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Abstract: <span>The entanglement entropy S(R) across acircle of radius R
has been invoked recently in deriving general constraints on renormalization
group flow in three-dimensional field theory.& nbsp;

At conformal fixed points, the negative of the finite part of the
entanglement entropy, which is called F, is equal to the free energy on the
round three-sphere. The F-theorem states that F decreases under RG flow.

Along the RG flow it has recently been shown that the

renormalized entanglement entropy {\cal F} (R) =-S(R) + R S(R), which is equal

to F at the fixed points, is a monotonically decreasing function.& nbsp; | will review various three-dimensional field
theories where we can calculate F on the three-sphere and compute its change

under RG flow, including free field theories, perturbative fixed points, large

N field theories with double trace deformations, gauge theories with large

numbers of flavors, and supersymmetric theories with at least {\cal N} =2

supersymmetry.& nbsp; | will also present

calculations of the renormalized entanglement entropy along the RG flow in free

massive field theory and in holographic examples.</span>

Pirsa: 12100054 Page 1/112



Constraining RG flow in (2 + 1)-dimensional field

theory

Ben Safdi

Princeton University

August 2012

Pirsa: 12100054 Page 2/112



Table of Contents

Introduction: C-theorems in QFT (Cyv CRr)
D . The Zamolodchikov c-theorem (cyv > cRr)
D . Cardy's a-theorem (auv > ar)
D - Previous attempts
D . The F-theorem (Fuyv > FIR)

Calculating F log | Z<3| on the three-sphere
Free fields
Perturbed conformal field theory
Double-trace deformations
CS gauge theories with many flavors and SUSY localization

'he renormalized EE along the RG flow
Massive free fields
A holographic example: the CGLP background

Pirsa: 12100054 Page 3/112



Pirsa: 12100054

References
This talk is based mostly on ...

=

Daniel L. Jafferis, Igor R. Klebanov, Silviu S. Pufu, B.R.S.,
Towards the F-Theorem: A/ 2 Field Theories on the
Three-Sphere, 1103.1181

lgor R. Klebanov, Silviu S. Pufu, B.R.S., F-Theorem without
Supersymmetry, 1105.4598

lgor R. Klebanov, Silviu S. Pufu, Subir Sachdev, B.R.S.,
Entanglement Entropy of 3-d Conformal Gauge Theories
with Many Flavors, 1112.5342

lgor R. Klebanov, Tatsuma Nishioka, Silviu S. Pufu, B.R.S.,
On Shape Dependence and RG Flow of Entanglement
Entropy, 1204.4160

B.R.S., Exact and Numerical Results on Entanglement
Entropy in (5+4+1)-Dimensional CFT, 1206.5025

lgor R. Klebanov, Tatsuma Nishioka, Silviu S. Pufu, B.R.S., Is
Renormalized Entanglement Entropy Stationary at RG
Fixed Points?, 1207.3360

Page 4/112



C-theorems in QFT

» The C-theorem In a D d + 1 dimensional QFT, a quantity
C is said to satisfy a C-theorem if ...
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C-theorems in QFT

» The C-theorem In a D d + 1 dimensional QFT, a quantity
C is said to satisfy a C-theorem if ...

» C decreases monotonically under RG flow
» (C is stationary at conformal fixed points

What is known?

- D (1 + 1): Zamolodchikov c-theorem.

c-theorems in higher dimensions still unproven!
are proposals ..
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» The C-theorem In a D d + 1 dimensional QFT, a quantity
C is said to satisfy a C-theorem if ...
» C decreases monotonically under RG flow
» (C is stationary at conformal fixed points

What is known?

- D (1 + 1): Zamolodchikov c-theorem.
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proposed by Komargodski and Schwimmer)

» D (2 + 1): The F-theorem (F -log | Zs3|) (recent proof
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c-theorems in higher dimensions still unproven! There
are proposals ..

» In even D, it is natural to continue Cardy’s conjecture for the
“A" anomaly coefficient (see Elvang, Freedman, Hung,
Kiermaier, Myers, Theisen for recent work in 6d)
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C-theorems in QFT

» The C-theorem In a D d + 1 dimensional QFT, a quantity
C is said to satisfy a C-theorem if ...
» C decreases monotonically under RG flow
» (C is stationary at conformal fixed points

What is known?

- D (1 + 1): Zamolodchikov c-theorem.

- D (3 + 1): Cardy’'s a-theorem (auv > air) (recent proof
proposed by Komargodski and Schwimmer)

» D (2 + 1): The F-theorem (F -log | Zs3|) (recent proof
proposed by Casini and Huerta)

c-theorems in higher dimensions still unproven! There
are proposals ..

