related additivity questions.</span>
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“The most valuable commodity | know of is
information.” -Gordon Gekko, Wall Street (1987)
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Information Theory

- “A Mathematical Theory of
Communication”, C.E. Shannon, 1948

« Lies at the intersection of Electrical
Engineering, Mathematics, and Computer
Science

- Concerns the reliable and efficient storage
and transmission of information.



Information Theory: Some Hits

Low density parity check codes

fo f, fs fs |
. Cell
Phones

j T‘l Lempel-Ziv
E g compression
E >

(gunzip,

ﬁ:‘ winzip, etc)

Voyager (Reed Solomon codes)
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Quantum Shannon Theory

VWhen we include quantum mechanics (which

was there all along!) things get much more
Interesting!

Secure communication, entanglement enhanced
communication, sending quantum information,...

Capacity, error correction, compression, entropy..
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Channel Capacity

X——+ Y

P(Y|X)

Capacity: bits per channel use in the limit of many channels

C = maxy 1(X;Y)
1IOX;Y) = HX)+H(Y)-H(XY) is the mutual information



Outline

« Quantum capacity of quantum channel
- Sketch coherent information achievability
 Additivity and superadditivity

(quantum synergy!)

« Classical and private capacities
« Gaussian quantum channels
- Open questions



Quantum Capacities

There are several kinds of information you can
try to send with a quantum channel:

e Classical Information
 Private Classical Information
e Quantum Information

There are different capacities for each of these.

Actually, there are even more: | might give you
free entanglement or free two-way classical
communication to help.
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Quantum Capacities
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Noisy Quantum Channels

 Noiseless quantum evolution: p — UpU’
Unitary satisfies U'U = |

« Noisy quantum evolution: unitary
INteraction with Inaccessible environment
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—* Encoder

Quantum Capacity

[ - « If we try to transmit
— an arbitrary
E o i quantum state, we
o arrive at the

LS (g quantum capacity,
I Q(N).

Decoder
« The quantum

capacity, measured
INn qubits per
channel use,
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characterizes the
i ultimate limit on

quantum error

correction.
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Quantum Capacity

Define the coherent information:

i QY(N) = max, H(B) — H(E).

with entropies evaluated on
UdUi. Then, we can show

that Q'(V) is an achievable
rate for quantum
communication, so

QM = Q(M

Furthermore,

QN =
lim,_. ,(1/MQANQD ...QN)

See Lloyd 97, Shor 02, Devetak 03
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Coherent Information and no-cloning

* No cloning: there is no physical operation that
copies an unknown quantum state.

- Basically, because |w) — |Ww)|wy) isn’t linear

H(B) is how much information B has
H(E) is how much information E has

Q1 = H(B) — H(E) iIs how much more Bob knows than Eve.

~ how much secret information we can send to Bob
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Outline

- Quantum capacity of quantam—ehanhel—

« Quantum coding theorem

 Additivity and superadditivity
(quantum synergy!)

« classical and private capacities

« Gaussian quantum channels

- Open questions



Sketch of Achievability of
Coherent Information
- Step 1: If you can transmit half of a

maximally entangled state reliably, then
you can transmit a quantum state.

« Step 2: If you can decouple your reference
system from the environment, then you
have a pure entangled state.

Hayden, Horodecki, Yard, Winter ‘08
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Decoupling

En

If pre» = pr & pE~, then PRB, By E" — |'50>RBl |¢>BgEn
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Entropy and Typical Spaces

* Any pg = Trp |¥V)(YlaB
- H(pgp) =-Tr pylog p 5 Is the entropy
It measures the uncertainty in B

- Given n copies of |¢) g, We can reversibly
map B to a space of dimension 2" He¢B),
This is the “typical space.”



Decoupling with Random encoding

R \V R RO

|P)rA

N®n

[6) ra = = ST 1D)9)
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Decoupling with Random encoding

V

|®) rA
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N©n

Choose V randomly.

R’ Consider the state this circuit generates
on R'E".

. 2
(/ dV0|lergn (V) — C'Erax X O'E"”l)
< |R'E™|(Tr(orE"))?

—— Bn

— |=i Estimate: |R’| = 2n(rate)

|En| == 2n HE)

Spectrum of RE is same as spectrum
of B. When iid, this is maximally

mixed with dimensipn 2nHB)  This
gives (Tl'(CTHE'n ))_ -~ -;)'nfiliBi
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Decoupling with Random encoding

Choose V randomly.

