Title: Recent progress on de Sitter S-matrix

Date: Nov 13, 2012 11:00 AM

URL: http://pirsa.org/12110043

Abstract: The de Sitter S-matrix provides a gauge-invariant and field redefinition-invariant window into de Sitter QFTs and may provide a crucial entry in any dS/CFT dictionary. In this talk I will summarize recent progress on developing the S-matrix for theories with gauge fields and perturbative gravity. Nonrenormalization theorems, hints of supersymmetry, and perturbative stability will be discussed.

Pirsa: 12110043 Page 1/38

The Minkowski S-matrix

The S-matrix is an invaluable tool for QFT on Minkowski space

- gauge invariant
- invariant under field redefinitions
- admits powerful theorems which reveal structure of Minkowski QFT: Coleman-Mandula, Haag-Lopuszanksi-Sohnius, Weinberg-Witten, . . .

At a more mundane level, the S-matrix:

- allows clean comparison of different approaches, choices of gauge, etc.
- is useful for resolving controversies, hastening advances in knowledge

Experimentally accessible!

I. Morrison (DAMTP)

dS S-matrix

2 / 33

Pirsa: 12110043 Page 2/38

The S-matrix and cosmology

In cosmological setting:

- traditional scattering experiments not feasible in inflationary spacetimes
- emphasis on CMB

Lack of an S-matrix (or equivalent) has been sorely felt for decades

• remain controversies over the interpretations simple self-interacting theories on fixed backgrounds as well as the more complicated case of gravitational theories

Cosmological observables insufficient for analysing perturbative quantum gravity

- not gauge invariant to all orders
- too local; don't probe IR behavior or address stability [Tsamis, Woodard, Polyakov,...]

I. Morrison (DAMTP)

dS S-matrix

3 / 33

Pirsa: 12110043

Bulk unitarity, dS/CFT, and the S-matrix

Concrete dS/CFT realizations involve "non-unitary" CFTs:

- Vasiliev dS_4/CFT_3 [Anninos, Hartman, Strominger, Harlow]
- dS_5 /conformal gravity₄ [Maldacena]
- common feature: Euclidean CFT duals are *not* reflection-positive ("unitary")

Key question: how is bulk unitarity encoded in the Euclidean CFT?

- S-matrix is unitary map $S: \mathcal{H} \to \mathcal{H}$
- S is an ideal tool for studying the implications of unitarity.

More points of contact with dual theories:

- The S-matrix gives us something to compute!
- captures similar physics in a different language

bulk S-matrix \longleftrightarrow asympt. behavior of \longleftrightarrow dS/CFT bulk correlators

I. Morrison (DAMTP)

dS S-matrix

4 / 33

Pirsa: 12110043

Today

In this talk we introduce the S-matrix for weakly-coupled quantum theories on global de Sitter that may be computed order-by-order in perturbation theory.

For massive fields, we can verify that the S-matrix is:

- unitary
- dS-invariant
- invariant under perturbative field redefinitions
- transforms appropriately under *CPT*
- reduces to the usual S-matrix in the flat-space limit

Will provide a non-trivial unitarity constraint on asymptotic behavior of renormalized bulk correlation functions.

We will offer preliminary evidence that a perturbative S-matrix exists for Einstein-Hilbert gravity.

This is not a talk on technology or techniques (I will hide essentially all computational details from you).

I. Morrison (DAMTP)

dS S-matrix

Outline

- The basics
- 2 Polology
- 3 Example: tree-level scattering
- The Optical thm, operator weights, and particle stability
- **5** Future directions
- 6 Summary

6 / 33

I. Morrison (DAMTP)

dS S-matrix

Pirsa: 12110043

de Sitter space

Global
$$dS_D = \{X \in \mathbb{R}^{D,1} \mid X \cdot X = \ell^2\}$$

dS isometry group is SO(D, 1)

$$rac{ds^2}{\ell^2}=\left[-rac{1}{1+\eta^2}d\eta^2+(1+\eta^2)d\Omega_{D-1}^2
ight],\quad \eta\in\mathbb{R}.$$

relation to $g_{tt}=-1$ time: $\eta=\sinh(t/\ell)$

Natural "vacuum": Hartle-Hawking or Euclidean state $|\Omega\rangle$

- maximally symmetric ("dS-invariant")
- Hadamard state in free theories
- agrees with Minkowski vacuum as $\ell \to \infty$
- attractor state for local ops. in asymptotic regions [Hollands, Marolf & IM]

$$\forall \ \Psi \in \mathcal{H}_{\Omega} \ \langle \phi(x) \rangle_{\Psi} \to \langle \phi(x) \rangle_{\Omega} \ \text{as} \ x \to \mathscr{I}^{\pm}$$