» In even D, it is natural to continue Cardy’s conjecture for the
“A"” anomaly coefficient (see Elvang, Freedman, Hung,

Kiermaier, Myers, Theisen for recent work in 6d)
D41

» In odd D, it is natural to consider (—1) 2 Fso (see Myers,
Sinha, Klebanov, Pufu, B.R.S.)
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D, 2: The Zamolodchikov c-theorem

» Definitions
The metric: ds?
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D 2: The Zamolodchikov c-theorem

» Definitions
The metric: ds? Ldzdz . r2 = zz
Two-point functions of the stress-energy tensor T ,,,.:

F(r?) = z% (T2 (z.2) T»2(0.0))
G(r®) = 4z32(T.,(z.2)T»2(0.0))

H(r?) = 162222(T,2(z.2) T»2(0.0))
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D 2: The Zamolodchikov c-theorem

» Definitions
The metric: ds? Ldzdz . r2 = zz
Two-point functions of the stress-energy tensor T ,,,.:
F(r?) = z%( T (z.2) T»2(0.0))
G(r?) = 4z32(T,,(z.2) T»2(0.0))

H(r?) = 162222(T,2(z.2) T»2(0.0))

» The Zamolodchikov c-theorem
The C-function: C(r?) 2F(r?) — G(r?) — 2H(r?)
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D 2: The Zamolodchikov c-theorem

» Definitions
The metric: ds? Ldzdz . r2 = zz
Two-point functions of the stress-energy tensor T ,,,.:
F(r?) = z%(T.(z.2) T»2(0.0))
G(,,Z) — 4252<T22(Z'2)T22(0-0)>

H(r?) = 162222(T,2(z.2) T»2(0.0))

The Zamolodchikov c-theorem
The C-function: C(r?) 2F(r2) — G(r?) — 2H(r?)
Proof of the C-theorem:

DC(r? 3 S
f')|og(Er13) _4H(rk) ’ H(r) = 0 in unitary QFT
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» Definitions
The metric: ds? Ldzdz . r2 = zz
Two-point functions of the stress-energy tensor T ,,,.:
F(r?) = z%(T.-(z.2) T--(0.0))
G(r®) = 4z32(T,,(z.2) T»2(0.0))

H(r?) = 162222(T,2(z.2) T»2(0.0))

The Zamolodchikov c-theorem
The C-function: C(r?) 2F(r2) — G(r?) — 2H(r?)
Proof of the C-theorem:

DC(r?2 3 5
f')|Og(Er3) _4H(ru) ’ H(r) =0 in unitary QFT

Pirsa: 12100054 Page 16/112



D 2: The Zamolodchikov c-theorem

» At conformal fixed-points (H(r?) 0)
Conformal symmetry should imply (7T#,,) 0 ...
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D 2: The Zamolodchikov c-theorem

» At conformal fixed-points (H(r?) 0)
Conformal symmetry should imply (7%,,) o ...
But there is a Weyl anomaly:

C

- R .
12

CTH,0)

where c is the central charge C(r?) = ¢ and R is the
curvature scalar.
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D 2: The Zamolodchikov c-theorem

» At conformal fixed-points (H(r?) 0)
Conformal symmetry should imply (7+%,,) o ...
But there is a Weyl anomaly:

c
TH R .
< ) 12

where c is the central charge C(r?) c and R is the
curvature scalar.
We can isolate ¢ by putting the theory on the S? of radius R:

3 JOF
4 ¢) IOg R

3 ' -
_2 _ d-_X\/g<T“/r>
Js2

where F — log | Zs2]|.
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D 4. Cardy's a-theorem

» Two Weyl anomaly coefficients in D 4:

’

C a -
| W WHZPT Do _V2R
1672 HV =58 6

We can isolate a by considering the integral of (7/,,) on the
S% of radius R:

(TH )

1 OF

L [ 4
— d T,
9 4 ./54 X\/g< g ) 16 dlog R
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D 4. Cardy's a-theorem

» Two Weyl anomaly coefficients in D 4:

’

C a -
=W, o0 WHP? 2aE. =V*°R
1672 Ky e T

We can isolate a by considering the integral of (7/,,) on the
S4 of radius R:

(T")

1 OF
16 dlog R

a —1/ d4x\/g(T",,>
4 Jga

The a-theorem

Cardy proposed that a satisfies a C-theorem (auyv > ar).
This is called the a-theorem.

