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Abstract: <span>The de Sitter S-matrix provides a gauge-invariant and

field redefinition-invariant window into de Sitter QFTs and may provide a
crucia entry in any dS/CFT dictionary. In thistalk | will summarize recent
progress on developing the S-matrix for theories with gauge fields and
perturbative gravity. Nonrenormalization theorems, hints of supersymmetry, and
perturbative stability will be discussed.</span>
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Introduction

The Minkowski S-matrix

The S-matrix is an invaluable tool for QF'T on Minkowski space

gauge invariant

invariant under field redefinitions

admits powerful theorems which reveal structure of Minkowski QFT':
Coleman-Mandula, Haag-Lopuszanksi-Sohnius, Weinberg-Witten, ...

Experimentally accessible!
At a more mundane level, the
S-matrix:
@ allows clean comparison of

different approaches, choices

of gauge, etc.

is useful for resolving

controversies, hastening

advances in knowledge

I. Morrison (DAMTP) dS S-matrix
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Introduction

The S-matrix and cosmology

In cosmological setting:

@ traditional scattering experiments
not feasible in inflationary
spacetimes

emphasis on CMDB

LLack of an S-matrix (or equivalent) has been sorely felt for decades

@ remain controversies over the interpretations simple self-interacting
theories on fixed backgrounds as well as the more complicated case of
gravitational theories

Cosmological observables insuflicient for analysing perturbative quantum
gravity
@ not gauge invariant to all orders
e too local; don’t probe IR behavior or address stability [Tsamis, Woodard,
Polyakov,...]

I. Morrison (DAMTP) dS S-matrix
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Introduction

Bulk unitarity, dS/CFT, and the S-matrix

Concrete dS/CF'T realizations involve “non-unitary” CFT's:
@ Vasiliev dS4/CFT3 [Anninos, Hartman, Strominger, Harlow]
dSs /conformal gravity, [Maldacena]

common feature: Euclidean CF'T duals are not reflection-positive
(“unitary”)

question: how is bulk unitarity encoded in the Euclidean CEF'1T'?7
S-matrix is unitary map S : H —> H

S is an ideal tool for studying the implications of unitarity.

More points of contact with dual theories:
@ The S-matrix gives us something to compute!
@ captures similar physics in a different language

bulk S-matrix <— asympt. behavior of «— dS/CFT
bulk correlators

I. Morrison (DAMTP) dS S-matrix
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Introduction

Today

In this talk we introduce the S-matrix for weakly-coupled quantum theories on
global de Sitter that may be computed order-by-order in perturbation theory.
For massive fields, we can verify that the S-matrix is:
@ unitary
dS-invariant
invariant under perturbative field redefinitions
transforms appropriately under C P71’

reduces to the usual S-matrix in the flat-space limit

Will provide a non-trivial unitarity constraint on asymptotic behavior of
renormalized bulk correlation functions.

We will offer preliminary evidence that a perturbative S-matrix exists for
Einstein-Hilbert gravity.

This is not a talk on technology or techniques (I will hide essentially all
computational details from you).

I. Morrison (DAMTP) dS S-matrix
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Introduction

Outline

The basics

Polology

Example: tree-level scattering

The Optical thm, operator weights, and particle stability

Future directions
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Summary
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The basics

de Sitter space

Global dSp {X e RP | X . X 2
dS isometry group is SO(D, 1)

ds?
é’z

1 . \ .
= |: 1 + n2 dn? + (1 + ’flz)dﬂf)_l} , meER.

relation to gy = —1 time: 1 = sinh(¢/€)

Natural “vacuum”: Hartle-Hawking or Euclidean state [€2)
maximally symmetric (“dS-invariant”)
Hadamard state in free theories
agrees with Minkowski vacuum as € — oo

attractor state for local ops. in asymptotic regions [Hollands, Marolf & IM]
VW eHMHa (p(x))y — () as = — ZE

I. Morrison (DAMTP) dS S-matrix
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The basics

Asymptotic particle states

Consider a scalar field ¢/ (x) with:
©@ Bare mass M? > 0

© mass gap (determined by the Killen-Lehmann weight)

Properties of initial (final) states |¢),,r satisfied as n — —oo (+00):

@ normalizable: [;/r{a|b), | < oo
© definite particle content labelled by dS UlIRs

e |4 ; . ), 2 r
|(L>_i/f s |n,],n,2,...,n,,,..,)_i/f, n = (M?*, L)
© states transform as direct products of UIRs under dS group