I. Morrison (DAMTP)

dS S-matrix

Consider a scalar field $\phi_M(x)$ with:

- Bare mass $M^2 > 0$
- 2 mass gap (determined by the Källen-Lehmann weight)

Properties of initial (final) states $|\psi\rangle_{i/f}$ satisfied as $\eta \to -\infty$ ($+\infty$):

- normalizable: $|i/f\langle a|b\rangle_{i/f}|<\infty$
- 2 definite particle content labelled by dS UIRs

$$|a\rangle_{i/f}:=|n_1,n_2,\ldots,n_k\rangle_{i/f}\,,\quad n=(M^2,\vec{L})$$

3 states transform as direct products of UIRs under dS group

$$U(g)|n_1,n_2,\ldots,n_k\rangle_{i/f} = |gn_1,gn_2,\ldots,gn_k\rangle_{i/f}, \quad gn = (M^2,\vec{L}'=g\vec{L})$$

• desire flat-space limit \Rightarrow initial/final vacuua are Hartle-Hawking state $|\Omega\rangle$

Particles need not look "free" near \mathscr{I}^{\pm}

I. Morrison (DAMTP)

dS S-matrix

Consider a scalar field $\phi_M(x)$ with:

- Bare mass $M^2 > 0$
- 2 mass gap (determined by the Källen-Lehmann weight)

Properties of initial (final) states $|\psi\rangle_{i/f}$ satisfied as $\eta \to -\infty$ ($+\infty$):

- normalizable: $|i/f\langle a|b\rangle_{i/f}| < \infty$
- 2 definite particle content labelled by dS UIRs

$$|a
angle_{i/f}:=|n_1,n_2,\ldots,n_k
angle_{i/f}\,,\quad n=(M^2,ec{L})$$

3 states transform as direct products of UIRs under dS group

$$U(g)|n_1,n_2,\ldots,n_k
angle_{i/f}=|gn_1,gn_2,\ldots,gn_k
angle_{i/f},\quad gn=(M^2,ec{L}'=gec{L})$$

• desire flat-space limit \Rightarrow initial/final vacuua are Hartle-Hawking state $|\Omega\rangle$

Particles need not look "free" near \mathscr{I}^{\pm}

I. Morrison (DAMTP)

dS S-matrix

Construction

LSZ prescription with wave packets $\psi_n(x)$

$$egin{aligned} |n_1,n_2,\dots,n_k
angle_{i/f} &= \lim_{\eta o\mp\infty} a_{n_1}^\dagger(\eta) a_{n_2}^\dagger(\eta)\dots a_{n_k}^\dagger(\eta) |\Omega
angle, \ a_n^\dagger(\eta) &= -i\int d\Sigma^
u(ec x) \left[\psi_n(x) \overleftrightarrow{
abla}_
u\phi_M(x)
ight] \Bigg|_{x}, \end{aligned}$$

Wave packets $\psi_n(x)$

Carefully chosen to ensure that $_{i/f}\langle a|b\rangle_{i/f}$ is free of power-law IR divergences.

- free fields: $\psi_n(x) = \text{linearized sol'ns to EOM}$
- interacting thys: $\psi_n(x)$ selects the "mass pole" part of $\phi_M(x)$
- for heavy fields: distinction between $\psi_n(x)$ and KG modes can generally be ignored

Captures logarithmic IR divergences expected in perturbation theory (which encode perturbative renormalization, anomalies, . . .).

I. Morrison (DAMTP)

dS S-matrix

Orthonormalization

There exist non-vanishing contributions to particle states in same basis $_i\langle a|b\rangle_i$.

