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Abstract: <span>In my talk, | will discuss various families of quantum
low-density parity check

(LDPC) codes and their fault tolerance. Such codes yield finite code rates and
at the sametime

simplify error correction and encoding due to low-weight stabilizer
generators. As an example, alarge family of

& nbsp;

hypergraph-product codes is considered. Of particular interest are families of
guantum LDPC codes with finite rate and distance scaling as square root of
blocklength since this represents the best known exponent in

distance scaling, even for codes of dimensionality 1. In relation to such
codes, we show that any family of LDPC codes, quantum or classical,

where distance scales as a positive power of the block length, $d

\propto n™\alpha$, $\alpha>0%$ ($\a pha<1$ for "bad"

codes), can correct all errorswith certainty if the

error rate per qubit is sufficiently small. We specificaly

anayze the case of LDPC version of the quantum

hypergraph-product codes recently suggested by Tillich and Z\'emor. These codes are a
finite-rate generalization of the toric codes, and, for sufficiently

large quantum computers, offer an advantage over the toric codes.</span>
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OUTLINE

Introduction: classical and quantum LDPC codes

Tanner graph representation of LDPC codes

LDPC code construction from two binary matrices
» Toric codes and hypergraph product codes

* Examples of quantum LDPC (generalized toric) codes
with finite rate

Generalizations of hypergraph product codes
corresponding to rotation of boundary conditions (e.g.
rotated toric code and checker board code)

Asymptotic lower bound on LDPC quantum codes

Fault tolerance of LDPC codes and relation between error
correction on a Tanner graph representation
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THE SIMPLEST LDPC CODE-TORIC CODE

1. Stabilizer generators commute with line like logical
operators.

2. Stabilizer generators commute with each other.
3. Combinations of stabilizer generators form cycles
that are topologically differentfrom the logical

operators.

4. Logical operators can be deformed by stabilizer
generators.

Two stabilizergenerators and two pairs of anticommuting logical
operatorsof a [[450; 2; 15]] toric code (red and blue, respectively, X
and Z operators, green - overlap of Z and X operators, dark and light
gray - dual sublattices of physical qubits). Other stabilizergenerators
are obtained by shifts over the same sublattice with periodic
boundaries.

E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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WHY SUCH CODES ARE INTERESTING?
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Press, 2002), pp. 287-320.

A. G. Fowler, M. Mariantoni, J. M. Martinis, A. N. Cleland,
arXiv:1208.0928

1. Overhead of ancillary qubitsis small.
2. Thresholdis very high p=0.57%.

3. Allwe need to dois to measure ancillasand keep track of errors.
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CLASSICAL LDPC CODES

Classical LDPC codes are exceptional for error correction,
e.g. Gallager codes, IRE Trans. Info. Theory IT-8: 21-28 (1962).
Number of 1s in every row (=r), and in every

column (=c) for the parity check matrix is fixed.
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H2 and H3 are formed from H1 by column 0000
bermutations, TS s I E T
H1 0100
e.g.c= 4, r =3 for [20,7,6] code > [52] 0010
0000
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STABILIZER CODES: BINARY REPRESENTATION

To this end, we want to construct binary quantum stabilizer codes with low weight
stabilizergenerators. We consider Pauligroup 22, = i"{I. X.Y. Z}*", m =0,....3

An [[n, k,d]] stabilizer code Q is a 2F-dimensional subspace of the Hilbert
space Hy " stabilized by an Abelian stabilizer group . = (G1,...,G,—k),
—-1¢ .7, Q=A{|Y):S|Y)=|¢),VS € ¥}

» M . - . ! - -
Pauli operators are mapped to two binary strings, v,u € {0,1}", U =" XVZ" — (v,u),
where XV = X{" XJ?.. X" and Z% = Z" Z5*...Z'". A product of two quantum operators
corresponds to a sum (mod 2) of the corresponding pairs (v;.u;).

In this representation, a stabilizercode is represented by parity check matrix written in binary
form for X and Z Pauli operators so that, e.g. XIYZYI=-(XIXIXI)x(11ZZZI) -> (101010)|(001110).

AX Az
11 000/001O01
H= 01100100 1 0 |Exampleofa parity check matrix H of
"l 001100100 1/|I[[51,3]]codewritteninX-Z form.
0001110100

1o AT T A T =0 Necessary and sufficient condition for existence of stabilizer
CXLZ T EZEX T code with stabilizercommuting operators corresponding to H.

(z|z) ® (|z)T = 22'T + 22’7 Roworthogonality with respect to symplectic product.