U(g)lmy,no,...,.np); = |gT1,GgMo, .« . s GTUL) i/ f gn = Mz,]j’ = gL
g i/ f g { g i/ f g g

© desire flat-space limit = initial/final vacuua are Hartle-Hawking state |€2)

Particles need not look “free” near .# =

I. Morrison (DAMTP) ds s

S=matrix
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The basics

Asymptotic particle states

Consider a scalar field ¢/ () with:
© Bare mass M? > 0

© mass gap (determined by the Kaillen-Lehmann weight)

Properties of initial (final) states |¢),,r satisfied as n — —oo (+00):
@ normalizable: [;/r(a|b),, | < oo
© definite particle content labelled by dS UlIRs

O ; . ) 2 r
|(L>_i/f o |n,],n,2,...,rr,,i,)_i/f, n = (M*,L)
© states transform as direct products of UIRs under dS group

g)lmy,mno, ... ) = |lgni,gnoe,....gn),/r, gn — 2 L' =gL
Ul(g i/f = |lgni, ¢ gnk)isfs g M?, L' = gI

© desire flat-space limit = initial/final vacuua are Hartle-Hawking state |$2)

Particles need not look “free” near .# =

I. Morrison (DAMTP) ds s
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The basics

Asymptotic particle states

Construction
LLSZ prescription with wave packets ,,(x)

|72‘l s T2, - - - TLk)‘i/f = ”.li)I{l% (L.T“ (’f])(LL: (Ti) JR A (I‘;r:,;‘. (,’)|52>7

. — 7 DL -1 . . E ; ,
(LL({;) = — /(124 (1) [‘J’n(‘r) v P M ('I“)} ’
. T)
Wave packets 0, (x)
Carefully chosen to ensure that ;,¢ ((le)._,;/f is free of power-law IR divergences.
e free fields: v, (x) = linearized sol’'ns to EOM
e interacting thys: ¢, (x) selects the “mass pole” part of ¢as(x)
o for heavy fields: distinction between ¢, () and KG modes can generally
be ignored

Captures logarithmic IR divergences expected in perturbation theory (which
encode perturbative renormalization, anomalies, ... ).

I. Morrison (DAMTP) dS S-matrix
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The basics

Asymptotic particle states

Orthonormalization

There exist non-vanishing contributions to particle states in same basis ,{(a|b),.

P Yy P oy

I_

Give to each initial particle state |a), an order I(a), letting the vacuum |£2)
have the lowest order. Orthonormal initial basis {|A),} may be constructed as

-

—~——

follows:

16); — Z!(A)«(l(b) |A); :(A|b);
1/2°
|:'i<b|b>1' - Z[(A)<I(b) |:{(A[b); |2J

I. Morrison (DAMTP) dS S-matrix

|1B),; = I(B) = I(b).
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The basics

The S-matrix

S-matrix:

S = {s(A|B):i}

Properties
©@ The vacuum-to-vacuum amplitude is unity (use [§2) for in/out vacuum).

© Covariance under the dS group:

F(AIB),; = (A1 |B);, = (AU Y (9)U(9) |B); = ;{gAlgB), .

@ Behavior under CPT: ©S = §— 10

© Invariance under perturbative field-redefinitions:
P(x) — ¢(x) +gO(x), |g] < 1.

©@ Unitarity: STS = 1 and SSt = 1. Equivalently, for S = 1 + 47 have the
Optical theorem

2Im 7T = Tt

I. Morrison (DAMTP) dS S-matrix
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The basics
The S-matrix

S-matrix:

S = {s(A|B)i}

Properties
©@ The vacuum-to-vacuum amplitude is unity (use [§2) for in/out vacuum).

© Covariance under the dS group:

F(AIB), = (A1 |B);, = (AU Y (9)U(9) |B); = ;{gAlgB), .

©@ Behavior under CPT: ©OS = S 10

© Invariance under perturbative field-redefinitions:
P(x) — P(x) +gO(x), |g] < 1.

