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Abstract: <span>1 will present recent developments in the computation of

three point functions in the AdS4/CFT 3 correspondence. More specifically | will
consider two different computations for three point functions of operators
belonging to the SU(2)XSU(2) sector of & nbsp;ABJIM.& nbsp;!

will& nbsp;discuss first the generalization of the

determinant& nbsp;representation, found by Foda for the three-point functions of
the SU(2) sector of N = 4& nbsp;SY M, to the ABJM theory and& nbsp;

secondly semiclassical

computations in& nbsp;the case where two operators are heavy and oneislight

and BPS, comparing the results obtained& nbsp;in the gauge theory

side& nbsp;using a coherent& nbsp; state description of the heavy operators with its& nbsp;string theory
counterpart calculated holographically.</span>
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Motivation

Motivation

» Building Blocks in conformal field theories are 2-point and 3-point
functions of local gauge invariant operators.

The spectral problem is

dij solved with integrability:

OO = 1= Find A = A (A, N) by v

diagonalizing the dilatation
operator

_ Cilk
<O,(X)Oj(y)0k(2)> o ‘X _ y‘A,'-i-ﬁJ‘—Ak‘y e Z|Aj+Ak_Ai 7 — XIA,‘-?-A“—A'

» In principle using the OPE all the higher point correlation
functions are known:
Capry
Oa(x1)Os(x2) ~ Z | x1 — xo |AH+A,1—A? O, (x)

-~
¥
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Motivation

One slide review of the AdSs/CFTs

correspondgnce

AdS

» Type lIB string theory on AdSg x
S° with metric in Poincaré
coordinates given by ds® =

dz2+dx?
2 I 2 2
RREHNE 4 R2402

2
bgs:%'ﬁ)—f:\/x

(8

» Single string states of energy A

CFT

» N =4SYM in 4 dimension with
gauge group SU(N) containing 1
A., 4 Aj and 6 ¢; transforming

in the adjoint rep

» Single trace operators of confor-

mal dimension A
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Motivation

Holographic prescription

8
» Correlation function using AdS/CFT:

(ef d*x (,f)g(f)(’)(f))

| Zbulk [f.f’ (f-z) |z=0 = Qo (f)] -

field theory

¢o (X) is an arbitrary function specifying the boundary values
of the bulk field ¢.

Taking derivatives with respect to ¢ and setting it to zero we
obtain the correlation functions of the operator.

Changes in the boundary conditions of AdS correspond to chan-
ges in the Lagrangian of the field theory. Infinitesimal changes
in the boundary condition correspond to the insertion of an
operator.
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Motivation

Short trip into integrabilityl

Final gdal: Find anomalous dimensions of the operators

Group the 6 scalars into 3 complex scalars: X = ¢1 + i¢2,

Y = @3+ ia, £ = 5 + i0g

Restrict to the lSU(Z) sector‘ X=¢1+i¢2, £ = s + iche
Gauge invariant operators take the form O = Tr(ZXXX ...Z)
Correspondence between operators and a configurations of an

SU(2) spin chain

Express the dilatation operator in terms of operators acting on

/

‘ L
. : A\ Al
a spin chain: |D =1L + 87?2H = Z (HI.H-l — P!.I+l)
' : [=1 ‘
The operators are the eigenvectors and the anomalous

dimension is the eigenvalue of H.
[Minahan and Zarembo, 2002]
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Motivation

Short trip into integrability Il

8 . . T
Next step: diagonalize the hamiltonian H

There are two (or more) well established different methods to solve
this problem: coordinate and algebraic Bethe Ansatz.

[Faddeev and Takhtajan, 1988]

Very roughly the idea is:

L _
recast the problem as >, _; P/ /41 —;(i, log T(u)|y=0 where

u is the spectral parameter and T is the transfer matrix

the problem now is to find eigenvectors and eigenfunctions of
T(u)

using Yang Baxter algebra for T(u) it is possible to extract
creation operators which, acting on a reference state (a state
with all spin up or all down), generates all the possible states

it turns out that in order for these states to be eigenstates of
T (u) the spectral parameter u should satisfy Bethe equations
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Motivation

Short trip into integrabilityIIl

R

Some key points in this procedure:
> ’Auxiliary space : additional vector space, isomorphic to the
physical vector space. Note that T(u) acts on the physical
space, because it is defined as a trace on the auxiliary space of
the monodromy matrix. A nice way of thinking to the auxiliary
space is as a probe spin space.

