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Abstract: <span>The existence of a

positive linear functional acting on the space of (differences between)
conformal blocks has been shown to rule out regions in the parameter space of
conformal field theories (CFTs). We argue that at the boundary of the allowed
region the extremal functional contains, in principle, enough information to
determine the dimensions and OPE coefficients of an infinite number of
operators appearing in the correlator under analysis. Based on thisideawe
develop the Extremal Functional Method (EFM), a numerical procedure for
deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of
solution space). We test the EFM by using it to rederive the low lying spectrum
and OPE coefficients of the 2d Ising model based solely on the dimension of a
single scalar quasi-primary -- no Virasoro algebra required. Our work serves as
abenchmark for applications to more interesting, less known CFTsin the near
future, such as the 3d Ising model .<br>

<br></span>
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@ Motivation

© CFT Bounds

@ Extremal Bootstrapping: The extremal functional method.

@ Application: the D = 2 Ising model
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The bootstrap program

IS conformal symmetry enough in higher dimensions?

@ To large extent, program carried out successfully in D = 2: minimal models,
rational CFTs, ...

@ Power of conformal symmetry in D = 2: infinite dimensional conformal
symmetry.

@ Finite number of Virasoro primaries.

@ We want to attempt something similar in any dimension.

@ Only global conformal group SO(d + 1, 1) to help us, infinite number of
(quasi)-primaries. . . is this enough?!

M.EPaulos, Brown U, (Brown U.) Extremal Bootstrapping Perimeter, 11272012
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Conformal Bootstrap

f‘.‘.l%k ¢,3

@ Contribution of a state in on channel must be matched by an infinite number of
states in another. Highly non-trivial!

@ The existence of the two independent expansions poses constraints on the set of
(b,‘ andf,jk.

Conformal Bootstrap

The crossing relations above, possibly applied to all possible correlators, completel
determine the spectrum and OPE coefficients of a CFT.
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- Conformal Bootstrap
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@ Contribution of a state in on channel must be matched by an infinite number of
states in another. Highly non-trivial!

@ The existence of the two independent expansions poses constraints on the set of
(b,’ and‘f,ﬂ-.

Conformal Bootstrap

The crossing relations above, possibly applied to all possible correlators, complete
determine the spectrum and OPE coefficients of a CFT.

 M.E.Paslos, Brown U, (Rrown U)
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Functional constraints

Fundamental equation

@ This is our key equation:

Z)\zo Fg'l u,v) =1,
AL

@ It poses an infinite set of constraints on the spectrum. How to use them?

@ Formally the F E_ff)L are vectors in some function space. The above relation states

that the vector 1 lies inside the cone defined by these vectors.
@ So the question is: when is the identity vector inside this cone?

@ If we had a finite number of finite dimensional vectors, this would be a Linea

Programming problem: find a solution to the above linear equation with Ii
constraints A%, > 0.

* M.FPaulos, Brown U. (Brown U)
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Functional constraints

Fundamental equation

@ This is our key equation:

Z/\zo F(A"} u,v) =1,
AL

@ It poses an infinite set of constraints on the spectrum. How to use them?

@ Formally the F (f)L are vectors in some function space. The above relation states

that the vector 1 lies inside the cone defined by these vectors.
@ So the question is: when is the identity vector inside this cone?

@ If we had a finite number of finite dimensional vectors, this would be a Linear

Programming problem: find a solution to the above linear equation with lineay
constraints A%, > 0.

M.EPaulos, Brown U, (Brown U) Petimeter, 1 1277201
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~Example: 2 derivatives

s d,F/F e et tetetenns ) FfF
1 02040608 1012 14 h 204 0608 1.0 1.2 14

Dual problem:
@ On the right tfge is no solution to crossing.

@ A linear functional"gyperplane) separating identity from all vectors (dashed line
on the right). If it exis ere 1S no solution.
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~ Example: 2 derivatives
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Dual problem:
@ On the right there iNgo solution to crossing.

@ A linear functional (h ‘ rplane) separating identity from all vectors (dashed line
on the right). If it exists, Mgre is no solution.

"~ M.EPaulos, Brown U. (Brown U.) | mal Bootstrappin h'zmu.umr:m-:
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Extremal Bootstrapping

- “ - = E Ao
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@ Bounds rely only on existence of a linear functional. But what is the information
carried by the functional (if any)?
A0 r «afFr « Er « B = “)a >
| MFPaulos,BrownU. (BrownU)  ExwemalBootswapping ~ Perimeter. 11272012 24/48
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carried by the functional (if any)?

02 04 06 08 1.0 1.2 1.4

' F/F
L=0

oo solutions

@ Bounds rely only on existence of a linear functional. But what is the information
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carried by the functional (if any)?

F,

@ Bounds rely only on existence of a linear functional. But what is the information
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012 04 06 08 1.0 1.2 1.4

@ Functional obtained just
above the bound curve.
@ The dashed line is the
extremal functional.
B e ]
J,F/F

A0 «a »r 4« Er «a B, = ) Q>

| MFPaulos, BrownU. (BrownU)  ExwemalBootstrapping ~  Perimeter, 11/27/2012  26/48
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@ Extremal Functional is positive everywhere, except at two special vectors, its
zeroes - shown as black dots before.

@ Zeroes at approximately (1.03, 0) (the € scalar) and (2, 2) (the stress-tensor!)
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The Extremal Functional Method

@ To find a solution to:

E X2 F‘(:}d(u,v) —
2R

1. Find the Extremal Linear Functional ¢.

2. Determine the vectors (FZL’ 8FX”)L, . ..) which are zeroes of ¢.

3. Solve for the linear combination of F g")Ls which gives the identity vector. The

coefficients are the square of the OPE coefficients.

M_.F.Paulos, Brown U. (Brown U.) Extremal Bootstrapping Perimeter, 11/27/2012 30/48
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Application: the D = 2 Ising model

M.F.Paulos, Brown U. (Brown U.) Extremal Bootstrapping Perimeter, 11/27/2012 31/48
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@ Results with N = 60 derivatives.
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@ Operator spectrum as N is increased.
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@ Polyhedron has curved directions:
number of zeroes is smaller than NV.

@ Not possible to find unique solution 3t
due to small numerical errors.

i i i i i 1 J aaF/F
02 04 06 08 10 1.2 14

@ Find “optimal solution™: L=0

OPE Coeffs = Ming, . Avi—1].
Vi: ¢-V=0

«“O>» <> «Er» «Er» F QX
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@ OPE convergence with NV.
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@ OPE convergence with V.
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~ OPE convergence

e OPE convergence with N.
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