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AIMS Online Courses

The mission of the AIMS academic programme is to provide an excellent, advanced education in
the mathematical sciences to talented African students in order to develop independent thinkers,
researchers and problem solvers who will contribute to Africa's scientific development.

Teaching at AIMS is based on the principle of learning and understanding, rather than simply
listening and writing, during classes, and on creating an atmosphere of increasing our knowledge
through class discussions, through small group discussions, by formulating conjectures

and assessing the evidence for them, and sometimes going down wrong paths and learning from
the mistakes that led us there. The essential features of the classes at AIMS are that, in contrast
to formal lecture courses, they are highly interactive, where the students engage with the lecturer
throughout the class time, are encouraged to learn together in a journey of questioning and
discovery, and where lecturers respond to the needs of the class rather than to a pre-determined
syllabus. AIMS teaching philosophy is to promote critical and creative thinking, to experience

the excitement of leaming from true understanding, and to avoid rote learning directed only
towards assessment.

Leading international and local experts offer the courses at AIMS, which are three weeks long
(each module consisting of 30 hrs) and collectively form the coursework for a structured masters
degree which also includes a research component. The advertised content is a guide, and the
lecturers are encouraged, and indeed expected, to adapt daily to meet the current needs of the
students.

Over the past ten years AIMS has achieved international recognition for this innovative and flexible
approach. It has been the starting point for the remarkable success of our students and alumni and
we all benefit from the support of many who have "witnessed the AIMS-magic and keep coming
back for more."

This year we have decided to film selected courses and to make them available to a larger
audience as an online facility. African universities may choose to use these courses to supplement
and enhance their own postgraduate programmes. We believe this would be best achieved
through engagement with AIMS. One way for this to happen, would be for AIMS to suggest or
nominate a specialist tutor to spend time at the university, guiding students who follow the online
programme. Where possible expert lecturers who have taught at AIMS may visit the university to
give a short introduction to the course. We would welcome this interaction as well as the
contribution our online courses will make to the growth of the mathematical sciences ecosystem in
Africa.

Barry Green
Director & Professor of Mathematics

African Institute for Mathematical Sciences
January 2013

AIMS Council
Ramesh Bharuthram (University of the Western Cape) Hendrik Geyer (Stellenbosch University) Barry Green (AIMS) Grae Worster ((ambridge University) Daya Reddy (University of Cape Town)
Graham Richards (Oxford University) Stephané Ouvry {Université de Paris Sud X1) Tsou Sheung Tsun {Oxford University) Neil Turok (Perimeter Institute)
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Conditional probability

Definition: Let A and B be two events with P(A) > 0.
Then the conditional probability of B given A, written P(B|A), is defined

to be
P(BNA)

P(A)
If P(A) =0, P(BJ|A) is undefined (pointless to condition on an impossible
event)

P(B|A) =
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Bayes theorem

Since
p(BNA) = p(AN B),

conditional probability implies that
pP(A|B)p(B) = p(B|A)p(A),
or equivalently

p(BJA)

p(AIB) = o(B)

x p(A).

This is Bayes theorem
We can interpret this as a formal mechanism for learning from experience

An initial probability p(A) is changed into a conditional probability p(A|B)
when taking into account the event A occurring
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Joint probability and cross-tabulations

Consider the sample:

B: like football B€: don't like
A: female 40 10 50
A€ male 20 30 50
60 40 100

Suppose | pick a random person and they like football (observe B). What
is the chance | have chosen a woman (A)?

