






Conditional probability

Definition: Let A and B be two events with P(A) > 0.

Then the conditional probability of B given A, written P(B |A), is defined
to be

P(B |A) = P(B \ A)

P(A)
.

If P(A) = 0, P(B |A) is undefined (pointless to condition on an impossible
event)
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Bayes theorem

Since
p(B \ A) = p(A \ B),

conditional probability implies that

p(A|B)p(B) = p(B |A)p(A),

or equivalently

p(A|B) = p(B |A)
p(B)

⇥ p(A).

This is Bayes theorem

We can interpret this as a formal mechanism for learning from experience

An initial probability p(A) is changed into a conditional probability p(A|B)
when taking into account the event A occurring

October 4, 2012 2 (1–56)



Joint probability and cross-tabulations

Consider the sample:

B : like football B

c : don’t like
A: female 40 10 50
A

c : male 20 30 50
60 40 100

Suppose I pick a random person and they like football (observe B). What
is the chance I have chosen a woman (A)?

We want p(A|B), and we have p(A) = 50/100 = 0.5,
p(B |A) = 40/50 = 0.8, p(B) = 60/100 = 0.6. So

p(A|B) = p(B |A)
p(B)

⇥ p(A) =
0.8

0.6
⇥ 0.5 = 0.67

Can also read this directly o↵ the table: p(A|B) = 40/60 = 0.67
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Diagnosis: Bayes theorem in diagnostic testing

A new home HIV test is claimed to have “95% sensitivity and 95%
specificity”,

i.e. for people with HIV, 95% will get a positive test

for people without HIV, 95% will get a negative test

To be used in a population with an HIV prevalence of 1/100

If someone has a positive test result, what is the chance they actually have
HIV?
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Diagnosis: Bayes theorem in diagnostic testing

Expected status of 10000 tested individuals in population:

HIV - HIV +
Test - 9802 5 9807
Test + 198 95 193

9900 100 10000

Thus of 193 who test positive, only 95 are truly HIV positive

A ‘predictive value positive’ of only 95/193 = 49%.
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The lie detector

Some students do not hand in their assignments, and they give the
lecturer an excuse.

A lecturer claims that he can tell when someone is not telling the truth
about their excuse.

1 If the student is lying, the lecturer always can tell

2 If the student is telling the truth, there is a 20% chance the lecturer
will wrongly accuse him of lying

Suppose 10% of students do not tell the truth when they fail to hand in
their assignments

If the lecturer accuses a student of lying, what is the chance he is right?
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What is wrong with maximum likelihood?

Problems can occur

With small samples (asymptotics don’t work, background evidence
ignored)

When the observation is on the boundary of the parameter space

When the parameter defines the parameter space

When there are many parameters
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The unlucky football team

Assume the number of goals a team scores has a Poisson distribution with
mean ✓

In the first 4 matches they do not score at all, i.e. x1 = x2 = x3 = x4 = 0

The likelihood is e�4✓

The MLE ✓̂ is 0

So we predict they will never, ever score!
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How many buses

Busses in a city have a number (not the route number) consecutively
1, 2, 3, ,N

The first bus we see is numbered 10

How many buses are there?

October 4, 2012 9 (1–56)



How many buses

The first number X has a uniform distribution

p(X = x |N) =
1

N

, x = 1, 2, 3, 4, ..,N

So having observed x = 10, the likelihood is / 1
N , N > 10

This is maximised at N̂ = 10

So we would estimate there are 10 busses.

Does not seem reasonable.
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Bayesian inference

Treat ✓ as random variable

Express uncertainty about a parameter ✓ as a probability distribution

The probability distribution expresses our ignorance, not randomness

Epistemic uncertainty, rather than aleatory uncertainty

This is very di↵erent from what we have been learning!

No P-values, no confidence intervals!
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Thomas Bayes

In 1763, Reverend Thomas Bayes of Tunbridge Wells invented the
following ’thought experiment’

Imagine someone throws a ball at random on a Pool Table, and draws a
line across then table where it lands.

Then he throws n more balls, and tells you the number y that lie to the
left of the line.

Where is the line?

In modern language, given y ⇠ Binomial(✓, n), what is the probability
distribution for ✓?

Animation
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Bayes / Laplace

If something has happened y out of n times, then the probability it will
happen next time is

p =
y + 1

n + 2
.

What if something has happened n out of n times?