> ‘The R-matrix it is the building block. It acts on the tensor
product of the physical space and of the auxiliary space and it
obeys unitarity, crossing symmetry and Yang-Baxter equation.

B ’[T(ul). T(uw)] = 0‘ — T(u) is the generating function of all
conserved charges.
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Motivation

Short trip into integrability IV

» The R Matrix is R(uv) = ul + /P and Rij(u): AxP —= AxP
where A is the auxiliary space and P the physical space.

» It satisfies Yang Baxter equations

» Transfer matrix T(u) = TraM,(u)
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Motivation

Operators

» For our purposes we can classify single trace operators of N = 4
SYM in two groups:
HEAVY: when the anomalous dimension scales as v/\ at strong
coupling, they are dual to classical string states;
LIGHT: when the conformal dimension scales as 1. These are
BPS operators, so the scaling is the same also at weak coupling.
They are dual to supergravity modes.
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Motivation

3 point functions in AdSs5/CFT4

» It is knfbwn how to compute (LLL) both at weak and strong
coupling.
[Kristjansen,Plefka, Semenoff and Staudacher, 2002] [Freedman, Mathur, Matusis and Rastelli, 1998]
[(-()H‘wt.il)"\ Freedman, Headrick and Minwalla, JUU;’] If\rutvunuv and Frolov, JUUU]
[Chu, Khoze and Travaglini, 2002]
[Beisert,Kristjansen,Plefka, Semenoff and Staudacher, 2002]
[Roiban and Volovich, 2004]

[Okuyama and Tseng, 2004]
[Alday, David, Gava and Narain, 2005]

(HHH) is more involved mainly because at weak coupling we
need to Wick contract at least 1 out of 3 operators with 2 of
them, the combinatorial problem becomes much more involved.
At strong coupling, in general it is needed to solve string EOM
with the topology of a sphere with 3 punctures (with some
asymptotic properties). [anik and Wereszczynski, 2011]

[Kazama and Komatsu, 2011]
[Buchbinder and Tseytlin, 2011]

Are there simpler cases?
Do we have more efficient ways to analyze the problem?
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Motivation

Semiclassical method: (HHL)

|/.1rf-mho 2010] [(_osm Monteiro, Santos and Zoakos ;’UIOI

(O1(x))w

‘ ij‘_[j“‘ frurn /.II’"I"H})U“\ paper

- W = Oy(x1)Ok(x2): non local operator dual to classical string
- Oy(x): local operator dual to a sugra mode

T 2 1
O , = i \/ o1(y. € DX e ~Ssu(X]
( f(y))]/\/ E‘EPO fA! AI . 1 < f(y ) Z,,-[,r / § -

A
Setr = \4/__ / d*o \fhhabf)aXMf)bXNGMN -

Gun = 8MN + TMN

" Ymn | is the disturbance created by the local operator insertion
! ' [Zarembo, 2010]
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Motivation

Three point functions as

O,

01,

AL
A T T T ¥
A T T W Y
A T W W Y
AT T T ¥
L U T W ¥
L T T W ¥
L T W SR Y
AT T S Y
L T T T ¥
L T T ¥
AT T N ¥
AT T T ¥
b W W —

03, O3,

scalar products /1

1 Map the operators to closed
spin chain states, O; — |O;)

2 Break the spin chains into 2

open subspin chains
|0i) = 10i)1 and |O;),

3 Write the initial spin chain as tensor product of the two open
subspin chains |O;) =Y, |0;,) @ |O},)r

4 In order to mimic the Wick contraction operation it is needed
to flip one of the two subspin chains from a ket to a bra and
then evaluate the scalar products of the appropriate states

C123 ~ Y o be r(O03]01,)1,(01,|02,)1,(02, |03, )

[Escobedo, Gromov, Sever and Vieira, 2011]
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Motivation

Three point functions as scalar products /2

R

Operator| Vacuum |Excitation
Li—N Z| Ny X
Lo— Ny, Z X

N>
L3 — N3 Z| N3 X

» |n order to have a well defined planar 3 point-function:
Ny = N> + N;s.