We want p(A|B), and we have p(A) = 50/100 = 0.5,

p(BJA) = 40/50 = 0.8, p(B) = 60/100 = 0.6. So

p(B|A) ~ 08 B
o(B) x p(A) = — x 0.5 =0.67

AlB) =
p(A|B) 06
Can also read this directly off the table: p(A|B) =40/60 = 0.67
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Diagnosis: Bayes theorem in diagnostic testing

A new home HIV test is claimed to have “95% sensitivity and 95%
specificity”,

i.e. for people with HIV, 95% will get a positive test

for people without HIV, 95% will get a negative test

To be used in a population with an HIV prevalence of 1/100

If someone has a positive test result, what is the chance they actually have
HIV?
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Diagnosis: Bayes theorem in diagnostic testing

Expected status of 10000 tested individuals in population:

HIV - HIV +
Test - | 9802 5| 9807
Test + 198 95 193
9900 100 | 10000

Thus of 193 who test positive, only 95 are truly HIV positive

A ‘predictive value positive’ of only 95/193 = 49%.

October 4, 2012
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The lie detector

Some students do not hand in their assignments, and they give the
lecturer an excuse.

A lecturer claims that he can tell when someone is not telling the truth
about their excuse.
@ If the student is lying, the lecturer always can tell
@ If the student is telling the truth, there is a 20% chance the lecturer
will wrongly accuse him of lying
Suppose 10% of students do not tell the truth when they fail to hand in
their assignments

If the lecturer accuses a student of lying, what is the chance he is right?
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What is wrong with maximum likelihood?

Problems can occur
e With small samples (asymptotics don't work, background evidence
ignored)
@ When the observation is on the boundary of the parameter space
@ When the parameter defines the parameter space

@ When there are many parameters

October 4, 2012 7 (1-56)



The unlucky football team

Assume the number of goals a team scores has a Poisson distribution with
mean 6

In the first 4 matches they do not score at all, i.e. x1 =x0 =x3 =x4 =0
The likelihood is e#¢
The MLE 4 is 0

So we predict they will never, ever score!
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How many buses

Busses in a city have a number (not the route number) consecutively
L,2,3,,N
The first bus we see is numbered 10

How many buses are there?
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How many buses

The first number X has a uniform distribution

1
p(X = x|N) = N X= 1,2,3,4,...N

So having observed x = 10, the likelihood is %, N > 10
This is maximised at N = 10
So we would estimate there are 10 busses.

Does not seem reasonable.
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Bayesian inference

Treat 6 as random variable

Express uncertainty about a parameter 6 as a probability distribution
The probability distribution expresses our ignorance, not randomness
Epistemic uncertainty, rather than aleatory uncertainty

This is very different from what we have been learning!

No P-values, no confidence intervals!
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Thomas Bayes

In 1763, Reverend Thomas Bayes of Tunbridge Wells invented the
following 'thought experiment’

Imagine someone throws a ball at random on a Pool Table, and draws a
line across then table where it lands.

Then he throws n more balls, and tells you the number y that lie to the
left of the line.

Where is the line?

In modern language, given y ~ Binomial(6, n), what is the probability
distribution for 67

Animation
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Bayes / Laplace

If something has happened y out of n times, then the probability it will
happen next time is

_y+1

Con+2

What if something has happened n out of n times?
The probability it will happen next time is

n+1

n+2

After n =0 events, p =1/2

After n =1 events, p =2/3

After n = 1,000,000, 000 events, p = 1,000,000, 001,/1, 000, 000, 002
Never reaches 1!
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Bayesian inference

The Bayesian analyst (continuous parameters) needs to

@ explicitly state a reasonable opinion concerning the plausibility of
different values of the parameters excluding the evidence from the
study (the prior distribution)

@ provide the support for different values of the parameter effect based
solely on data from the study (the likelihood),

@ weight the likelihood from the study with the relative plausibilities
defined by the prior distribution to produce

@ a final opinion about the parameters (the posterior distribution)
ply | 9) p(6)
plo | y) = 2L 2B
@1y) p(y)
when considering p(y | #) as a function of 6: ie the likelihood.

o p(y | 0) p(0)

posterior o likelihood X prior.
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Putting probabilities on parameters

What is a reasonable form for a prior distribution for a proportion?