©@ Unitarity: STS = 1 and SSt = 1. Equivalently, for S = 1 + 47 have the

Optical theorem

2Im 7 = 71T

I. Morrison (DAMTP) dS S-matrix
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Polology

de Sitter polology

Upshot:

S-matrix essentially captures the “mass pole part” of correlation functions
define a suitable complex mass plane
show how correlation functions are described by poles

not all poles are equal: mass poles are field-redefinition invariant, other
poles are not

I. Morrison (DAMTP) dS S-matrix
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Polology

Operator weights

1-particle states form UIRs 79 of SO(D,1):

Define operator weight:

M?(0)¢? = —o(o + D — 1),

) — 1 D — 1)2 . YA
o'::—(] 5 )+|:(] 1 ) M‘gﬁ‘z] )

R

©@ principal series:
(D — 1)2
4

o o D — 1
< M?Z2¢2, =P (7:—( > )—I—ip, peER, p=0,

© complementary series: (solid blue, negative real line)

_1)2 _
0 < M?¢? < Lﬁljfll—, = o€ (——géla—il,o),

I. Morrison (DAMTP)
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Polology
Operator weights

l1-particle states form UlIRs 79 of SO(D, 1):

Define operator weight:

M?(0)¢? = —o(oc + D — 1),

(D —1) (D —1)2
2 +[ 4

1/2
- M”ﬁz] i

R

© principal series:
(D — 1)2
4

o ot D —1
< M?Z2¢2, => (7:—( > )—i—?ﬁp, pe R, p=0,

© complementary series: (solid blue, negative real line)

132 _
()<M2£2<-(DT1), = ae<—-¥,o),

I. Morrison (DAMTP)
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Polology
Poles in the Kallen-LLehmann weight

Write as contour integral in complex o plane: [Marolf & IM, Hollands]

(bo @Dt (@2)) = [ p)Wiu(wr,z2).

J e
E.g., for a free theory in the principal seri
2u+ D — 1)

O o (1) (x2) |0) = J =Y puto+D—1)

W, (x1,x2) = Wy (x1, z2)

A3

=

O

. Morrison (DAMTP) dS S-matrix
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Polology
Poles in the Kallen-LLehmann weight

Write as contour integral in complex o plane: [Marolf & IM, Hollands]

(bo @Dt (@2)) = [ p()Wiu(wr,z2).

J
E.g., for a free theory in the principal seri
2u+ D — 1)

(0| o (1) P (z2) |0) = (t — o)+ o+ D — 1)

W;:.(:El ’ :172) = WU (:‘Ul ’ :1;2)

A3

=

O

. Morrison (DAMTP) dS S-matrix
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Polology

Poles in the Kallen-LLehmann weight

Write as contour integral in complex o plane: [Marolf & IM, Hollands]

(P (X1)Do(x2)) = / pP(p)W,,(xq1,x2).

J e

At 1-loop:

(2p + D — 1)II(p)
Ju (uw—0)2(up+o+ D —1)2

l=

o

(o (1) Por (@2)) 1OP = W, (@1, 22)

R

I. Morrison (DAMTP) dS S-matrix
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Polology
Poles in Mellin-Barnes kernels
Mellin-Barnes representations of correlation functions [Marolf & IM, Hollands]

(ng, (;‘Cl )d)U'.r (:‘[:Q)C/)U:! (563))

o))  (A2e) ™ (A5Em)™ (Agm)™
— \H12, 23, 131 p p .
V12 Vv 23 Y 3] 2 2 2

Zii = Z(x;,x;) is SO(D, 1)-invariant distance
% iy Lg 3
by deforming integration contours may obtain asymptotic expansions for
various configurations
poles in k(g12, (23, i£31) determine asympt. behavior (Z;;)7P .
asympt. expansions depend on ratios of Z;;
S-matrix ~ Res k(o1,02,03), Resk(—(o1 + D — 1),02,03), ...
NB: can use this expression to prove cluster decomposition: if all x; are taken

to large separations from all y;:

(P(z1)P(x2) ... (Y1) P(Y2) . . ) > (P(x1)P(22) .. ) (P(Y1)P(Y2) - . g -

S-matrix

I. Morrison (DAMTP)
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Polology
b ] / " ] — 2 J N ’S < I.- ’ l.
Poles in Mellin-Barnes kernels

Mellin-Barnes representations of correlation functions [Marolf & IM, Hollands]

<¢Ul (;‘El )qt)(f'.r (:‘(:2)d)0:; (553))

/ /. /. k( ) ( 1 . Z12 ) 12 ( 1 . ZZ.’} ) H23 ( l o Z.';'] );1.;“
A MH12, 23, 431 p p -
V12 VvV 23 YV M3) 2 2 2