Recently Komargodski and Schwimmer proved the a-theorem.
They constructed a monotonic interpolating function along
RG flow between the fixed points.
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D 4. Cardy's a-theorem

The proof of the a-theorem was preceded by more than 20 years of
evidence. Much of this evidence came from studying QF T with
supersymmetry.
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D

4: Cardy's a-theorem

The proof of the a-theorem was preceded by more than 20 years of
evidence. Much of this evidence came from studying QFT with
supersymmetry.

» a-maximization
In supersymmetric QFT, a can be written as a function of the
R-charges.

At super-conformal fixed points the correct R-symmetry
locally maximizes a (Intriligator and Wecht)
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D 3: Previous attempts

» There is no conformal anomaly in D 31
The trace of the stress-energy tensor vanishes identically at
conformal fixed points: (7T/,) 0.
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» There is no conformal anomaly in D 31
The trace of the stress-energy tensor vanishes identically at
conformal fixed points: (7T7/,) 0.

» There have been many attempts at constructing a
C-theorem in D . S
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D 3: Previous attempts

» There is no conformal anomaly in D 31
The trace of the stress-energy tensor vanishes identically at
conformal fixed points: (7T/,) 0.

There have been many attempts at constructing a
C-theorem in D 3 ...

One attempt, by Appelquist, was to consider the free energy
at finite temperature:

- T(D/2)¢(D)

Fr —D/2

D
CTherm Vf) 1 T .

Pirsa: 12100054 Page 26/112



D 3: Previous attempts

» There is no conformal anomaly in D 31
The trace of the stress-energy tensor vanishes identically at
conformal fixed points: (7T/,) 0.

There have been many attempts at constructing a
C-theorem in D 3 ...

One attempt, by Appelquist, was to consider the free energy
at finite temperature:

F(D/2)C(D
FT o ( _[));3( ) CTherm V[) 1 T[) .

However, there are counter-examples. For example, Ciherm
increases under RG flow from critical O(N) model fixed point
to Goldstone phase of N — 1 free fields. (Sachdev)
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D, 3: The F-theorem

» The F-theorem
The finite part of the free energy F — log |Zg3| of CFTs on
S3 satisfies a C-theorem (Fyv > Fr). (recent proof proposed
by Casini and Huerta)
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D 3: The F-theorem

» The F-theorem

The finite part of the free energy F — log | Zg3| of CFTs on
S3 satisfies a C-theorem (Fyyv > Fr). (recent proof proposed
by Casini and Huerta)

» Some motivation

» In D dimensions
IF .
D 10 (T,
()IOg(R) _/_;;{l( X\/8< 4 >

This vanishes at conformal fixed points in odd dimensions. The
natural quantity to consider is then the finite part of F itself.
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» The F-theorem

The finite part of the free energy F — log |Zg3| of CFTs on
S3 satisfies a C-theorem (Fyyv > Fr). (recent proof proposed
by Casini and Huerta)

» Some motivation

» In D dimensions
OF :
D 10 (TH,
D log(R) _/_qn( XVE(T )

This vanishes at conformal fixed points in odd dimensions. The
natural quantity to consider is then the finite part of F itself.
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D 3: The F-theorem

» The F-theorem
The finite part of the free energy F — log |Zg3| of CFTs on

S3 satisfies a C-theorem (Fyv > Fr). (recent proof proposed
by Casini and Huerta)

» Some motivation

» In D dimensions

oOF

D[ af (T
O log(R) _/_;;n( X8« )

This vanishes at conformal fixed points in odd dimensions. The
natural quantity to consider is then the finite part of F itself.

» T here is a direct analogue of a-maximization: Jafferis’'s
F-maximization. The F-value of the IR CFT is locally
maximized by the trial R-charges.
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D 3: The F-theorem

F is related to the
entanglement entropy.

S Tr(/;AIOg f’A) .

where pa is the
reduced density matrix:
DA Tre|0)(0].
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D 3: The F-theorem

F is related to the
entanglement entropy.

S —Tr(/)A|Og/)A) -

where pa is the
reduced density matrix:
pa = Trg|0){(0].

» At conformal fixed points in D 2 + 1, when the entangling
surface is an S! at t = 0 of radius R, (Casini, Huerta, Myers)

S = —Fasa.
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D 3: The F-theorem

F is related to the
entanglement entropy.

S — Tr(/;AIog /’A) .

where pa is the

reduced density matrix:

DA Tre|0)(0].

» At conformal fixed points in D 2+ 1, when the entangling
surface is an S! at t O of radius R, (Casini, Huerta, Myers)

S — —Fgs.