0 ~ Betala, b| represents a beta distribution with properties:

M(a+ b)

p(fla,b) = WQH (1-6)>"1 6e€(0,1)
E(f]a,b) = ajb
ab
VOIa.b) = e rbrn)
:>/ 92— 1 b 14 — Il:g)i(:;'

(F(@) =(a—1)!if ainteger; [(1) =0! =1)
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Beta distributions

(a) a=0.5, b=0.5 (b) a=1, b=1 (c) a=5, b=1
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Putting probabilities on parameters

Example:
@ Suppose a hospital is considering a new high-risk operation
@ Experience in other hospitals indicate that the risk 6 for each patient
is expected to be around 10%
@ it would be fairly surprising (all else being equal) to be less than 3%
or more than 20%

October 4, 2012 17 (1-56)



Surgical example

Mortality risk (%)

e A Beta[3,27] proportional to (1 — §)?°
@ Mean = 3/(3+27) = 0.1, standard deviation 0.054, variance 0.003,

median 0.091, mode 0.071.
@ An equi-tailed 90% interval is (0.03, 0.20) which has width 0.17, but

a narrower 'Highest posterior density’ interval is (0.02, 0.18) with
width 0.16
18 (1-56)
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Inference on proportions using a continuous prior

Suppose we observe y positive responses out of n Bernoulli trials.

Binomial sampling distribution:
p(yl|0,n) = < ; > ¥(1-0)""Y x #7(1—0)""
Assume a Beta(a, b) prior distribution for 6
p(0) o< 07711 — 6)*7
Combining this with the binomial likelihood gives a posterior distribution
p(0 |y, n) o< p(y|86,n)p(0)
x 0¥(1—0)"Ye*"(1—g)?
gr+a-l(1 — gyn-y+b-1

x Beta(y+a, n—y+b)
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Inference on proportions using a continuous prior

E(0ly,n)=(y+a)/(n+a+b)= Wﬁab_Fa_ W)%

where w = (a+ b)/(a+ b+ n)

a weighted average of the prior mean and y/n, the standard
maximum-likelihood estimator,

the weight w reflects the relative contribution of the prior ‘effective sample
size’ a+ b.

Hence the prior parameters a and b can be interpreted as equivalent to
observing a events in a + b trials

October 4, 2012 20 (1-56)



Surgery (continued)

Suppose we now operate on n = 10 patients and observe y = 0 deaths.
What is the current posterior distribution?

We used a Beta(3,27) as a prior distribution for a mortality rate.
Plugging in the relevant values of a=3, b=27, y =0and n=10

we obtain a posterior distribution for the mortality rate € of p(f|y, n) =
Beta(3, 37)

Can use First Bayes : wuw.firstbayes.co.uk/

Written by Tony O'Hagan: not nice to install but fun to use!
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Surgery (continued)

prior Zikelihood Bostertor

& E:\bugsbooklJsm,
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Prior distributions

The prior distribution should reflect 'external evidence' available before the
data

e.g. last year's performance for a football team
If necessary, could be based on judgement

'Subjective probability distribution’

October 4, 2012 23 (1-56)



Subjective probability distributions

Draw a table with three columns

Uncertain quantity

25% lower bound

75% upper bound

1

OO NO OB~ WWwWwN

O

10

For each question, give a range reflecting your uncertainty

This is a 50% interval (75% - 25%), so you should be 50:50 whether the
true answer lies inside or outside the interval

October 4, 2012
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Subjective probability distributions

Questions

@ What is the distance from Capetown to Cairo (straight line) in km?

@ What is the population of South Africa (2012 estimated)?

© In what year was the railway to Muizenberg opened?

© How many countries are there in Africa (member states in UN)?

© How much is the Cape Times newspaper (rand)?

© What percentage of the South African population is 'white’
(Wikipedia)?

@ What is the average distance from the Earth to the moon (km)?

© How many views has Shakira's Waka Waka 2010 World Cup video
had on Youtube?

@ What is the height of Table Mountain above sea level (metres)?

@ What is the distance from Capetown to Cairo by road (Google maps)
in km?

October 4, 2012 25 (1-56)
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