- R Consider the state this circuit generates
on R’'EN.
; 2 2
|(_:')>R‘_§_ (/ (["IlchzEn(‘-) — Gﬁrax & O’En”l)
< |R'E™|(Tx(cre=)?)
A - B
N Estimate: |R’| = 2n(rate)
_ En . b
IEnl == 2n H(E)
So, as long as rate < S(B) — S(E), the Spectrum of RE is same as spectrum
deviation from a product state of B. When iid, this is maximally
between R’ and E" becomes mixed with dimension 2"H(B) This
arbitrarily small. Which enables gives (Tr(o gren )‘—’) ~ m

transmission.
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Outline

- Quantum capacity of-uantum-channel

—Quantum-coeding-theorem

- Zero Quantum capacity channels and
Superactivation (quantum synergy!)

« Classical and private capacities

 Additivity iIn general

- Gaussian quantum channels

- Open questions



Pirsa: 12110066 Page 27/70



Superactivation of

A ©  —

Capacities

- \ —_
< — it | — ? . N :
O — _ < ©
E =D
1 - 1 2
©  — o E— ‘? < P ©
»— i — . Nig -
i — & A4 G N
.« —> ALY e IEnE : N> v
C— r—p: - .
El | D> ‘
BALY g AL
> . s c? © - ©
= Fe- : :

There are N, N, with zero quantum capacity but Q(\,;&A\,) > 0.
G. Smith and J. Yard, Science, 321, 1812-1815 (2008)
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Zero-quantum-capacity channels

Q>0
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Zero Quantum Capacity Channels:
Symmetric Channels

Output
symmetric

.

% e B

0

o

/ in Band E

U

-

Example: 50% attenuation channel
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vacuum

50:50 7

Input
mode N\

environment

Output
mode
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Zero Quantum Capacity Channels:
Symmetric Channels

Suppose a symmetric channel had Q >0

0 |'—E
W =
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Zero Quantum Capacity Channels:
Symmetric Channels

Suppose a symmetric channel had Q >0

D

Un

N

So, symmetric channels
must have zero quantum
capacity. Specifically, the
50% erasure channel has
zero capacity. It will be one
of our two zero quantum
capacity channels.

IMPOSSIBLE!
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Zero Quantum Capacity Channels:
Positive Partial Transpose

- Partial transpose:
(I dla@lk) Alg)t = 1) (a2 (Kl
 If pag?’ Is Nnot positive, then the state is entangled

« If pag’! = O, It may be entangled, but then it is
very noisy. Bound entanglement---can’t get any
pure entanglement from it.

« A PPT-channel enforces PPT between output
and purification of the input:

paB = I QN (pap) i1s PPT
 Implies Q(N) =0

Peres, Horodeckis ‘96
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Outline

- Quantum capacity of-cuantam-channel
—Quantum-coeding-theorem

- Zero Quantum _capacity charretsand
—3Superactivation (quantum synergy!)

« Classical and private capacities
 Additivity in general

- Gaussian quantum channels

- Open questions




Classical Capacity of Quantum Channel

Send a classical
message over a
quantum message
using a code

[l |E

0
mPHm such that all (0, can

be distinguished at
the channel output.

C is th
(®)|s e

capacity

Pirsa: 12110066 Page 40/70



Pirsa: 12110066 Page 41/70




Pirsa: 12110066 Page 42/70




Private Classical Capacity

Pl U t B
D .

* Quantum channel looks like a broadcast channel---one
sender, two receivers.

- Best rate for classical messages from A to B while E
learns nothing = private capacity. Call it P(\V).

- Related to quantum key distribution---the fact than by
analysing the map from A to B we can infer the map

from A to E allows unconditional security that is
iImpossible classically.
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Private Classical Capacity

Rl U E s
D N

e Let PV (N = max, ., I(V:B)- I(V.E), with mutual
informations evaluated on >, p, |v) (V] & U¢p U’

« Random coding and privacy amplification shows
P(NV) = PY(YNV) and, in fact we can get

PNV =lim,___(1MP(NSD ... N)
\

See Devetak IEEE IT 03
n uses
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Classical Capacity of Quantum Channel

We can understand coding schemes for classical
information in terms of the Holevo Information:

A (N) = maxg, y 1(X:B)
Where 1(X; B) )H(X) + H(B) — H(XB) uses von Neumann
entropy and is evaluated on the state > p, |X) (X] @A (py)

Random coding arguments show that y(A) is an

achievable rate, so C(A7) = %(N). Furthermor?/ n uses
Cw)= Ilim,_ .. (NN ... 2N)

(see Holevo 73, 79, 98, Schumacher-\Westmoreland 97)
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Classical Capacity of Quantum Channel

Send a classical
message over a
quantum message
using a code

[0} 0|

0
mPHm such that all (0, can

be distinguished at
the channel output.