Give to each initial particle state $|a\rangle_i$ an order I(a), letting the vacuum $|\Omega\rangle$ have the lowest order. Orthonormal initial basis $\{|A\rangle_i\}$ may be constructed as follows:

$$\left|B\right\rangle_i = \frac{\left|b\right\rangle_i - \sum_{I(A) < I(b)} \left|A\right\rangle_i \left|\langle A|b\right\rangle_i}{\left[{}_i \langle b|b\rangle_i - \sum_{I(A) < I(b)} \left|{}_i \langle A|b\rangle_i \left|^2\right|^{1/2}}, \quad I(B) = I(b).$$

I. Morrison (DAMTP)

dS S-matrix

The S-matrix

S-matrix:

 $S:=\{{}_f\langle A|B\rangle_i\}$

Properties

• The vacuum-to-vacuum amplitude is unity (use $|\Omega\rangle$ for in/out vacuum).

2 Covariance under the dS group:

$${}_f\langle A|B\rangle_i={}_f\langle A|1\,|B\rangle_i={}_f\langle A|U^{-1}(g)U(g)\,|B\rangle_i={}_f\langle gA|gB\rangle_i\,.$$

3 Behavior under CPT: $\Theta S = S^{-1}\Theta$

Invariance under perturbative field-redefinitions:

$$\phi(x) \to \phi(x) + g\mathcal{O}(x), \quad |g| \ll 1.$$

① Unitarity: $S^{\dagger}S = 1$ and $SS^{\dagger} = 1$. Equivalently, for $S = 1 + i\mathcal{T}$ have the Optical theorem

$$2{
m Im}\,{\cal T}={\cal T}^\dagger{\cal T}$$

I. Morrison (DAMTP)

dS S-matrix

The S-matrix

S-matrix:

 $S:=\{{}_f\langle A|B\rangle_i\}$

Properties

• The vacuum-to-vacuum amplitude is unity (use $|\Omega\rangle$ for in/out vacuum).

2 Covariance under the dS group:

$${}_f\langle A|B\rangle_i={}_f\langle A|1\,|B\rangle_i={}_f\langle A|U^{-1}(g)U(g)\,|B\rangle_i={}_f\langle gA|gB\rangle_i\,.$$

3 Behavior under CPT: $\Theta S = S^{-1}\Theta$

Invariance under perturbative field-redefinitions:

$$\phi(x) \to \phi(x) + g\mathcal{O}(x), \quad |g| \ll 1.$$

① Unitarity: $S^{\dagger}S = 1$ and $SS^{\dagger} = 1$. Equivalently, for $S = 1 + i\mathcal{T}$ have the Optical theorem

$$2{
m Im}\,{\cal T}={\cal T}^\dagger{\cal T}$$

I. Morrison (DAMTP)

dS S-matrix

de Sitter polology

Upshot:

S-matrix essentially captures the "mass pole part" of correlation functions

- define a suitable complex mass plane
- show how correlation functions are described by poles
- not all poles are equal: mass poles are field-redefinition invariant, other poles are not

15 / 33

I. Morrison (DAMTP)

dS S-matrix

Pirsa: 12110043 Page 14/38

Operator weights

1-particle states form UIRs T^{σ} of SO(D, 1):

Define operator weight:

$$M^2(\sigma)\ell^2 = -\sigma(\sigma + D - 1),$$

$$\sigma := -rac{(D-1)}{2} + \left[rac{(D-1)^2}{4} - M^2\ell^2
ight]^{1/2}.$$

• principal series: (solid green, Γ_p)

$$rac{(D-1)^2}{4} \leq M^2 \ell^2, \quad \Rightarrow \quad \sigma = -rac{(D-1)}{2} + i
ho, \;\;
ho \in \mathbb{R}, \;\;
ho \geq 0,$$

2 complementary series: (solid blue, negative real line)

$$0 < M^2 \ell^2 < \frac{(D-1)^2}{4}, \quad \Rightarrow \quad \sigma \in \left(-\frac{(D-1)}{2}, 0\right),$$

I. Morrison (DAMTP)

dS S-matrix

Operator weights

1-particle states form UIRs T^{σ} of SO(D, 1):

Define operator weight:

$$M^2(\sigma)\ell^2 = -\sigma(\sigma + D - 1),$$

$$\sigma := -rac{(D-1)}{2} + \left[rac{(D-1)^2}{4} - M^2\ell^2
ight]^{1/2}.$$

• principal series: (solid green, Γ_p)

$$\frac{(D-1)^2}{4} \leq M^2 \ell^2, \quad \Rightarrow \quad \sigma = -\frac{(D-1)}{2} + i\rho, \ \ \rho \in \mathbb{R}, \ \ \rho \geq 0,$$