» Myvyer's and Sinha proposed that the finite part of the
entanglement entropy should satisfy a C-theorem. This is

the same as the F-theorem
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D 3: The F-theorem

The entanglement entropy has a leading area law divergence. At
conformal fixed points the EE across a circle of radius R is

27 R
S(R) I8 F .

€

where ¢ is the short-distance cut-off and the constant « is
regularization dependent.

v

{0
Y
{
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D 3: The F-theorem

» Casini and Huerta's proposed proof of the F-theorem relies on
the renormalized entanglement entropy (Liu, Mezei)

F(R) S(R) + RS'(R).

They showed F'(R) < 0, with equality only coming at fixed
points where F(R) .

F
()(!(\:
(||‘le
fl(llé
(l(lig
(|{l‘§
001}

O 00
0O
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D 3: The F-theorem

» Casini and Huerta's proposed proof of the F-theorem relies on
the renormalized entanglement entropy (Liu, Mezei)

F(R) S(R) + RS'(R).

They showed F'(R) < 0, with equality only coming at fixed
points where F(R) F.

F
(l{l(\:
ll(l\é
(ln’:lé
l)uli
fl(:‘é
|)1:|.§

000
(8]

J isn’t stationary! Question: Is there a stationary c-function in
3-dimensions?
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D

3: The F-theorem

» Casini and Huerta's proposed proof of the F-theorem relies on
the renormalized entanglement entropy (Liu, Mezei)

F(R) S(R) + RS'(R).

They showed F'(R) < 0, with equality only coming at fixed
points where F(R) F.

F
(l{lht
l|(ly§
()filé
()nlé
f|1’l‘§
(l(l[é

b

0 .00
(8]

J isn’t stationary! Question: Is there a stationary c-function in
3-dimensions?

If we perturb by an operator of dimension A D O and g is the
renormalized, dimensionless coupling, then stationarity requires

C(g) Cuv _gg’g t O(gs)
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2. Calculating F on the three-sphere
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D

3: The F-theorem

» Casini and Huerta's proposed proof of the F-theorem relies on
the renormalized entanglement entropy (Liu, Mezei)

F(R) = —S(R) + RS'(R) .

They showed F'(R) < 0, with equality only coming at fixed
points where F(R) F.

Vi
““l;

001}

JF isn’t stationary! Question: Is there a stationar
3-dimensions?

If we perturb by an operator of dimension A D

renormalized, dimensionless coupling, then stationa
C(g) Cuv _ggf\" t O(gs)
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Free fields

The simplest F-value to calculate is that of the free conformal
scalar.

» F. is calculated from the partition function on the S3 of
radius a:

1 ~
Fe log | Zs| B log det [0 “Os] . O
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Free fields

The simplest F-value to calculate is that of the free conformal
scalar.

» F. is calculated from the partition function on the S3 of
radius a:

1 -~ -
F. log | Zs| 5 log det [0 “Os] . O V< 4 = .

4 5<

» The eigenvalues and degeneracies of Oa:

1 — >
F. 5 E mp log (rtg “An)

n=—0

- I?+1 !7+3
a2 2 2
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Free fields

The simplest F-value to calculate is that of the free conformal
scalar.

» F. is calculated from the partition function on the S3 of
radius a:

1 -~ -
Fe log | Zs| 5 log det [0 “Os] . O V< + =

4 5<

» The eigenvalues and degeneracies of Oa:

1 — >
F. 5 E mp log (1tg “An)

n=—0

L I?+1 !7+3
a2 2 2
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Free fields

» [T he sum is evaluated using zeta-function regularization:

3¢(3
(2 log 2 — “fz )> ~ .0638 .

Fe= 2z
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Free fields

» [T he sum is evaluated using zeta-function regularization:

3¢(3
F. (2 log 2 — “_(2)> ~ .0638.

24

» The analogous calculation for the Majorana fermion gives

1 3C(3
Fg >4 (2 log 2 + _(_, )) ~ 0.110.
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Free fields

» [T he sum is evaluated using zeta-function regularization:

3¢(3
F. (2 log 2 — “fz )> ~ .0638.

24

» [T he analogous calculation for the Majorana fermion gives

1 3¢(3
Fng >4 (2 log 2 + ("7‘(2 )> ~ 0.110.