C is th
(®)|s e

capacity
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Private Classical Capacity

b U £ 5
D B

* Quantum channel looks like a broadcast channel---one
sender, two receivers.

- Best rate for classical messages from A to B while E
learns nothing = private capacity. Call it P(\V).

- Related to quantum key distribution---the fact than by
analysing the map from A to B we can infer the map

from A to E allows unconditional security that is
iImpossible classically.
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Private Classical Capacity

VEEEN U I
" ) N

e Let PV (N = max, ., I(V:B)- I(V.E), with mutual
informations evaluated on >, p, |v) (V]| & U¢p U’

« Random coding and privacy amplification shows
P(N) = P1(XNV) and, in fact we can get

PNV =lim,__ (1M P(NSD ... N)
\

See Devetak IEEE IT 03
n uses
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Outline

- Quantum capacity of-caantarm-channel
~—Quantam-ceding-theorem

- Zero Quantum _capacity charretsand
—Superactivation (quantum synergy!)

e o e L

 Additivity in general

- Gaussian quantum channels

- Open questions




Additivity: definition and motivation

« A function on channels is called additive if
f(VOIM) = f(N) + f(M)

« Recall that Q(WV) = lim,_. __(1/n)QT(N=N). If we
could show that Q' was additive, we’d have
Q(N) = Q1(N).

- Similarly, C(N) =Ilim, . __(1/n) x(»N*") and
P(~N) =lim, . (1/n)PY(N® M), so if x and P! were
additive, we’'d have single-letter capacities for
classical and private communication.
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Nonadditvity of x

Choose U randomly and you get

X(ch ®MI*) = X(_/\/'U) + X(MI*)

Hastings, Nat. Phys. ‘09
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Additivity: definition and motivation

« A function on channels is called additive if
f(NVOM) = f(N) + f(M)

« Recall that Q(wWV) = lim,_. __(1/n)QT(N=N). If we
could show that Q' was additive, we’d have
Q(N) = Q1(N).

- Similarly, C(N) =Ilim, . __(1/n) x(AN*") and
P(~N) =lim, . (1/n)PY(~N® M), so if x and P! were
additive, we’'d have single-letter capacities for
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irsa: 12110066 Page 53/70



Nonadditvity of x

Choose U randomly and you get

X(sz ®MI*) > X(_/\/'U) + X(MI*)

Hastings, Nat. Phys. ‘09
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Nonadditivity of Privacy

Rq = E(RYYa ® |[UV)( UV])

HU‘VH

A, U

A, \V4 =

HU‘VH

This channel has very little classical capacity, but used together with
a 50% erasure channel, it can generate lots of private capacity

Li-Winter-Zuo-Guo '09, Smith-Smolin ‘09
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Most things aren’t additive

Q' is not additive for the very noisy
depolarizing channel (Shor-Smolin ‘96)

P1isn’t additive for BB84 channel (Smith-
Renes-Smolin, ‘0O8)

x 1S nonadditive for high-dimensional
random channel (Hastings ‘09)

Q' and P' can both be extremely
nonadditive (Smith-Smolin 08, 09)



But sometimes they are

- « Is additive for depolarizing, erasure, and
entanglement breaking channels.

- QT and P' are additive for degradable
channels, Q' is for PPT channels.

See King, Shor, Ruskai, Devetak-Shor, Horodecki, ...



Additivity Questions

information \ Quantity Capacity Correlation Measure
Classical Classical Capacity Holevo Information
? x = max I(X;B)
No (Hastings ‘09)
Private Private Capacity Private Information
No (Li-Winter-Zou-Guo '09 max 1(X;B)-1(X;E)
Smith-Smolin-08/09) | No (Smith-Renes-Smolin '‘08)
Quantum Quantum Capacity Coherent Information

No (Smith-Yard ‘08)

max S(B)-S(E)
No (Div-Shor-Smolin ‘98)

Entanglement
assisted

Entanglement assisted
classical capacity

Yes (Bennett-Shor-Smolin-
Thapliyal ‘99)

Quantum Mutual Information

Yes (Bennett-Shor-Smolin-
Thapliyal ‘99)
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Outline

- Quantum capacity of-guantum-channel
—Quantum-coeding-theorem

- Zero Quantum _capacity charretsand
—Superactivation (quantum synergy!)