-
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STABILIZER CODES: ERROR CORRECTION

1. Measure stabilizergeneratorsto obtain syndrome of error E € [] (. ET

2. Correct error according to syndrome.

* The correctable error set Ec is defined by: * The detectable error set Ed is defined by:
If E; and E, are in Ec, then one of the If Eis in Ed, then one of the two
two conditions hold: conditions hold:

1. I_', FE, ¢ H .7 distinct error syndromes 1. F ¢ H | \.¥ distinct error syndromes

2. 1:’.;1:'1 € .4 degenerate code 2. K e/ degenerate code
11000/00101 Ex Eg 0
01100/10010 ‘ AT 1

Syndromeof (I//1YI)error: | 6 01 1 000100 1 > (00010/00010)* = 1
0O0OO0O11/1 0100 1

The distance of a quantum stabilizercode is defined as the minimal weight of
all detectable errors, i.e. Hamming weight of 'y VV E'»
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SYNDROME MEASUREMENTS AND TANNER GRAPH

Firstround. X
L. Qubits
X Synd'romes |
Second round. Qubits

Z Syndromes

Two round syndrome measurement for [[50,2,5]] toric code.

* Hardware wise LDPC codes can be realized on superconducting qubits
A. De, L.P. Pryadko, arXiv:1209.2764.

* Efficient decoders have to be found as believe propagation decoders do not work
due to loops.
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LDPCCODEIS A LOCALCODE ON SOME GRAPH

Qubit connectivity matrix:

H=(Ax, Az)

G=AxVAz

R - row weight,

C-column weight

Vertexdegree: z = (R — 1)C
For syndrome connectivity:

2= (C —1)R

We need zs rounds of measurements instead
of two for toric code, zs does not depend on
blocklength.

Graphrepresentation of [[50,2,5]] toric code.

It should be possibleto characterize the topological order associated with local on graphs
Hamitonians:

Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen, Phys. Rev. B 82, 155138 (2010)
S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett. 97, 050401 (2006)
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QUANTUMLDPC CODES

Advantages:

= Easyerror correction for such codes: simple quantum measurements, easy
classical processing, and parallelism.

. \
Such codes allow fault tolerant error correction. Kovalev & Pryadko, arXiv:1208.2317
Disadvantages:

= Hardto achieve good code parameters compared to non-LDPC codes.

= There are no or very few known bounds for quantum LDPC codes so explicit
constructions are important.
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QUANTUM CSS CODES FROM (HYPER)GRAPHS

Parity check matrix for a .
1 — ( Gx| 0

Calderbank-Shor-Steane (CSS) code: v
0 |Gz

) . Gy (;'; — () ¢mm commutativity

SURFACEQUANTUM CODES:
Qubits correspond to edges

of a graph, rows of Gx are vertices,
rows of Gz are faces.

In such construction each column
hasonly 2 entries.

Advantages:infinite family with unbounded distance, small weight and locality of
measurements, fault tolerance; A. Y. Kitaev, Ann. Phys., vol. 303, p. 2, (2003); H. Bombin and
M. A. Martin-Delgado, Phys. Rev. A 76, 012305 (2007).

Cangeneralize to arbitrary graphs but not clear how to find the dual graph!

When (hyper)graphis a product of two (hyper)graphs we can identify generalized
faces and find a dual object which is a hypergraph -> HYPERGRAPHPRODUCT CODES

Tillich & Zemor, in Information Theory, (2009), arxiv:0903.0566.

Example: Toric code represents
_ =
the graph-product construction x ]

Page 13/37



QUANTUM CODE FROM TWO CLASSICAL

Stabilizercode is constructed from two classical ng

1
codes with parity check matrices (may have 2 I’l [ 'y i"l [
linearly dependent rows/columns): 1 2

Constructed code has parameters [[N,K,D]]
N = nqire + nory
K 2;\'.11[-'2 - /\'1 ('N.g - 'I'-_g) - A.’Q(H.l — ‘I'])

D > Min[dist(H,), dist(Hz), dist(H] ), dist(H3 )]
J.P. Tillich, G. Zemor, in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 799 (2009).

Algebraic form for hypergraph-product codes!

I — Gyl 0 Gx = (Fy & ’}11 ?fﬁ‘ ® E1), Gx and Gz correspond to
0 GZ Gy = ('H:; R E, Ey Hl; ). two dual hypergraphs.
E - unit matrix and & — Kronecker product. Commutativity follows from:

(A B)(C® D)= AC ® BD

Kovalev & Pryadko, IEEE International Symposium on Information Theory Proceedings
(ISIT 2012) pp. 348 — 352, arXiv:1202.0928v3.
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LDPC HYPERGRAPH-PRODUCT CODES

Example:Suppose we take LDPC code [n,k,d] with full rank matrix | ,'H_{ =H |¢N —k
then parameters of the quantum code are: [[(n — k)? + n?, Kk, d|| (ﬁ'}
Tillich & Zemor, in Information Theory, (2009), arxiv:0903.0566.