Zii = Z(x,,x;) is SO(D, 1)-invariant distance
(V) (] i ?
by deforming integration contours may obtain asymptotic expansions for
various configurations
poles in k(g12, 23, 31) determine asympt. behavior (Z;;)P .
asympt. expansions depend on ratios of Z;;
S-matrix ~ Res k(o1,02,03), Resk(—(o1 + D — 1),02,03), ...
NI3: can use this expression to prove cluster decomposition: if all xz; are taken

to large separations from all y;:

(p(@1)Pp(x2) - .. PW1)D(Y2) - . Vg —> (B(T1)B(@2) .. Vg (PW1)D(Y2) - - D -

S-matrix

I. Morrison (DAMTP)
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Example: tree-level scattering

Tree-level scattering 1

Comnsider simple model with ¢ 2 3(x),
2
1,2,3

Ling [P = gopapap(x)

O(g) tree-level amplitude:

f('n,;;n2|n1)_gl) = 1ig /u.;";'f.',;'u,] (v)

vy

non-vanishing except possibly for
discrete configurations

Im as req. by Optical theorem
e agrees with naive use of LSZ
Plot: (amplitude/ig) as a function of
M3Z with M35 = 2, 1.25 in D = 3. S5 — ;
Amplitude peaked “off-shell” at o7 = o2 + o3, M2(0'2 + o3) € C.

I. Morrison (DAMTP) dS S-matrix
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Example: tree-level scattering

Tree-level scattering 1

Consider simple model with ¢q 2 3(x),

Mﬁz,:s
‘Cint[q—g] — !}Cf):sf/);z(/)l (:I:)

O(g) tree-level amplitude:

f<?’L3'H,2 1 )‘El) = 7q / uiuswl (y)

Y
non-vanishing except possibly for
discrete configurations
Im as req. by Optical theorem
@ agrees with naive use of LLSZ
Plot: (amplitude/ig) as a function of
M3E with M,"‘f,:; =2, 1.25 in D = 3. o T ;

Amplitude peaked “off-shell” at o7 = o2 + o3, M2(0'2 + o3) € C.

I. Morrison (DAMTP) dS S-matrix
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The Optical thm, operator weights, and particle stability

The Optical theorem

Generic operators have non-zero 1 — many amplitudes
"T'he Optical theorem
Expand STS = 1 in powers of g:

’I+

-2 Re 2 2>

|

Unstable particles in Minkowski space

@ operators acquire complex M? at 1-loop (Im M? < 0)

e complex M? exponentially damps correlation functions

e after 1PI summation, unstable particles not in asymptotic states
Do asympt. particle states exist at 1-loop?

I. Morrison (DAMTP) dS S-matrix
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The Optical thm, operator weights, and particle stability

The Optical theorem

reneric operators have non-zero 1 — many amplitudes
C \

T'he Optical theorem

Expand STS = 1 in powers of g:

’I+

-2 Re Z >

Lo

Unstable particles in Minkowski space

@ operators acquire complex M? at 1-loop (Im M? < 0)

e complex M? exponentially damps correlation functions

e after 1PI summation, unstable particles not in asymptotic states
Do asympt. particle states exist at 1-loop?

I. Morrison (DAMTP) dS S-matrix
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The Optical thm, operator weights, and particle stability

The Optical theorem

Can relate 1 — 1 scattering amplitude to self-energy Il(x) (or Killen-Lehmann
weight) [Marolf IM 2010, Bros et. al 2006, 2008, Jatkar et. al 2011].
E.g., in our example theory at @(g?)

—2Re ;(n1|n1)? = / / wl (D) u(z) (O — M2)(Oz — M32) Ao (Z) P ()
T M(e) —T(—(e+D — 1) .. L
- |: (20 + D — 1) ] (2log H + finite)
H’(O’) —+ ]_’I’(‘ (O‘ + DD — 1)) .o
. |: (20 + D — 1) :| (finite),

with spacetime integrals regulated |77|, || < H.
Coeflicients are independent of renormalization scheme.
Optical theorem requires:

< 0

|:H((7) — II(—(oc+ D — l)):|
(20 + D — 1)

How is this related to mass renormalization?”
I. Morrison (DAMTP)
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The Optical thm, operator weights, and particle stability

Renormalized operator weights

In perturbation theory, mass poles A shift (renormalized)

Ay =0+ Og?), A_:=—(c+ D — 1)+ O(g?).