2 complementary series: (solid blue, negative real line)

$$0 < M^2 \ell^2 < \frac{(D-1)^2}{4}, \quad \Rightarrow \quad \sigma \in \left(-\frac{(D-1)}{2}, 0\right),$$

I. Morrison (DAMTP)

Poles in the Källen-Lehmann weight

Write as contour integral in complex σ plane: [Marolf & IM, Hollands]

$$\langle \phi_{\sigma}(x_1)\phi_{\sigma}(x_2)
angle = \int_{\mu}
ho(\mu) W_{\mu}(x_1,x_2).$$

E.g., for a free theory in the principal series:

$$ra{0} \phi_{\sigma}(x_1) \phi_{\sigma}(x_2) \ket{0} = \int_{\mu} rac{(2\mu + D - 1)}{(\mu - \sigma)(\mu + \sigma + D - 1)} W_{\mu}(x_1, x_2) = W_{\sigma}(x_1, x_2)$$

I. Morrison (DAMTP)

dS S-matrix

Poles in the Källen-Lehmann weight

Write as contour integral in complex σ plane: [Marolf & IM, Hollands]

$$\langle \phi_{\sigma}(x_1)\phi_{\sigma}(x_2) \rangle = \int_{\mu} \rho(\mu) W_{\mu}(x_1, x_2).$$

E.g., for a free theory in the principal series:

$$ra{0} \phi_{\sigma}(x_1) \phi_{\sigma}(x_2) \ket{0} = \int_{\mu} rac{(2\mu + D - 1)}{(\mu - \sigma)(\mu + \sigma + D - 1)} W_{\mu}(x_1, x_2) = W_{\sigma}(x_1, x_2)$$

I. Morrison (DAMTP)

dS S-matrix

Poles in the Källen-Lehmann weight

Write as contour integral in complex σ plane: [Marolf & IM, Hollands]

$$\langle \phi_{\sigma}(x_1)\phi_{\sigma}(x_2) \rangle = \int_{\mu} \rho(\mu) W_{\mu}(x_1,x_2).$$

At 1-loop:

$$\left\langle \phi_{\sigma}(x_1)\phi_{\sigma}(x_2)
ight
angle^{ ext{1-loop}} = \int_{\mu} rac{(2\mu+D-1)\Pi(\mu)}{(\mu-\sigma)^2(\mu+\sigma+D-1)^2} W_{\mu}(x_1,x_2)$$

I. Morrison (DAMTP)

dS S-matrix

Poles in Mellin-Barnes kernels

Mellin-Barnes representations of correlation functions [Marolf & IM, Hollands]

$$\langle \phi_{\sigma_1}(x_1)\phi_{\sigma_2}(x_2)\phi_{\sigma_3}(x_3)\rangle = \int_{\mu_{12}} \int_{\mu_{23}} \int_{\mu_{31}} k(\mu_{12}, \mu_{23}, \mu_{31}) \left(\frac{1-Z_{12}}{2}\right)^{\mu_{12}} \left(\frac{1-Z_{23}}{2}\right)^{\mu_{23}} \left(\frac{1-Z_{31}}{2}\right)^{\mu_{31}}$$

- $Z_{ij} = Z(x_i, x_j)$ is SO(D, 1)-invariant distance
- by deforming integration contours may obtain asymptotic expansions for various configurations
- poles in $k(\mu_{12}, \mu_{23}, \mu_{31})$ determine asympt. behavior $(Z_{ij})^{p_{ij}}$...
- asympt. expansions depend on ratios of Z_{ij}
- S-matrix $\sim \text{Res } k(\sigma_1, \sigma_2, \sigma_3), \text{ Res } k(-(\sigma_1 + D 1), \sigma_2, \sigma_3), \dots$

NB: can use this expression to prove cluster decomposition: if all x_i are taken to large separations from all y_i :

$$\langle \phi(x_1)\phi(x_2)\dots\phi(y_1)\phi(y_2)\dots\rangle_{\Omega} \to \langle \phi(x_1)\phi(x_2)\dots\rangle_{\Omega} \langle \phi(y_1)\phi(y_2)\dots\rangle_{\Omega}$$