» The scalar product ,(O,|O3); is trivial and one sum
disappears.

» |t remains only one sum!

[Escobedo, Gromov, Sever and Vieira, 2011]
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Motivation

How to evaluate scalar products

R

reference state ~4+4—+444
S
B(u,) . .. B(ug)o t4~4~—t~4—4—4 > c123 ~ (O3] ® (O2]) |01)

L L L N N NN [I(Jd.i .’Ull]

» Use ABA techniques to express
these scalar products

» Note that Oy is not cut
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Motivation

A

A

b

A

h

A

h

» The weight of the vertices is the entry of the R-matrix
» The orange part is the Slavnov scalar product and the green
one is the partition function

L= C123 ~ ZN3(W,:)5[N1. NQ](Uf. V,')

Pirsa: 12110053

“ oda, 201 1]
[Foda and Wheeler, 2012]
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Motivation

Extend the procedure to AdS,;/CFT;

R

WHAT WE DID:

We calculate planar, tree level, non extremal three point functions
of operators belonging to the SU(2)xSU(2) sector of ABJM:

» generalize the determinant representation to the case of ABJM
using integrability and six vertex model techniques.

» semiclassical computation for 2 heavy operators and 1 light

VS
(in the Frolov-Tseytlin limit)

gauge theory computation in the coherent state approximation.
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Six vertex model IIT

DOMAIN WALL PARTITION FUNCTION

2J
Zos({u}2s,{z}21) = Wz | [[ Bluis {z2s})] 122
=1

SLAVNOV SCALAR PRODUCT
SHulm {vin, {z}i] =

N> Ny
o (‘LZN:,,,J | HC(U!'? {z},) 1__[ B(v;, {z},)| Tzs)
=1 =1

where
(ags | = iy 1© - @ (lay, 1© (P [+ ® (B |
GAUDIN NORM
N({}) = S{u}n. {u}n,i/2]
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Motivation

The AdS4 /CFT3 C O rr e Sp Ondenc e f/\lmron_v, Bergman, Jafferis and Maldacena, 3008]

MdS CFT

» Type I|IA string theory on » N = 6 superconformal Chern-
AdS, x CP3 with metric ds® = Simons theory in 3 dimension wi-
R? [%a’sﬁd54 + dsg.ps | th gauge group U(N)x U(N)_y

where k is the Chern-Simons

57_2 1/4 2
252N R° — Ar 2\, level (ABJM theory)

P& =T )

3

R = Rgp3 = 2Rads \ = %
> Thisis true ONLY when k, V are Bosonic field content: 2 complex

both large, for generic k the dual scalars transforming in the Nx N

tShTeory is M-theory on AdS; x and 2 complex scalars in N x N
IZ.

Note another big difference wrt the AdSs /CF T4 correspondence that
will be important later: the amount of supersymmetry. The former
has 36 supercharges while the latter 24.
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Determinant representation

Dutline

® Determinant representation
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Determinant representation

Operat ors ln ABJM [Aharony, Bergman, Jafferis and Maldacena, 2008]

N
» Gauge Invariant scalar operators are

O = CAR (202, .- 2% 2, )

3132.”35

where
2% = (L, Lo, W, Wg) 2, = (21.22. Wi, W>)

are the multiplets of the SU(4) R-symmetry.

» Z2 transforms in the fundamental rep and Z, in the antifun-
damental rep.

» 7,75 transform in the N x N representation of U(N) x U(N)

and W;, W, in the N x N representation.

» The conformal dimension of all the scalars is A = £ and the

2
bare dimension of the operator is n.
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Determinant representation

Operat ors ln ABJM [Aharony, Bergman, Jafferis and Maldacena, 2008]

N
» Gauge Invariant scalar operators are

O = Chlbng(ZnZ, ... 22, )

3132.”35

where
2% = (L, Lo, W, Wg) 2, = (21.22. Wi, W>)

are the multiplets of the SU(4) R-symmetry.

» Z2 transforms in the fundamental rep and Z, in the antifun-
damental rep.

» 7,75 transform in the N x N representation of U(N) x U(N)

and W, W, in the N x N representation.