» F for a chiral multiplet (complex scalar plus Dirac fermion):

log 2

Fchir:nl 2(Fb t FM) >
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Perturbed conformal field theory

Perturb a CFT by a slightly relevant operator such that the flow
ends at a perturbative fixed point. We will see that F decreases
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Perturbed conformal field theory

Perturb a CFT by a slightly relevant operator such that the flow
ends at a perturbative fixed point. We will see that F decreases

» The action of the perturbed QFT on S°

S = So + Mo / d*x\/gO(x) .

where Sgp is the action of the unperturbed CFT, O(x) is a
scalar operator of dimension A 3 —e€with O << e << 1. Ag is
the UV bare coupling defined at the UV scale ;0.
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Perturbed conformal field theory

Perturb a CFT by a slightly relevant operator such that the flow
ends at a perturbative fixed point. We will see that F decreases

» The action of the perturbed QFT on S°

S = So + o / d*x\/g O(x) .

where Sg is the action of the unperturbed CFT, O(x) is a

scalar operator of dimension A 3—ewith O < e << 1. Ag is
the UV bare coupling defined at the UV scale ;0.
Conformal invariance fixes the coefficients of the 2 and
3-point functions
(O(x)O(¥))o L
s(x.y)2G—0
C

(O(x)O(y)O(2))0 s(x.y)3 <s(y.z)3 s(z.x)3
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Perturbed conformal field theory

Perturb a CFT by a slightly relevant operator such that the flow
ends at a perturbative fixed point. We will see that F decreases

» The action of the perturbed QFT on S°

S = So + Mo / d*x\/gO(x) .

where Sg is the action of the unperturbed CFT, O(x) is a

scalar operator of dimension A 3 —¢€with O << e << 1. Ag is
the UV bare coupling defined at the UV scale ;0.

Conformal invariance fixes the coefficients of the 2 and
3-point functions

(O()0()o = siyaE=r
C

(O(x)O(y)O(2))0 s(x.y)3 <s(y.z)3 <s(z.x)3
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Perturbed conformal field theory

The theory flows:

: dg 2 ,
() = g, = —c& +27Cg” O(g?) .

where g A, g( o) Aoftg © << 1, and s is the RG parameter.
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Perturbed conformal field theory

The theory flows:

d S
(&) "”di - —eg +27Cg% + O(g?) .

where g A, g(pto0) Aoftg © << 1, and s is the RG parameter.
There is a perturbative fixed point if C = O:

1

: e + O(€2).
27 C : (€%)

a*
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Perturbed conformal field theory

The theory flows:

d 2 . (e
(e) = 1% = —cg +27Ca? + O(a”) .

where g = A=, g(pt0) = Aojg* << 1, and y is the RG parameter.
There is a perturbative fixed point if C = O:

1
- 27 C

+

g € + O((z).

A short calculation gives the change in free energy between
the UV and IR fixed points:
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Double-trace deformations

» Double-trace deformations

Z /Duexp (—So - ”\2" /d”x\/ccb'—’) .

where @ is a single-trace operator of dimension
A e ((D—2)/2.D/2) and Sp describes a large NV CFT.
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Double-trace deformations

» Double-trace deformations

Z /Dmexp (—50 — ”\2" /d”x\/ccb'—’) .

where @ is a single-trace operator of dimension
A e ((D—2)/2.D/2) and Sg describes a large N CFT.
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Double-trace deformations

» Double-trace deformations

Z /Duexp (—So — ’\20 /d’-)x\/ccb’—’) .

where @& is a single-trace operator of dimension
A e ((D—2)/2.D/2) and Sg describes a large N CFT.

» [ he theory flows to a fixed point where ® has dimension
D A
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Double-trace deformations

» Double-trace deformations

Z / D > exp ( So — ”\2‘) /d”x\/ccb'—’) .

where @ is a single-trace operator of dimension
A e ((D—2)/2.D/2) and Sg describes a large N CFT.

» [ he theory flows to a fixed point where ® has dimension

D — A.
The F-value is smaller at the IR fixed point. We can compute

the difference explicitly, beginning with a
Hubbard-Stratonovich transformation

z _ I Do (e [[dOxVE (Ko +0@)|),
Zo l Do exp( )’1\” l dP x \/Gn“) .
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Double-trace deformations

» Double-trace deformations

Z / Do exp ( - S0 — /\20 /d”x\/Gd>3) .

where @& is a single-trace operator of dimension
A e ((D—2)/2.D/2) and Sg describes a large N CFT.

» [ he theory flows to a fixed point where ® has dimension

D — A.
The F-value is smaller at the IR fixed point. We can compute

the difference explicitly, beginning with a
Hubbard-Stratonovich transformation

z _ JDo(exp [f dxVG (50 +o¢) ),
Zo J Do exp(sx: [ dPx VvV Go?) ‘
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Double-trace deformations

Higher point functions of ® are suppressed relative to the
two-point function by powers of 1//N:

<exp (_/.d[)X\/G(T(X)(b(X)>>() exp |:; <<_/.d“X\/GfT(X)<D(X)>2>

+O(1/N)] .
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Double-trace deformations

Higher point functions of ® are suppressed relative to the
two-point function by powers of 1//:

<exp (_/.d[)X\/G(T(X)Cb(X)>>O exp |:; <<-/.d1)X\/GfT(X)®(X)>2>

+O(1/N)] .
The Gaussian integral over the auxiliary field o(x) then gives
: 1
oFAa 2trIog(K).