Shift is encoded in on-mass values of the self-energy at @(g?):
I1(2) (o) 2 (—(oc + D — 1))
- , A_ = — -D —1) — ,
(20 + D — 1) (o ) (20 + D — 1)

1 (o), 11?2 (—(o + D — 1)) renormalization scheme-dependant, but
combination Ay + A_ is independent

A._+_ = o -

(o) — I (— (e 4 D —
Ay + A = —(D—1)+ X2() (22+(D(1*)D V) - -1

Optical theorem requires:

<0

(o) - (—(oc+ D —1))
[ (20 + D — 1) ]

I. Morrison (DAMTP)
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The Optical thm, operator weights, and particle stability

Renormalized operator weights

In perturbation theory, mass poles A shift (renormalized)

Ay =0+ O(g?), A_:=—(oc+ D —1)+ O(g?).

Shift is encoded in on-mass values of the self-energy at O(g?):
I1(2) (o) [N (—(oc + D — 1))
- , A_ = — -D —1) — :
(200 + D — 1) (o ) (20 + D — 1)

112 (o), 112 (—(o + D — 1)) renormalization scheme-dependant, but
combination A4 + A_ is independent

A._+_ = o -

(o) — I (— (e 4 D —
Ay + A = —(D—1)+ TX7() (2S+(D( 1*) D=1) - _(p-—1).

Optical theorem requires:

<0

(o) — 112 (—(oc + D — 1))
[ (20 + D — 1) ]

I. Morrison (DAMTP)
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The Optical thm, operator weights, and particle stability
Stability of asymptotic particle states
Renormalization of weights (consequence of unitarity

I (¢) — 12 (—(c + D — 1))
(20 + D — 1)

AP 4 a® |

}5(), = A_+A, < —(D—1).

al series field
renormalized A4+ do not correspond to
UlIRs
renormalized masses (self-energy) have
imaginary part

e “unstable” asymptotic particle states

Complementary series fields:

@ renormalized A remains in
complementary series

@ renormalized mass M?(A,) real

e “stable” asymptotic particle states

I. Morrison (DAMTP)
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The Optical thm, operator weights, and particle stability

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity

I (¢) — 12 (—(c + D — 1))
(20 + D — 1)

AP 4 a® |

| <o

incipal 1eld

renormalized A4+ do not correspond to

UIRs
renormalized masses (self-energy) have
imaginary part

e “unstable” asymptotic particle states

Complementary series fields:

@ renormalized A remains in
complementary series

@ renormalized mass M?(A,) real

e “stable” asymptotic particle states

I. Morrison (DAMTP) dS S-matrix
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The Optical thm, operator weights, and particle stability
Stability of asymptotic particle states
Renormalization of weights (consequence of unitarity

I (¢) — 1 (—(c + D — 1))
(20 + D — 1)

AP 4 a® |

pal CI 1¢ neld

e renormalized A4 do not correspond to

UIRs
e renormalized masses (self-energy) have
imaginary part

e “unstable” asymptotic particle states

Complementary series fields:

@ renormalized A remains in
complementary series

@ renormalized mass M?(A,) real

e “stable” asymptotic particle states

I. Morrison (DAMTP) dS S-matrix
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The Optical thm, operator weights, and particle stability

Stability of asymptotic particle states

Renormalization of weights (consequence of unitarity

M (g) — 12 (—(c + D — 1))
(20 + D — 1)

AP 4 a® |

| <o

1 . . 1
| (7 ( v | 1
1 { ( el

renormalized A4+ do not correspond to

UIRs
renormalized masses (self-energy) have
imaginary part

e “unstable” asymptotic particle states

Complementary series fields:

@ renormalized A remains in
complementary series

@ renormalized mass M?(A,) real

e “stable” asymptotic particle states

I. Morrison (DAMTP) dS S-matrix
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Future directions

Gravitons

Stability of perturbative quantum gravity on dS an open question
@ [e.g. Mottola, Tsamis, Woodard, Polyakov, ...]

computations are difficult

L= ]
e arguments for cosmological observables are inadequate to address stability
[~

what to compute?