» The conformal dimension of all the scalars is A = % and the

2
bare dimension of the operator is n.
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Determinant reprasentation

Operators in ABJM phurony. Bergman, Jafferis and Maldacena, 2008]

» Gauge invariant scalar operators are

O = Chibriban(22 2y, - 27 2,,)

a1a+ap

where
Z° = (219229 Wls W2) y za = (213221 W11 Wz)

are the multiple SU(4) R-symmetry.

» Z? transforms in the fundWgnental rep and Z, in the antifun-
damental rep. \

» Zy,2Z> transform in the N x N ? Nesentation of U(N) x U(N)
and Wy, W, in the N x N represenNi

» The conformal dimension of all the scars is A — % and the
bare dimension of the operator is n. \
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Determinant representation

Operat Oors ln ABJM [Aharony, Bergman, Jafferis and Maldacena, 2008]

N
» Gauge Invariant scalar operators are

O = Chlbngy(ZnZ, ... 22, )

ayaz---a

where
2% = (L, Lo, W, V_V2) 2, = (21.22. Wi, W>)

are the multiplets of the SU(4) R-symmetry.

» Z2 transforms in the fundamental rep and Z, in the antifun-
damental rep.

» 7,75 transform in the N x N representation of U(N) x U(N)

and Wi, W, in the N x N representation.

» The conformal dimension of all the scalars is A = £ and the

2
bare dimension of the operator is n.
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Determinant representation

SU(2) x SU(2) sector

8
» SU(2)x SU(2) sector is obtained by considering operators made
out of 2 scalars among 22 and 2 scalars among Z, transforming

in two separate SU(2) subgroups of SU(4).

Consider the scalars Z; > and W, the operators are of the
form

O = CHE I Zy Wy -~ Z, W),

i1y
The 2 loop dilatation operator becomes the Hamiltonian of
two decoupled ferromagnetic XXX;/, Heisenberg spin chains,
one living at the even sites and the other one living at odd si-
tes. The two chains being related only through the momentum
constraint.

[Milmh.m and Zarembo, ,_’UUJ‘J‘]
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Determinant rep

Operators

k

Operator | Vacuum odd | Excitation odd | Vacuum even Excitation even
O, (J=h) & HNZ2 (J=2r) W L W
(@)} (+p) L2 | (U=h—=-h) 4| (+p) Wa | (J=Lr—-h) Wi
Os 2 Wa i 2 B4 ha W
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Determinant representation

Int egr ab 1 ]. lty 1n SU (4) [Minahan and Zarembo, 2008]

The dil&tation operator of ABJM theory acts as a Hamiltonian
for this spin chain and is conjectured to be integrable.

Introduce the R-matrix, a monodromy matrix and a transfer
matrix.

For the alternating SU(4) spin chain — 4 R-matrices
Rip: Vo2V, — V0 V,,
RﬁB : Vg X VE — V§ X VE‘
RHB Vo, ® VE — V,® VE
Rsp: V5@ Vy — VR V),

V, ,V5 are the vector spaces of the fundamental and anti-
fundamental representation.

| = identity operator, P=permutation operator, K=5U(4) tra-
ce. Ue and u, are spectral parameters and 7 is the shift.
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Determinant representation

Operators

Operator | Vacuum odd Excitation odd Vacuum even Excitation even
O (J—h) 4 (J—21) W
@)} (J1 +j2) £ ' (2 + o) Wa
O3 2 Wa ; 2 4
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Determinant representation

Integrability in SU(2) x SU(2)1

» In the SU(®) x SU(2) sector the trace operator K does not contribute and

[u[o zo-lr)] 0 0 0
o—2o i 0

R.ah(”n- Z‘,) = [Uo - Zo] 0 = [”u Zu] R.n‘)

lUg Zo+ P]I
Too—za]

0

lU(a' Zo+ F}']
Ug—2Z¢

[uo — ze]

[ue — zo] 1

» R,p(Uo.2,) and Ry(u,, z.) each are R-matrix of an SU(2) spin chain.
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Determinant representation