I. Morrison (DAMTP)

dS S-matrix

Poles in Mellin-Barnes kernels

Mellin-Barnes representations of correlation functions [Marolf & IM, Hollands]

$$\langle \phi_{\sigma_1}(x_1)\phi_{\sigma_2}(x_2)\phi_{\sigma_3}(x_3)\rangle = \int_{\mu_{12}} \int_{\mu_{23}} \int_{\mu_{31}} k(\mu_{12}, \mu_{23}, \mu_{31}) \left(\frac{1-Z_{12}}{2}\right)^{\mu_{12}} \left(\frac{1-Z_{23}}{2}\right)^{\mu_{23}} \left(\frac{1-Z_{31}}{2}\right)^{\mu_{31}}$$

- $Z_{ij} = Z(x_i, x_j)$ is SO(D, 1)-invariant distance
- by deforming integration contours may obtain asymptotic expansions for various configurations
- poles in $k(\mu_{12}, \mu_{23}, \mu_{31})$ determine asympt. behavior $(Z_{ij})^{p_{ij}}$...
- asympt. expansions depend on ratios of Z_{ij}
- S-matrix $\sim \text{Res } k(\sigma_1, \sigma_2, \sigma_3), \text{ Res } k(-(\sigma_1 + D 1), \sigma_2, \sigma_3), \dots$

NB: can use this expression to prove cluster decomposition: if all x_i are taken to large separations from all y_i :

$$\langle \phi(x_1)\phi(x_2)\dots\phi(y_1)\phi(y_2)\dots\rangle_{\Omega} \to \langle \phi(x_1)\phi(x_2)\dots\rangle_{\Omega} \langle \phi(y_1)\phi(y_2)\dots\rangle_{\Omega}$$

I. Morrison (DAMTP)

dS S-matrix

Tree-level scattering 1

Consider simple model with $\phi_{1,2,3}(x)$, $M_{1,2,3}^2$

$$\mathcal{L}_{\mathrm{int}}[ec{\phi}] = g\phi_3\phi_2\phi_1(x)$$

 $\mathcal{O}(g)$ tree-level amplitude:

$$_f \langle n_3 n_2 | n_1
angle_i^{(1)} = ig \int_y u_3^* u_2^* u_1(y)$$

- non-vanishing except possibly for discrete configurations
- Im as req. by Optical theorem
- agrees with naive use of LSZ

Plot: (amplitude/ig) as a function of M_1^2 with $M_{2,3}^2 = 2$, 1.25 in D = 3.

 \mathcal{I}^+

Amplitude peaked "off-shell" at $\sigma_1 = \sigma_2 + \sigma_3$, $M^2(\sigma_2 + \sigma_3) \in \mathbb{C}$.

I. Morrison (DAMTP)

dS S-matrix

Tree-level scattering 1

Consider simple model with $\phi_{1,2,3}(x)$, $M_{1,2,3}^2$

$$\mathcal{L}_{\mathrm{int}}[ec{\phi}] = g\phi_3\phi_2\phi_1(x)$$

 $\mathcal{O}(g)$ tree-level amplitude:

$$_f \langle n_3 n_2 | n_1
angle_i^{(1)} = ig \int_y u_3^* u_2^* u_1(y)$$

- non-vanishing except possibly for discrete configurations
- Im as req. by Optical theorem
- agrees with naive use of LSZ

Plot: (amplitude/ig) as a function of M_1^2 with $M_{2,3}^2 = 2$, 1.25 in D = 3.

Amplitude peaked "off-shell" at $\sigma_1 = \sigma_2 + \sigma_3$, $M^2(\sigma_2 + \sigma_3) \in \mathbb{C}$.

I. Morrison (DAMTP)

dS S-matrix

The Optical theorem

Generic operators have non-zero $1 \rightarrow$ many amplitudes The Optical theorem

Expand $S^{\dagger}S = 1$ in powers of g:

Unstable particles in Minkowski space

- operators acquire complex M^2 at 1-loop (Im $M^2 < 0$)
- complex M^2 exponentially damps correlation functions
- after 1PI summation, unstable particles not in asymptotic states

Do asympt. particle states exist at 1-loop?