The Tsamis-Woodard mechanism
@ claim: there does not exist a dS-invariant state

e at > 2 loops “IR gravitons” work to screen A

For a gravity S-matrix to exist:

e need dS-invariant O-particle state 2

o IR divergences in amplitudes should not be worse than in Minkowski
The S-matrix could provide a gauge-invariant “observable” to analyse

perturbative quantum gravity in dS.
I. Morrison (DAMTP) dS S-matrix
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Future directions

Gravitons

Algebraic approach to QIFT in CST [Fewster, Hunt, Higuchi]

Makes sharp what questions may be asked, what a quantum state is

e emphasis on *-algebra of observables A(dS)

h(f) := / ¥ (x)hu (), ¥ € C§°(dSD), Vuf*(x) =0

locality, E.O.M., etc., may be phrased in terms of observables
e W is (sufficiently regular) positive linear functional ¥ : A(dSp) —

Quantization is independent of chart and gauge.

Results (easily obtained): [IM in prep, broad agreement w/ Higuchi]
e 2 exists (on any chart), admits dS-invariant Green’s functions
@ same state as [Miao-Tsamis-Woodard (2011)] in non-covariant gauge
e (2 is a cyclic and separating vector on any open set of dSp

@ Cosmic no-hair thm: let B(A) be a boost with rapidity A

VW eHag: (BARUES(p)B 1()\)>q, —> (A(Af)R(AP))n as |[A| — oo

I. Morrison (DAMTP) dS S-matrix
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Future directions

Gravitons

Algebraic approach to QIFT in CST [Fewster, Hunt, Higuchi]
Makes sharp what questions may be asked, what a quantum state is

@ emphasis on *-algebra of observables A(dS))

h{(f) := / ¥ (x)hu (), ¥ € C§°(dSDp), Vuf*(x) =0

locality, E.O.M., etc., may be phrased in terms of observables
e W is (sufficiently regular) positive linear functional ¥ : A(dSp) —

Quantization is independent of chart and gauge.

Results (easily obtained): [IM in prep, broad agreement w/ Higuchi]
e (2 exists (on any chart), admits dS-invariant Green’s functions
@ same state as [Miao-Tsamis-Woodard (2011)] in non-covariant gauge
@ (2 is a cyclic and separating vector on any open set of dSp

@ Cosmic no-hair thm: let B(A) be a boost with rapidity A

V¥ eHag: (BANRUSSf(p)B 1()\))\], —> (h(Af)h(Ap)) as |[A| — oo

I. Morrison (DAMTP) dS S-matrix
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Future directions

Exceptional configurations

For scalar theories there exist discrete configurations for which tree-level
scattering amplitudes have logarithmic IR divergence

E o= —(D —1) — 2n, n € Ng

i
Similar IR divergence occurs for same theories in AdS:

e if combined with particular higher-derivative interactions IR divergences
cancel

these interactions precisely those that arise from dimensional reduction of
SUGRA on AdSs x S5 — AdSs

bulk fields <> single-trace boundary operators (chiral primaries)

chiral primary correlation functions protected from perturbative
renormalization (independent of gy as N‘g)

@ subtle consequence of SUSY in boundary theory
Precisely same choice of coeflicients cancels TR divergences in dS.

I. Morrison (DAMTP) dS S-matrix
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Future directions
Higher Spin fields
Interacting higher-spin theories exist for A £ 0 [Vasiliev, Fradkin]
@ contain spin-2 graviton, linearized EH gravity

e infinite tower of higher-spin fields and non-local interactions

e no Lagrangian formulation

Proposed Vasiliev dS,/C FT3 [Anninos, Hartman, Strominger, Harlow]
Vasiliev thy with A > 0 dual to free (critical) Sp(/N) CEF'T
potentially first “microscopic” dS/CFT
significant evidence for AdS Vasiliev/O(/N) CFT correspondence
remains much to interpret in dS
dS S-matrix for Vasiliev should be highly constrained!

in Minkowski: S-matrix constrained to be free [Porrati, Weinberg,
Weinberg-Witten]

in AdS: CF'T analysis of Maldacena & Zhiboedov shows boundary
correlators have few structures

e naively, Vasiliev amplitudes correspond to exceptional configurations
I. Morrison (DAMTP) dS S-matrix
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Summary

The de-Sitter S-matrix
@ a new tool for analysing dS QFT's
@ captures gauge-, field-redefinition invariant aspects of correlator
asymptotics

elucidates implications of bulk unitarity

differences between Minkowski space
asympt. states are not approximately free
in eternal dS heavy fields are resonances

only light fields enter into asymptotic states

Future directions
o EH gravity
e exceptional configurations/protected operators

@ higher-spin theories
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