Integrability in SU(2) x SU(2)I

» In the SU(3) x SU(2) sector the trace operator K does not contribute and

Rab(”o-zo) = [uo - zo] - [Uo = Zo] Rab

» Rab(o,2o) and Rp(u,,z,) each are R-matrix of an SU(2) spin
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Determinant representation

Integrability in SU(2) x SU(2) II

» The mon8dromy matrices are

MJ(“J.' {ZO' ZC}J) = (:i:[“ao - z.f-o][uao - zie]) Ral(“ao' zlo) it Ra-"(uao' zJo)‘

i=1

Ms(ua,. {20, 2e})) = (:“:[uae — zi |[ua, — z,-e]) Ri(ua,, 21,) .- - Rsj(ua,. 21,)

i=1

The monodromy matrix can be written in this useful form

[ Aolua,.{20:2e}s) BolUays {20, 2e}s)
My(ua, {20, Ze }s) = ( Co(uaa.{zo.ze}j) Do(“ao-{zo-ze}j) )a

and a similar expression for M5(u,,. {z,.2e} ), where B is the spin flipping
operator. Note that we have 2 different flipping operators, one acting on
odd and one on even sites.
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Determinant representation

Consequences

> 4 R-matrices for the SU(4) spin chain

SU(2) x SU(2)
2 R-matrices trivialize
2 are the R-matrices of 2 independent SU(2) spin chains

The lowering operators Be and B, become the usual SU(2)
spin flipping operators for even and odd sites.

In order to obtain an eigenstate both sets of rapidities {u,} and
{ue} have to satisfy the SU(2) Bethe equations

The only connection between the two sets of rapidities {u,}
and {ue} is momentum constraint (the total momentum of all
excitations should vanish)
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Determinant representation

S1x vertex model I

8
» From the R matrix it is possible to assign a weight to each

vertex

++++++%Mmm

to R,p(uo. zo) and

d o o b B

+ 4+ +

» The weights of the

+ + + + blue-red vertices is 1 .
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Determinant representation

S1x vertex model II

The full 6 vertgx model is equivalent to the product of two 6 vertex models. This
is a direct consequence of the fact that the mixed vertices have unit weight.

2o, Z Zony, Zany, Zo Zg
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Determinant representation

Six vertex model III

WDOMAIN WALL PARTITION FUNCTION

2J
Zoy({utas{ztas) = Uz | ][ Buis {z2s})| 12)

i=1

'SLAVNOV SCALAR PRODUCT |

SH{utm, {vin,,{z}i] =
Ny

N
= (s | T €l 4230 T B {210)] 12)
i=1

J=1

where
Jawgs | = Uz [®@ - @ Uz, | ® (Pzpyy [© - ® (T2 |,
'GAUDIN NORM |
N({u}) = S{upn: {u}n, /2]
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Determinant representation

3-point function

R

: Ci2z| = N3 (r(O3]® ((O2]) |O1)
Nl23Zj1 ({wo}) S/, S, — S — j1l({uo ) {ve}) X
Zi, ({we}) S[J, o, J = Jo = j1]({ue}, {ve})

where

N = VIGL + j2)(J + 2 — jr)
VY12 VN1oN1eN20/N2e N30 N3e

RESULT

The result is (up to the normalization) a product of two N' = 4 SYM
correlation function, reflecting the properties of the spin chains. The

normalization takes into account the cyclicity condition of the trace
(momentum constraint).
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Determinant representation

3-point function

R

: Cizz| = N123 (+(O3| ® (O2]) |01)
N123Zn ({wo}) S/, S, — S — j1]({uo )} {ve}) X
Zi, ({we}) S[J. b2, J — o — j1]({ue}. {ve})

where

N = VIGL+ 2)(J + j2 — jr)
B NN e N2oN2eN3oN3e

RESULT

The result is (up to the normalization) a product of two N' = 4 SYM
correlation function, reflecting the properties of the spin chains. The

normalization takes into account the cyclicity condition of the trace
(momentum constraint).
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Semiclassical computation

O; and O, are much longer than O3

To simplify we choose Ajl = J2 :j' and |y = b ‘ and our
operators become | |
O U=h) Z T Z U—4h) W