I. Morrison (DAMTP)

dS S-matrix

The Optical theorem

Generic operators have non-zero $1 \rightarrow$ many amplitudes The Optical theorem

Expand $S^{\dagger}S = 1$ in powers of g:

Unstable particles in Minkowski space

- operators acquire complex M^2 at 1-loop (Im $M^2 < 0$)
- complex M^2 exponentially damps correlation functions
- after 1PI summation, unstable particles not in asymptotic states

Do asympt. particle states exist at 1-loop?

I. Morrison (DAMTP)

dS S-matrix

The Optical theorem

Can relate $1 \to 1$ scattering amplitude to self-energy $\Pi(\mu)$ (or Källen-Lehmann weight) [Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011]. E.g., in our example theory at $\mathcal{O}(g^2)$

$$-2\operatorname{Re}_{f}\langle n_{1}|n_{1}\rangle_{i}^{(2)} = \int_{\overline{x}} \int_{x} u_{1}^{*}(\overline{x})u_{1}(x)(\Box_{x} - M_{1}^{2})(\Box_{\overline{x}} - M_{1}^{2})\left\langle\phi_{\sigma}(\overline{x})\phi_{\sigma}(x)\right\rangle^{(2)}$$

$$= -\left[\frac{\Pi(\sigma) - \Pi(-(\sigma + D - 1))}{(2\sigma + D - 1)}\right](2\log H + \text{finite})$$

$$-\left[\frac{\Pi'(\sigma) + \Pi'(-(\sigma + D - 1))}{(2\sigma + D - 1)}\right](\text{finite}),$$

with spacetime integrals regulated $|\bar{\eta}|$, $|\eta| < H$. Coefficients are independent of renormalization scheme.

Optical theorem requires:

$$\left[\frac{\Pi(\sigma) - \Pi(-(\sigma + D - 1))}{(2\sigma + D - 1)}\right] \le 0$$

How is this related to mass renormalization?

I. Morrison (DAMTP)

dS S-matrix

Renormalized operator weights

In perturbation theory, mass poles Δ_{\pm} shift (renormalized)

$$\Delta_+ := \sigma + \mathcal{O}(g^2), \quad \Delta_- := -(\sigma + D - 1) + \mathcal{O}(g^2).$$

Shift is encoded in on-mass values of the self-energy at $\mathcal{O}(g^2)$:

$$\Delta_{+} = \sigma + \frac{\Pi^{(2)}(\sigma)}{(2\sigma + D - 1)}, \quad \Delta_{-} = -(\sigma + D - 1) - \frac{\Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)},$$

 $\Pi^{(2)}(\sigma)$, $\Pi^{(2)}(-(\sigma+D-1))$ renormalization scheme-dependant, but combination $\Delta_+ + \Delta_-$ is independent

$$\Delta_{+} + \Delta_{-} = -(D-1) + \frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma+D-1))}{(2\sigma+D-1)} < -(D-1).$$

Optical theorem requires:

$$\left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)}\right] \le 0$$

I. Morrison (DAMTP)

dS S-matrix

Renormalized operator weights

In perturbation theory, mass poles Δ_{\pm} shift (renormalized)

$$\Delta_+ := \sigma + \mathcal{O}(g^2), \quad \Delta_- := -(\sigma + D - 1) + \mathcal{O}(g^2).$$

Shift is encoded in on-mass values of the self-energy at $\mathcal{O}(g^2)$:

$$\Delta_{+} = \sigma + \frac{\Pi^{(2)}(\sigma)}{(2\sigma + D - 1)}, \quad \Delta_{-} = -(\sigma + D - 1) - \frac{\Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)},$$

 $\Pi^{(2)}(\sigma)$, $\Pi^{(2)}(-(\sigma+D-1))$ renormalization scheme-dependant, but combination $\Delta_+ + \Delta_-$ is independent

$$\Delta_{+} + \Delta_{-} = -(D-1) + \frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma+D-1))}{(2\sigma+D-1)} < -(D-1).$$

Optical theorem requires:

$$\left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)}\right] \le 0$$

I. Morrison (DAMTP)

dS S-matrix

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity):

$$\Delta_{+}^{(2)} + \Delta_{-}^{(2)} = \left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)} \right] \le 0, \quad \Rightarrow \Delta_{-} + \Delta_{+} \le -(D - 1).$$