- Classicaland-private—capacities—
A eheitiviti |

- Gaussian quantum channels
- Open questions




Gaussian Quantum Channels

 Classical Additive White Gaussian Noise:

X —saX + NN

e Quantum Generalization:

v — AvAL + NV

« 7Y contains all information about the EM field

« Generated by quadratic interactions between
input signal and vacuum environment
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Additive White Gaussian Noise

Input X is a real variable (eg, component of EM field)
X > X +bN =Y
N is normally distributed with variance 1, and mean zero, so

Prylz) = ke (@—w)?/20°

Capacity of this channel is infinite, but makes sense if we introduce a
power constraint: E[X?] < P. Then the capacity becomes

C = 5log(l+ SNR)

Where SNR = P/b? is the ratio of max signal power to noise power
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Classical Capacity of gaussian
thermal noise channel

- Evolution: v — (1 — A\)~v + ANg/
+ Models combination of attenuation and amplification
present in optical fiber

e LB: CnZ2g(AN 4+ (1 —AN)NEg)—9 (1 —AN)NEg)
« Good upper bds from quantum entropy power inequality:

H(X +2Y)=22AH((X)+ (1 —NH((Y)

Y

A
X ——NC—— X +,Y

Koenig-Smith ‘12
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Gaussian Superactivation

« Combining the
. 50% attenuation
A" channel with a

\.-~"'50% Attenuation i caARRS i Sts

us make a state
Channel that we use to

0 : generate
coherent
s information.
R e The strate on
----------- N ——— 31 the left cangget
v— 1l - 0—— B, around 0.06 bits
@ 71| - of coherent
PPT Channel’—",\ ,'"'\‘-_Df“.‘\__/ “Bob information.

Smith-Smolin-Yard Nat. Photon. '11 Squeezing required: Lercher-Giedke-Wolf ‘12
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Classical Capacity of gaussian
thermal noise channel

- Evolution: v — (1 — A)~v + ANg/
+ Models combination of attenuation and amplification
present in optical fiber

= IBe Crn == g AN (1 = NN g (L NN )
« Good upper bds from quantum entropy power inequality:

H(X +\Y)=Z22AH((X)+ (1 —NH((Y)

b

A
X ——NC—— X +,Y

Koenig-Smith ‘12
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Gaussian Superactivation

\--~ " 50% Attenuation
: Channel

. ‘é' B
<
.......... - Q\* _Bl
VAL D \/ — B>
PPT Channel™ ™| X Q""_/ .Bob

Combining the
50% attenuation
channel with a
PPT channel lets
us make a state
that we use to
generate
coherent
iInformation.

The strategy on
the left can get
around 0.06 bits
of coherent
iInformation.

Smith-Smolin-Yard Nat. Photon. '11 Squeezing required: Lercher-Giedke-Wolf ‘12
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Summary

 The capacities of a quantum channel
characterize its capability for transmitting
iInformation: classical, private classical, quantum

* There are random coding theorems for each of
these cases, whose rates are characterized by
some entropic functions.

 In general these functions are superadditive, so
we don’t get single-letter formulas. This is
good, since it means we get higher rates!

* In special cases (degradable, entanglement
breaking, PPT), we can show additivity.

* There are a million simple questions that nobody
knows how to answer!
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VVWhat Next?

« We have very few (computable) upper bounds on the

capacities of a quantum channel. Sometimes calculating
Lheclinformatlon measures is (complexity theoretically)
ard.

- Important special case: bosonic gaussian channels
(quantum version of AWGN). Unsolved (even for single
mode), with the exception of pure loss. Tight bounds for
thermal noise, but can we find nonadditivity here?

- There are ad hoc techniques for showing additivity of y but
no general guide for when to expect it.

- Is there a non-degradable, non-PPT channel for which we
can find the quantum capacity? Whenis Q = 0?7 P=07
What do the zero-capacity sets look like?

- Is there a general mapping between quantum channels
and classical broadcast channels that lets you get the
capacity of one from that of the other?
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Some things | haven’t mentioned

« Multiple access channels, broadcast channels, etc.

+ How do we actually achieve these rates?

« Coding theory, fault-tolerance, etc.

+ Pure-state source coding (aka "data compression”) is actually solvable.

« Two-way capacities and relationship to entanglement and LOCC.

« PPT criterion and NPT bound entanglement?

e P=Q

« Connections between Quantum Key Distribution and private capacities
(tomography, non-iid, etc.).

« Beyond i.i.d. (symmetrization and de Finetti arguments)

+ ldentification capacity, environment assisted capacity, capacity of unitary
interactions, symmetric side channels, commitment capacity, reverse
Shannon theorem, embezzling states, entanglement measures, zero-

error...
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THANK YOU
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