K(x.y) 5(x — ¥) + Aoa? (D(x)D(¥))y -

1
VG (x)
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Double-trace deformations

» In the IR limit (a — o) we find

>

S Fa _ /A% ) dx(x — 1)(x — ;)(X — 2)cot(mx).

6 .
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Double-trace deformations

» In the IR limit (a — o) we find

>

S Fa _ /A& ) dx(x — 1)(x — ;)(x — 2)cot(mx).

6 .
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Double-trace deformations

» In the IR limit (a — o) we find

3/2

SFa - ) dx(x — 1)(x — ;)(X — 2) cot(mx) .

When A 1 this describes the critical O(/N) model, and we
find
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Double-trace deformations

» The critical O(/N) model:

2N

si) = 5 [ a*x [,-ms.,-;qs - m3&2 4 2O (qi.qs)‘] |
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Double-trace deformations

» The critical O(/N) model:

si) = 5 [ a*x [()Cti.()dﬁ - mad? 4+ 2 (¢'.¢;)~] |

» The UV fixed point: mo Ao O gives Fyv N Fs.

» The critical O(/N) model fixed point (mg 0):
Fcrit NFS*(‘(H

812
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Double-trace deformations

The critical O(N) model:

si) = 5 [ a*x [,-;qs.f-;qs - mad? 4+ 20 (qs.as)‘] |

UV fixed point: mo Ao O gives Fyv N Fs.

critical O(/N) model fixed point (mqg 0):
N F. — c(3)

8
goldstone phase (mg << 0): Fgoldstone (N — 1)Fg
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Double-trace deformations

» The critical O(/N) model:

si) = 5 [ a*x [a)cti.ncb' - mad 4 20 (qi.qs)‘] |

The UV fixed point: mo A0 O gives Fyv N Fs.

The critical O(N) model fixed point (mg 0):
Ferie = N Fs — §3

8<
The goldstone phase (mo << 0): Fgoldstone (N — 1)Fg

Under RG flow from critical O(/N) model phase to goldstone
phase:

1 3
F!—’.()l(i!-;t()no _ F(:rit — 16 <2|Og 2 — SKE_))) ~ —.0486
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CS gauge theories with many flavors

» The gauge sector Lagrangian is

. 1 5 ik 1
La = 5_5TrF? + 27Tr(F/\A—3A/\A/\A).

The gauge coupling e? has dimension of mass and flows to
infinity in the IR.
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CS gauge theories with many flavors

» The gauge sector Lagrangian is

. 1 5 ik 1
Lao= 2E‘:TrF r-zﬁTr(F/\A—BA/\AAA>.

The gauge coupling e? has dimension of mass and flows to
infinity in the IR.
» When the gauge group is U(1), the F-value is simply

Fcs = élog k. (Witten)
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CS gauge theories with many flavors

» The gauge sector Lagrangian is

. 1 5 ik 1
La= 5 _5TrF ~27Tr(F/\A—3A/\A/\A).

The gauge coupling e? has dimension of mass and flows to
infinity in the IR.
When the gauge group is U(1), the F-value is simply

Fcs i, log k. (Witten)
When the gauge theory is coupled to Np massless Dirac
fermions and Ns massless complex scalars, we find

1 N N ° kN ©
F = Np Fp + Ny(2F,) + 5 log u\/( Dé ) +<_)

O(]_ '(N[) t F:,)) .
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CS gauge theories with many flavors

» The gauge sector Lagrangian is

1 . ik 1
LA TR+ 1 (FAA—ZAAAAA) .
2e“< 27 3

The gauge coupling €2 has dimension of mass and flows to
infinity in the IR.

When the gauge group is U(1), the F-value is simply
Fcs i, log k. (Witten)

When the gauge theory is coupled to Np massless Dirac
fermions and Ns massless complex scalars, we find

1 N Ns\ © kN °
F N{)F{) t NS(QFS) t 2|Og ‘T\/( 1)8+ g) y (_)

O(1/(Np + Fs)) .
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CS gauge theories with many flavors

Schematically this is derived as follows. Consider N, Dirac
fermions -,

1 ' . S[A.]
Z VoI(G)_/ DA D e )

Write A B + do, where d *x B 0. Integrating over ¢ gives
effective action for B ...