The probability it will happen next time is

p =
n + 1

n + 2

After n = 0 events, p = 1/2

After n = 1 events, p = 2/3

After n = 1, 000, 000, 000 events, p = 1, 000, 000, 001/1, 000, 000, 002

Never reaches 1!
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Bayesian inference

The Bayesian analyst (continuous parameters) needs to

explicitly state a reasonable opinion concerning the plausibility of
di↵erent values of the parameters excluding the evidence from the
study (the prior distribution)

provide the support for di↵erent values of the parameter e↵ect based
solely on data from the study (the likelihood),

weight the likelihood from the study with the relative plausibilities
defined by the prior distribution to produce

a final opinion about the parameters (the posterior distribution)

p(✓ | y) = p(y | ✓) p(✓)
p(y)

/ p(y | ✓) p(✓)

when considering p(y | ✓) as a function of ✓: ie the likelihood.

posterior / likelihood⇥ prior.
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Putting probabilities on parameters

What is a reasonable form for a prior distribution for a proportion?

✓ ⇠ Beta[a, b] represents a beta distribution with properties:

p(✓|a, b) =
�(a+ b)

�(a)�(b)
✓a�1 (1� ✓)b�1; ✓ 2 (0, 1)

E(✓|a, b) =
a

a+ b

V(✓|a, b) =
ab

(a+ b)2(a+ b + 1)
:

)
Z 1

0
✓a�1 (1� ✓)b�1

d✓ =
�(a)�(b)

�(a+ b)
.

(�(a) = (a� 1)! if a integer; �(1) = 0! = 1)
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Beta distributions
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Putting probabilities on parameters

Example:

Suppose a hospital is considering a new high-risk operation

Experience in other hospitals indicate that the risk ✓ for each patient
is expected to be around 10%

it would be fairly surprising (all else being equal) to be less than 3%
or more than 20%

October 4, 2012 17 (1–56)



Surgical example

A Beta[3,27] proportional to ✓2(1� ✓)26

Mean = 3/(3+27) = 0.1, standard deviation 0.054, variance 0.003,
median 0.091, mode 0.071.
An equi-tailed 90% interval is (0.03, 0.20) which has width 0.17, but
a narrower ’Highest posterior density’ interval is (0.02, 0.18) with
width 0.16
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Inference on proportions using a continuous prior

Suppose we observe y positive responses out of n Bernoulli trials.

Binomial sampling distribution:

p(y |✓, n) =
✓

n

y

◆
✓y (1� ✓)n�y / ✓y (1� ✓)n�y

Assume a Beta(a, b) prior distribution for ✓

p(✓) / ✓a�1(1� ✓)b�1

Combining this with the binomial likelihood gives a posterior distribution

p(✓ | y , n) / p(y | ✓, n)p(✓)

/ ✓y (1� ✓)n�y✓a�1(1� ✓)b�1

= ✓y+a�1(1� ✓)n�y+b�1

/ Beta(y + a, n � y + b)
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Inference on proportions using a continuous prior

E(✓|y , n) = (y + a)/(n + a+ b) = w

a

a+ b

+ (1� w)
y

n

where w = (a+ b)/(a+ b + n)

a weighted average of the prior mean and y/n, the standard
maximum-likelihood estimator,

the weight w reflects the relative contribution of the prior ‘e↵ective sample
size’ a+ b.

Hence the prior parameters a and b can be interpreted as equivalent to
observing a events in a+ b trials
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Surgery (continued)

Suppose we now operate on n = 10 patients and observe y = 0 deaths.
What is the current posterior distribution?

We used a Beta(3, 27) as a prior distribution for a mortality rate.

Plugging in the relevant values of a = 3, b = 27, y = 0 and n = 10

we obtain a posterior distribution for the mortality rate ✓ of p(✓|y , n) =
Beta(3, 37)

Can use First Bayes : www.firstbayes.co.uk/

Written by Tony O’Hagan: not nice to install but fun to use!
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Surgery (continued)
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Prior distributions

The prior distribution should reflect ’external evidence’ available before the
data

e.g. last year’s performance for a football team

If necessary, could be based on judgement

’Subjective probability distribution’
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Subjective probability distributions

Draw a table with three columns
Uncertain quantity 25% lower bound 75% upper bound

1
2
3
3
4
5
6
7
8
9
10

For each question, give a range reflecting your uncertainty

This is a 50% interval (75% - 25%), so you should be 50:50 whether the
true answer lies inside or outside the interval
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Subjective probability distributions

Questions

1 What is the distance from Capetown to Cairo (straight line) in km?

2 What is the population of South Africa (2012 estimated)?

3 In what year was the railway to Muizenberg opened?

4 How many countries are there in Africa (member states in UN)?

5 How much is the Cape Times newspaper (rand)?

6 What percentage of the South African population is ’white’
(Wikipedia)?

7 What is the average distance from the Earth to the moon (km)?

8 How many views has Shakira’s Waka Waka 2010 World Cup video
had on Youtube?

9 What is the height of Table Mountain above sea level (metres)?

10 What is the distance from Capetown to Cairo by road (Google maps)
in km?
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