Oy | (h+)) Lo | (U=h—]j) & | (h+)) W
O3 Jj Wa J 4 J £

in the limit |1 < j < A, J’

we calculate

B C**°
- Cooo

1. gauge theory computation — coherent state approach

r

2. string theory computation — semiclassical computation
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Semiclassical computation

Gauge computation: coherent states

O; and O, rre represented by coherent states

0, = . (V. 7)) Wy WD L Z2) D W)

0, = .. (@2 . 2@ W)@ . 2) D W)

where

» L= (4,42), W= (W, W), Z = (Z,,2-) and
W = (W, Ws)
» The vectors u, = (v}, u2) and u, = (v}, u2) belong to C? and
are unit normalized
» O; and O, are eigenstates of the two loop dilatation operator
— uf;u) = uo(mp/J) must be periodic in p with period 2J and
fulfill the equations of motion of the Landau-Lifshitz sigma
model.
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Semiclassical computation

Gauge computation: light operator

R

O3 is a BPS operator

O3 = Nstr((Zy WL Y (WaZo V) + irrelevant terms|

_ (j1)?
where N3 = p—.

'Note: |

Differently from the N = 4 case, 3 point functions of BPS operators
are NOT protected, they depend on the coupling A = %
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Semiclassical computation

Gauge computation: (°**°

A
There are two contributions to be taken into account

1. contractions involving O3 given by

kﬁlué ((zm; 1);.-) .l (231;7) 72 ((Zm; l)vr) 72 (2rjrr)

m=k

This notation means that in 07 as well as in D> the fields at
the sites 2k — 1, 2k 2k + 2j — 2 are contracted with Os.

2. contractions between 7 and O,

B — H (2m-1) 2m 1)) (ug2rrw) . ‘_Ig2m))

m=1
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Semiclassical computation

Gauge computation: (°**°

R

D J k+j-1 ((2m 1)7 )u; (2!})7.') 72 ((2177;1)Tr) 72 (
Z H 2m 1) v(()Zm—l))(u(Qm) v(2m))

k=1 m=k e e

Assuming that
> Uy, Ue, Vo, and v, are slowly varying, so u(p) = uo(5F) —
u.(o) where o € [0, 27]
> U, Ue, Vo and Ve obey the continuum Landau-Lifshitz
equations of motion
» 01 >~ O3 so that v(, (o) = u(,) (o) + du(,) where du(,) is of
order j/J

27
C..O :N3Jf ;—f (Ué(ﬁ)U;(U’)I—J
0 1l
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Gauge computation: (°*°

&

o R (ER) (5502 7 (4P
G e BZ H (2m—1) y v(2m—1)) (u(le) 3 ‘—’(an))
=il = (o e e

Assuming that

> Uo, Ue, Vo and Ve are slowly varying, so ul?) = uo(%F) —
uo(o) where o € [0, 27]

> Uo, Ue, Vo and Ve obey the continuum Landau-Lifshitz
equations of motion

» O ~ O; so that V(a)(o‘) ~ U(a)(O') 2 5"(;) where (50(3) is of
order j/J

2x j
Co° = N J fo .‘21_7;{ (v5(0)uz(0)m3(0)72(a))’
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Semiclassical computation

Gauge computation: (C°°°

_Cooo} is thy 3 point function of 3 chiral primaries with the same
charges as the operators we have before.

» There is a procedure for N' = 4 due to [Kostov, 2011] to
take the limit of the general result in a determinant form to
obtain the result for 3 chiral primaries. Our result, up to a
normalization constant, is two copies of the N’ = 4 that in the
limit gives

4

| _ M — 2012 5 e |
Co%° — J\/?(J Jl +J)Jl((‘j J)) J:" Jh \N3JS“I

TN = ) = )I(2))!

where s = (———Jl(ﬁ;m).

» We also checked this result with a perturbative prescription of
[Hirano, Kristjansen and Young, 2012]
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Semiclassical computation

String computation: (C°**°

R

Compute the holographic dual to the correlator computed on the
gauge theory side.