Z ~ e Fo / DB e 3 [B]
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CS gauge theories with many flavors

Schematically this is derived as follows. Consider N, Dirac
fermions

1 ' .
b4 DA D> e >AY]
Vol(G) / =
Write A B + do, where d x B 0. Integrating over ¢’ gives
effective action for B ...

Z ~ e Fo / DB e 3 [B]
with ...

%18l = 4~ [ BAdB

_ ; / d*r\/g(r) / d*r' \/g(r')B,(r)B.(r") <J"(f)JV(’,)>i:e '
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CS gauge theories with many flavors

Schematically this is derived as follows. Consider N, Dirac
fermions

1 : .
P4 DA Dv> e >AY]
Vol(G) / ©e
Write A B + do, where d x B 0. Integrating over ¢ gives
effective action for B ...

Z ~ e Fo / DB e S [B]
with ...

Bl = 4 [ BAdB

_ ; / d*r\/g(r) / d*r' \/g(r')B,.(r)B.(r") <J"(f)f’(’,)>ﬁ:e '

a"d .- e e
w Jp. - ,
N[) lrl* (5,111 :!P"” 1

JH(r) = T (P 0n (r) = (JH(r)J” (0))E2 3.2 PL
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CS gauge theories with many flavors

Schematically this is derived as follows. Consider N, Dirac
fermions

1 y .
4 DA D> e >AY]
Vol(G) / i
Write A B + do, where d x B 0. Integrating over ¢ gives
effective action for B ...

Z ~ e Fo / DB e S [B]
with ...

Bl = 4~ [ BAdB

_ é / d*r\/g(r) / d*r' \/g(r')B,(r)B.(r") <J"(f)f’(’,)>i:e '

al.d P
> IS , ,
N[) [rl—m;u 2,,;:,,;

SH(r) = Do)V alr) = (J*(r) I (0))Ffee = g2 e
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CS gauge theories with many flavors

» The gauge sector Lagrangian is

1 . ik 1
L _TrF2+ 2T (FAA—ZAAAAA) .
2e~< 27T 3

The gauge coupling €2 has dimension of mass and flows to
infinity in the IR.

When the gauge group is U(1), the F-value is simply

Fcs _13 log k. (Witten)

When the gauge theory is coupled to Np massless Dirac
fermions and Ns massless complex scalars, we find

1 N N ° kN ©
F = Np Fp + Ns(2F,) + 5 log u\/( Dé ) +<_)

O(1/(Np + Fs)) .
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CS gauge theories with many flavors

Schematically this is derived as follows. Consider N, Dirac
fermions -

1 y .
4 DA D> e >AY]
Vol(G) / ©e
Write A B + do, where d x B 0. Integrating over ¢’ gives
effective action for B ...

Z ~ e Fo / DB e 5 [Bl
with ...

Bl = - [ BAdB

_ ; / d*r\/g(r) / d*r' \/g(r')B,(r)B.(r") <J"(f)f’(r,)>i:e '

and P
> S , ,
N[) [r|—(5;u Qr”r'

JH(F) = T (P00 (r) = (JH(r)J” (0))R2, 52 e
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Intermission: SUSY in 3-dimensions

- AN 1 SUSY multiplets in 4d become A/ 2 SUSY

multiplets in 3d under dimensional reduction.
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Intermission: SUSY in 3-dimensions

N 1 SUSY multiplets in 4d become A/ 2 SUSY
multiplets in 3d under dimensional reduction.

N 2 vector multiplet: gauge field A,,, real scalar o, complex
spinor A all in the adjoint representation.
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Intermission: SUSY in 3-dimensions

N 1 SUSY multiplets in 4d become A/ 2 SUSY

multiplets in 3d under dimensional reduction.

N 2 vector multiplet: gauge field A,,, real scalar o, complex

spinor A all in the adjoint representation.

N 2 chiral multiplet: complex scalar ¢», complex spinor .

Pirsa: 12100054 Page 80/112



Intermission: SUSY in 3-dimensions

N 1 SUSY multiplets in 4d become A = 2 SUSY

multiplets in 3d under dimensional reduction.

N 2 vector multiplet: gauge field A,,, real scalar o, complex

spinor A all in the adjoint representation.

~ . . .
N 2 chiral multiplet: complex scalar ¢, complex spinor -

N = 4 vector multiplet: A/ = 2 vector + chiral multiplet.
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Intermission: SUSY in 3-dimensions

N 1 SUSY multiplets in 4d become A/ 2 SUSY

multiplets in 3d under dimensional reduction.

N 2 vector multiplet: gauge field A,,, real scalar o, complex
spinor A all in the adjoint representation.