. A . i T
Example:If 7, is a (nxn) circulant matrix of a LDPC cyclic code ([n,k,d]) and H5 = H
then parameters of the corresponding quantumcodes are [[2n72, 2k"2, d]],
Kovalev & Pryadko, ISIT 2012 pp. 348 — 352, arXiv:1202.0928v3 (2012).

b

;

%—I—I - -
- - -

g SRR

Left: Two stabilizer generators (marked by arrows) and two pairs of anticommuting logical operators (marked by
lines) of a [[450,98.5]] code formed by circulant matrices H, Ho corresponding to coeflicients of a polynomial
h(x) | + o+ 2* + 27 (red -~ X operators, blue -~ Z operators, green — overlap of Z and X operators, dark and
light gray - dual sublattices of physical qubits). All other stabilizer generators are obtained by shifts over the same
sublattice with periodic boundaries. In the shaded region, each gray square uniquely corresponds to a different logical

operator, thus 98 encoded logical qubits. Right: same for the toric code [[450, 2. 15]].
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ROTATEDTORIC CODES

6) X A
@ " ® A X
L z )
® = [
— - »
Even case!

Toriccode can be broken into two rotated toric codes by the procedure on the right; rotated
by 45 degrees codes have the same distance but twice smaller blocklength.
Examples:[[9,1,3]], [[25,1,5]], [[16,2,4]] and [[36,2,6]].

H. Bombin and M. A. Martin-Delgado, Phys.

7 1":’),’ N Rewv. A, vol. 76, no. 1, p.012305, 2007
ZAaX 1-°"2 A3 X4 \\'. When the translation vectors are (a,b) and
—._T_"(_._ — £ - — =
L-15 % N 10 11 12 13N (b,-a) (orthogonal), then n=a”r2+bA2, d=|a|+|b]|,
44—~ <%+t |andk=lifdisoddor2ifdiseven.
_._-\_U_?;"._ —.—.‘-..\—."—l;‘.éi—.— The example is for a=t+1, b=t, with t=1,2.
\ ,1’ \ ',’
——%——4—o— ——o—»—o—o—o— \Wen-plaquette model, Su-Peng Kou, M. Levin, and

[(5,1,3]] Toric code ‘ ’ [[13,1,5]] Toric code | Xiao-Gang Wen, Phys. Rev. B 78, 155134 (2008).

A. A. Kovaley, |I. Dumer, and L. P. Pryadko, Phys. Rev. A, vol. 84, p. 062319, 2011
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ROTATED HYPERGRAPH-PRODUCT CODES:
NON-BIPARTITE CASE

Codes are constructed from two symmetric matrices: Non CSS construction!

H=(E,@H|Ho® E1), HI =H; i=1,2

Constructed code has parameters [[N,K,D]]

N = ning
LDPC constructions with asymptotically

K = dim(Cy;, )dim(Cy,) finite K/N and D¥N are possible!
D > Min[dist(H, ), dist(Hs2)]
LDPC constructions:

1. Any classical LDPC [n,k,d] code with a parity matrix P can be symmetrized:

)
’HT"“' — ( 1])1.,. {) ) . which leads to [2n-k,k,d] LDPC classical code.

2. Start from a cyclic LDPC [n,k,d] code with circulant parity check matrix generated by
palindromicpolynomial, i.e. xdeg "(”h(l/.r) = h(x), n —degh(x) iseven.
Circulant symmetric matrix of [n,k,d] code can be generated from polynomial:

}),1(.'1,') - :If[n.—(log 11.(.1.')]/2})’(511,)
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NON-BIPARTITE CODE EXAMPLES

& 4
*o

Left: a stabilizer generator of a [[289, 81, 5|] non-CSS rotated code formed by
circulant matrices ‘H; = Hs corresponding to coefficients of a polynomial

h(z) =14x+2° +2°+ 2% +2”. The division into two sublattices is impossible
and all other stabilizer generators are obtained by shifts over the light and dark
gray qubits with periodic boundaries. Right: same for the toric code [[289, 1, 17]]
and h(z) =1+ x.
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ROTATEDCODES: BIPARTITE CASE

We construct CSS codes from matrices a and b corresponding to classical codes:

Hy = ((I,(:) X ay + (1“) Rb,Hy =ax @ ((l,(:) + by & ({ll,l,)- E2)_ynit matrix of half size.