The main steps are:

. specify the background metric
. fluctuation computation (insertion of the light operator)

. evaluate the fluctuations on the classical string solution (2 point
function of the heavy operators)
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Semiclassical computation

String computation: background metric

» The meékric of type IIA string theory on AdS; x CP? in Poincaré
coordinates is ds® = R? [%dsfm,s4 + dSépg]
dz? + dxﬁ
22
» to zoom in to the SU(2) x SU(2) sector of type IIA string theory

on AdS; x CP3 we need to start from M-theory on AdS; x S7,
use a suitable set of coordinates and after reduce to 10 dim
type IIA background. The explicit form of the ds%m IS

dsﬁd& = .X‘u = (Xl.Xz.X3)

1 1 _
dS%p3 = [ngg + nggz + (do + u;)z

where w = %(sin O1dpr+sinbrdp,), 0 = %(wl+r,.')2—(,.‘>3—(_-')4)

P1L=01— P2, P2=P4— @3

[Grignani, Harmark and Orselli, 2009]
» (0;,¢i), i = 1,2, parametrize 2 two-spheres corresponding to
the two SU(2) sectors.
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Semiclassical computation

String computation: Frolov-Tseytlin limit

» introduge a parametrization Ue (0, 7) = €/7/*ue o(0, 7) with
the conditions tle -Ue = 1 and U, - uy, = 1
In order to compare with the gauge theory result we take the
Frolov-Tseytlin limit which is
fl. "_> O . _(f)TUe‘O fi:\’(\(l . (.)O-Ue.o ﬁ.‘((‘(l
K

KET = -’1— — OC [[rr)\ov and Tseytlin, JU[H]

[Grignani, Harmark and Orselli, 2009]
U, are solutions of the Landau Lifshitz equations of motion
satisfying the Virasoro condition e J,ue+ 1, -J,u, = 0. Note
that it is shown that by taking the SU(2) x SU(2) sigma model
limit one obtains 2 Landau Lifshitz added together related only
through momentum constraint

[Grignani, Harmark and Orselli, 2009]

Pirsa: 12110053 Page 48/53



Semiclassical computation

String computation: Frolov-Tseytlin limit

» introduge a parametrization Ue (0, 7) = €/7/*ue o(0, 7) with
the conditions tle -Ue = 1 and U, -u, = 1
In order to compare with the gauge theory result we take the
Frolov-Tseytlin limit which is
fl. ""_> O . _(l)TUe‘O fi:\’(\(l . (.)O-Ue.o ﬁ.‘((‘(l
K

KET = -’1— — OC [[rr)\(»v and Tseytlin, JU[J’.]

[Grignani, Harmark and Orselli, 2009]
U, are solutions of the Landau Lifshitz equations of motion
satisfying the Virasoro condition iz J,ue+1,-J,u, = 0. Note
that it is shown that by taking the SU(2) x SU(2) sigma model
limit one obtains 2 Landau Lifshitz added together related only
through momentum constraint

[Grignani, Harmark and Orselli, 2009]
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Semiclassical computation

String computation: (C°°°

Again we neted C°°° to properly normalize the three point function.

» Using the result of [Hirano, Kristjansen and Young, 2012| we
obtain

1

\4274 2+ 1)J =N =h+j) A

000 ' (
(™ = 4j +1
v

» in the limit J, J; = oo with J — J; large

T+ (=) (b))

13 '
423 :
C°°° = —Jsj\/4j +1

/"

» Note: the A dependence is different from the gauge theory side
computation, as expected because this object is not protected.
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Semiclassical computation

Comparison

In the limit J,J; — oo with J — J; large we compare the results
obtained at strong coupling and at weak coupling and they agree:

C”O B Cnoo

A>1 = Fooo \
>1

Note: the same agreement has been found in the AdSs/CF T, case.

[Escobedo, Gromov, Sever and Vieira, 2011]
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Conclusions

Conclusions

Computation of non extremal, planar, three point functions in the
context of the AdS4/CF T3 correspondence and, more specifically, in

the SU(2) x SU(2) sector of the theories :

- determinant expression from the gauge theory side in terms of
known quantities in the six vertex model language, this approa-
ch is general meaning that can be applied to operators with any
length and number of impurities

- semiclassical computation both from the gauge and string theo-
ry side of a 3 point function of 2 heavy and 1 light operators.
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Conclusions

» Reproduce the semiclassical result from the more general

gauge theory expression. This would be extremely interesting
for analytical predictions

» Compute correlators at higher loops and higher sector.
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