Principal series fields:

- renormalized Δ_{\pm} do not correspond to UIRs
- renormalized masses (self-energy) have imaginary part
- "unstable" asymptotic particle states

Complementary series fields:

- renormalized Δ_+ remains in complementary series
- renormalized mass $M^2(\Delta_+)$ real
- "stable" asymptotic particle states

I. Morrison (DAMTP)

dS S-matrix

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity):

$$\Delta_{+}^{(2)} + \Delta_{-}^{(2)} = \left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)} \right] \le 0, \quad \Rightarrow \Delta_{-} + \Delta_{+} \le -(D - 1).$$

Principal series fields:

- renormalized Δ_{\pm} do not correspond to UIRs
- renormalized masses (self-energy) have imaginary part
- "unstable" asymptotic particle states

Complementary series fields:

- renormalized Δ_+ remains in complementary series
- renormalized mass $M^2(\Delta_+)$ real
- "stable" asymptotic particle states

I. Morrison (DAMTP)

dS S-matrix

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity):

$$\Delta_{+}^{(2)} + \Delta_{-}^{(2)} = \left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)} \right] \le 0, \quad \Rightarrow \Delta_{-} + \Delta_{+} \le -(D - 1).$$

Principal series fields:

- renormalized Δ_{\pm} do not correspond to UIRs
- renormalized masses (self-energy) have imaginary part
- "unstable" asymptotic particle states

Complementary series fields:

- renormalized Δ_+ remains in complementary series
- renormalized mass $M^2(\Delta_+)$ real
- "stable" asymptotic particle states

I. Morrison (DAMTP)

dS S-matrix

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity):

$$\Delta_{+}^{(2)} + \Delta_{-}^{(2)} = \left[\frac{\Pi^{(2)}(\sigma) - \Pi^{(2)}(-(\sigma + D - 1))}{(2\sigma + D - 1)} \right] \le 0, \quad \Rightarrow \Delta_{-} + \Delta_{+} \le -(D - 1).$$

Principal series fields:

- renormalized Δ_{\pm} do not correspond to UIRs
- renormalized masses (self-energy) have imaginary part
- "unstable" asymptotic particle states

Complementary series fields:

- renormalized Δ_+ remains in complementary series
- renormalized mass $M^2(\Delta_+)$ real
- "stable" asymptotic particle states

I. Morrison (DAMTP)

dS S-matrix

Gravitons

Stability of perturbative quantum gravity on dS an open question

- [e.g. Mottola, Tsamis, Woodard, Polyakov, ...]
- computations are difficult
- arguments for cosmological observables are inadequate to address stability
- what to compute?

The Tsamis-Woodard mechanism

- claim: there does not exist a dS-invariant state
- at ≥ 2 loops "IR gravitons" work to screen Λ

For a gravity S-matrix to exist:

- ullet need dS-invariant 0-particle state Ω
- IR divergences in amplitudes should not be worse than in Minkowski

The S-matrix could provide a gauge-invariant "observable" to analyse perturbative quantum gravity in dS.

I. Morrison (DAMTP)

dS S-matrix

Gravitons

Algebraic approach to QFT in CST [Fewster, Hunt, Higuchi]

Makes sharp what questions may be asked, what a quantum state is

• emphasis on *-algebra of observables $\mathcal{A}(dS_D)$

$$h(f) := \int_x f^{\mu
u}(x) h_{\mu
u}(x), \;\; f^{\mu
u} \in C_0^\infty(dS_D), \;\;
abla_\mu f^{\mu
u}(x) = 0$$

locality, E.O.M., etc., may be phrased in terms of observables

• Ψ is (sufficiently regular) positive linear functional $\Psi: \mathcal{A}(dS_D) \to \mathbb{C}$

Quantization is independent of chart and gauge.