77— (G.\'

0

0 Gx = (ES/Y @ "y, HY ® E}'/?),
Gz) Gz = (HE 6 1,“/ ) ESY? @ HT).
Constructed code has parameters [[N,K,D]].

N =n1ry/2 + nory /2

K = 2k{'ky + 2kik3 — k1(ng — r2)/2 — ka(ny —11)/2

D > %.\Iin[tliﬂ(?{l).(]iﬁt(?{ ), dist(H] ), dist(H3 )]

Imprc;ves over hypergraph-product codes, i.e. half blocklength with the
same number of encoded quibits and distance.

1. For square matrices when b; = !:‘f 1/2)

2. Construction from square curculant matrices when h(z) divides 1 — z"/?

N = nino

K = 2kiko

D > Min|[dist(H, ), dist(H2), dist(H] ), dist(H2)]

LDPC constructions with asymptotically finite K/N and D¥N are possible!
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BIPARTITECODE EXAMPLES

L 4
@
*4
*e
*
*
*
i

Left: X and Z stabilizer generators for the CSS rotated code [[900, 50, 14]]
formed by circulant matrices 7—(‘11/2) = H.(_,I"“")} corresponding to coefficients of a
polynomial h(z) = 1+ z + 2° + 2°. Right: same for the toric code [[900, 2, 30]]

and h(z) =1+ .
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ASYMPTOTIC PROPERTIES

Suppose we take LDPC code [n,k,d] with full rank matrix 'Hl; ’Hé = 'Hl
and obtain the quantum hypergraph-productcode [[(n — k)? + n?, k?, d|]
Number of 1s in every row (=r), and in every column (=c) for 'Hl is fixed (or bounded).

Forsuch classical codes there exists Gilbert-Varshamov (GV) bound:

H(S) + (1 — R)p.(R,5) <0

S. Litsyn and V. Shevelev, Information Theory, IEEE Transactions on 48, 887 (2002).

pr(R,9) :111[ 1 +y)*/2 + (1 —y)k/2 ] —orlny —rH(6), R=1-c¢/r,

Yis the positive root of (1 + )1 4+ (1 —y)F~ 1 = (1 =) {(1 +y)*+(1- !!)k}-

and H(0) = —6Ind — (1 —9)In(1 — d), 6 = d/n.

Forlarge n there exist quantum LDPC codes with parameters:

—¢)? ‘a(r, c)
O”P( = ||n, — &) n. - nil.
“ I"-}—(" m\/_”

for which the parity check matrix H has number of 1s in rows boundedby R = r + ¢,
andin columnsby (' = r.
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INFINITE FAMILIES OF QUANTUM LDPC CODES

Plots below show that there is a penalty on code parameters due to LDPC structure.

D

v

(C,R)

GV bound

0.6 08

By setting r and c for classical codes we can generate families of quantum LDPC codes
with the characteristics given in the plot.
(C. R) stands for the column and row weight.
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FAULT TOLERANCE OF LDPC CODES

2D )
Probg,i < L* Z 5D 2D — 1)1[-111(1 — 1))}!/“
[>d

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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FAULT TOLERANCE OF LDPC CODES
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E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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FAULT TOLERANCE OF LDPC CODES

2D
2D -1

. 2
.. Probs.i < L Z
A AR RERERREN l=>d

(2D —1)'[4p(1 — p)]"/?

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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FAULT TOLERANCE OF LDPC CODES

2D )
Probg,i < L* Z % (2D — l)][-lp(l —1))}!/“
[>d

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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FAULT TOLERANCE OF LDPC CODES

o—~ 2D )
Prob i < [,";20 — (2D - 1)! [4p(1 — p)]V/?

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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FAULT TOLERANCE OF LDPC CODES

o— 2D :
Prob i < 1,-;20 — (2D - 1) [4p(1 — p)]V/?

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).

Pirsa: 12100130 Page 28/37



COUNTING CONNECTED REGIONS

e n s uRltS e
1 Syndfomés
Lemma 1. For any graph G with vertex degrees
o y . : .
limited by z, the site- or bond-percolation cluster size
([ distribution has exponential tail for p < pg = - l,| :

A\ )‘{ \f L. We use Cayley Tree to tackle arbitrary graph.
> X< t(8)=s8(2-2)+2
TARNY < ta(s)
Cluster-size (p)

ng (z) =, ast(x)p*(1 — p)*

| — p)t=(s)
l - !< ]_ t (
(1=p) <(1=po) (1= po)t-®

1 1 — )2 . ] — p)2—2
n&”)(.z') < u(f"')(..")—( P) =Ql,y, Oz = P P) —
. ' (1 =po)* ~ po(l —po)*—*

distribution:
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FAULT TOLERANCE OF LDPC CODES

2D "
Probg,i < L* Z 5D 2D — 1)1[-111(1 — p)}”“
[>d

E. Dennis, A. Kitaey, A. Landahl, and J. Preskill,
J. Math. Phys. 43, 4452 (2002).
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COUNTING UNCORRECTABLE CLUSTERS

Uncorrectable cluster has to have errors in more than a half of its qubits.

fED)(T) = Z ..{ ) Z ( ) m 1 p[ m-1 < Z (qu ;)f /2 1 p)f/«-'i"!

t,i>d m=[1/2] t,I1>d

< [4(1 - p)/p]**nP (x)

4(1=p)/pai < 1

1
pth(l e pth) Z 4[8(2:—1)]2

Maximumdegree of the graph: 2 = (R —1)C

R—row weight, C— column weight.
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SYNDROME ERRORS

‘ﬂ Time
1 o L o o o v rx e Syndromes i

oD oD OO D DD D om oo Qubits

® B B B B B @ @ @& Syndromes

oD oD DD DD DD DmEm @m e mQubits

= Syndromes

In the presence of syndrome errors we can still represent errors on a graph with
a different connectivity.

Maximumdegree of the graph: 2— > 2’ = (R+1)C
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COUNTING UNCORRECTABLE CLUSTERS

Uncorrectable cluster has to have errors in more than a half of its qubits.

fsh)(’l') = Z asf ) Z ( )pm 1 p)l m-t < Z a. f )f /2 (l‘_p).'/‘.Z—H

tl>d m=[1/2] tl1>d
< [4(1 - p)/p)*/*ndP ()

4(1 - p)/paZ <1

Pth(l _Pth)

Maximumdegree of the graph:

R—row weight, C— column weight.
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SYNDROME ERRORS

‘g‘ Time
(= ma pa [ve) [ [ o Lo ey Syndromes

DO oD OO D DD Do oo oo Qubits

® 8 B B B B @ @& & Syndromes

DD DD DD DD DD DoDm @ mm @mQubits

= Syndromes

In the presence of syndrome errors we can still represent errors on a graph with
a different connectivity.

Maximumdegree of the graph: 2 '=(R+1)C
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SYNDROME ERRORS

» Syndromes

o Om O Emom o Mo me mm mm Qubits

& & ® B B = @ @ @ Syndromes

(T N I BN I BRI BRI BIT I NI B I B [

= Syndromes

In the presence of syndrome errors we can still represent errors on a graph with
a different connectivity.

Maximum degree of the graph: 2— > 2’ = (R +1)C
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ASYMPTOTIC PROPERTIES AND FAULT TOLERANCE

Theorem 1. For an infinite family of (¢, r)-limited LDPC' codes, quantum or
classical, where the distance d scales as a power law at large n, asymptotically
certain recovery is possible for (qu)bit depolarizing probabilities p < pa = p1,
where 4p1(1 — p1) = pE(1 — po)**~2 < [e(z = 1)]72, p1 < 1/2, and e is the bas
of the natural logarithm. A threshold py > 0 also exists for code families with
distance scaling logarithmically at large n. By substitution z— > 2’ this

theorem also applies when syndrome errors are present.

Kovalev & Pryadko, arXiv:1208.2317 (2012).

The bound for p1is very loose and can be improved!

We are investigatingwhether error decoders for toric codes can be generalized to LDPC
codes by using our graph representation, e.g. toric code decoders in E. Dennis, A. Kitaev, A
Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002)s4 pwler, A. C. Whiteside, and
L. C. L. Hollenberg, Phys. Rew. Lett. 108, 180501 (20128" Cianci and D. Poulin,
Phys. Rev. Lett. 104, 050504 (2010)
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CONCLUSIONS

* We suggest to construct LDPC codes with locality on graphs
which generalizes local LDPC codes (e.g. surface codes).

* We establish fault-tolerance of quantum LDPC codes by
tanner graph representation of error correction.

* The explicit construction based on hypergraph-product

codes leads to lower bound on parameters of quantum
LDPC codes.

* Questions:
1) Topological order for hypergraph-product codes?
2) Design of efficient decoders for guantum LDPC codes?
3) Existence of error threshold as a phase transition?
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