Results (easily obtained): [IM in prep, broad agreement w/ Higuchi]

- \bullet Ω exists (on any chart), admits dS-invariant Green's functions
- same state as [Miao-Tsamis-Woodard (2011)] in non-covariant gauge
- Ω is a cyclic and separating vector on any open set of dS_D
- Cosmic no-hair thm: let $B(\lambda)$ be a boost with rapidity λ

$$\forall \Psi \in \mathcal{H}_{\Omega} : \langle B(\lambda)h(f)f(p)B^{-1}(\lambda)\rangle_{\Psi} \to \langle h(\lambda f)h(\lambda p)\rangle_{\Omega} \text{ as } |\lambda| \to \infty$$

I. Morrison (DAMTP)

dS S-matrix

Gravitons

Algebraic approach to QFT in CST [Fewster, Hunt, Higuchi]

Makes sharp what questions may be asked, what a quantum state is

• emphasis on *-algebra of observables $\mathcal{A}(dS_D)$

$$h(f) := \int_x f^{\mu
u}(x) h_{\mu
u}(x), \;\; f^{\mu
u} \in C_0^\infty(dS_D), \;\;
abla_\mu f^{\mu
u}(x) = 0$$

locality, E.O.M., etc., may be phrased in terms of observables

• Ψ is (sufficiently regular) positive linear functional $\Psi: \mathcal{A}(dS_D) \to \mathbb{C}$

Quantization is independent of chart and gauge.

Results (easily obtained): [IM in prep, broad agreement w/ Higuchi]

- \bullet Ω exists (on any chart), admits dS-invariant Green's functions
- same state as [Miao-Tsamis-Woodard (2011)] in non-covariant gauge
- Ω is a cyclic and separating vector on any open set of dS_D
- Cosmic no-hair thm: let $B(\lambda)$ be a boost with rapidity λ

$$\forall \Psi \in \mathcal{H}_{\Omega} : \langle B(\lambda)h(f)f(p)B^{-1}(\lambda)\rangle_{\Psi} \to \langle h(\lambda f)h(\lambda p)\rangle_{\Omega} \text{ as } |\lambda| \to \infty$$

I. Morrison (DAMTP)

dS S-matrix

Exceptional configurations

For scalar theories there exist discrete configurations for which tree-level scattering amplitudes have logarithmic IR divergence

$$\sum_i \sigma_i = -(D-1)-2n, \quad n \in \mathbb{N}_0$$

Similar IR divergence occurs for same theories in AdS:

- if combined with particular higher-derivative interactions IR divergences cancel
- these interactions precisely those that arise from dimensional reduction of SUGRA on $AdS_5 \times S_5 \to AdS_5$
- bulk fields ↔ single-trace boundary operators (chiral primaries)
- chiral primary correlation functions protected from perturbative renormalization (independent of $g_{YM}N^2$)
- subtle consequence of SUSY in boundary theory

Precisely same choice of coefficients cancels IR divergences in dS.

I. Morrison (DAMTP)

dS S-matrix

Higher Spin fields

Interacting higher-spin theories exist for $\Lambda \neq 0$ [Vasiliev, Fradkin]

- contain spin-2 graviton, linearized EH gravity
- infinite tower of higher-spin fields and non-local interactions
- no Lagrangian formulation

Proposed Vasiliev dS_4/CFT_3 [Anninos, Hartman, Strominger, Harlow]

Vasiliev thy with $\Lambda > 0$ dual to free (critical) Sp(N) CFT

- potentially first "microscopic" dS/CFT
- significant evidence for AdS Vasiliev/O(N) CFT correspondence
- remains much to interpret in dS

The dS S-matrix for Vasiliev should be highly constrained!

- in Minkowski: S-matrix constrained to be free [Porrati, Weinberg, Weinberg-Witten]
- in AdS: CFT analysis of Maldacena & Zhiboedov shows boundary correlators have few structures
- naively, Vasiliev amplitudes correspond to exceptional configurations

I. Morrison (DAMTP)

dS S-matrix

31 / 33

Pirsa: 12110043

Summary

The de-Sitter S-matrix

- a new tool for analysing dS QFTs
- captures gauge-, field-redefinition invariant aspects of correlator asymptotics
- elucidates implications of bulk unitarity

Key differences between Minkowski space

- asympt. states are not approximately free
- in eternal dS heavy fields are resonances
- only light fields enter into asymptotic states

Future directions

- EH gravity
- exceptional configurations/protected operators
- higher-spin theories

I. Morrison (DAMTP)

dS S-matrix

33 / 33

Pirsa: 12110043