N 2 chiral multiplet: complex scalar ¢, complex spinor >

N = 4 vector multiplet: N/ = 2 vector + chiral multiplet.

N 4 hypermultiplet: two AN/ 2 chiral multiplets in
conjugate representations.
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S; S+ t{Q@.V}
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S, S+ t{Q@.V}

» Q is a supercharge and {Q.V} is positive definite

We get an exact result:
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S, S+ t{Q@.V}

» Q@ is a supercharge and {Q.V} is positive definite
» Zs3 is independent of t:

dZss

dt

-‘/-DX{Q.V}e Se ‘/.DXQ-(Ve ) = 0.

We get an exact result:

Pirsa: 12100054 Page 86/112



Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S, S+ t{Q.V}

» @ is a supercharge and {Q.V} is positive definite
» Zs3 is independent of t:

dZss

dt

-‘/-DX{Q.V}e St ‘/.DXQ-(Ve ) = 0.

We get an exact result:
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N = 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S; S+ t{@.V}

» @ is a supercharge and {Q.V} is positive definite
» Zs3 is independent of t:
dZ'; ’ - = N
d;’ /DX{Q.V}@ St /DXQ- (Ve )
» Take t large, localize to configurations { Q. V} 0.
» We get an exact result:

>

. 528 . 5
VS dPxE .‘\x‘s l(@.v) ”("'X}'

Zss e Ztlia,vy-o / D(6X)e
{@.V}=0 ’
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Intermission: SUSY localization on the S°3

» The goal is exactly evaluate Zgs | DXe S with N > 2
SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
» |ldea: deform the action: S; S+ t{Q@.V}

» Q@ is a supercharge and {Q.V} is positive definite
» Zs3 is independent of t:
dZ'; ) - " ~
d;’ /DX{Q.V}e Se /DXQ-(ve Sty = 0.
» Take t large, localize to configurations { Q. V} 0.

» We get an exact result:

>

- - l‘ . !5 V- .‘i“ ‘\E | 1\X 2
Zss E e ‘%’l:(.) V}=0 / D(:‘iX)e 2« V& §x” l{@.v) ”( )
{R.V}=0 -

» In practice we can take V Tr ((QA)TA) for vector multiplet
and V Tr [(Qu)Tw + T (QuT)T| for chiral multiplet.
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Example: N 4 U(l) gauge theory with many flavors

- N 4 U(1l) theory with k O and N pairs of oppositely
charged chiral multiplets.

P 1 / d A

2N ]« cosh™N (7 A)
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-

Example: AN 4 U(l) gauge theory with many flavors

- N 4 U(1l) theory with k O and N pairs of oppositely
charged chiral multiplets.

Z 1 / dA

2N ]« cosh™N (7 A)

» Expanding this at large N ...

1 Nt 1 1
F— —| N CoL _ |
og £ g2+ 3 Og( > ) AN T 2aN3
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Example: N 4 U(1l) gauge theory with many flavors

N 4 U(1l) theory with k O and N pairs of oppositely
charged chiral multiplets.

Z 1 / d A

2N ] o cosh™N (7 A)

Expanding this at large N ...

1 N7 1 1
F — | Z N | 2 ! —
o8 o8 2og<2) aN " 24N3
This first two terms match exactly our non-SUSY result from
two slides ago!

We can repeat this with Chern-Simons level (A 3) and
without a superpotential (A L) i
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-

Example: A 4 U(1l) gauge theory with many flavors

N 4 U(1l) theory with k O and N pairs of oppositely
charged chiral multiplets.

Z 1 / d A

2N ]« cosh™N (7 A)

Expanding this at large N ...

1 N7 1 1
F — Z N | 2 i — _
o8 % 2Og<2) aN " 24N3
This first two terms match exactly our non-SUSY result from
two slides ago!

We can repeat this with Chern-Simons level (A 3) and
without a superpotential (N 2) i
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2 theories

Intermission: F-maximization in N\

» The R-symmetry in A/ 2 theories is abelian. R-symmetry at
IR fixed point is not necessarily the same as R-symmetry in
the UV.
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Intermission: F-maximization in N/ 2 theories

» The R-symmetry in A/ 2 theories is abelian. R-symmetry at

IR fixed point is not necessarily the same as R-symmetry in
the UV.

R-charge can mix with other abelian symmetries:

RIXi]=ri+ > taQ.

where r; is the UV R-charge, the Q7 are the charges of the
field X; under abelian @Q°.
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Intermission: F-maximization in N 2 theories

» The R-symmetry in A/ 2 theories is abelian. R-symmetry at
IR fixed point is not necessarily the same as R-symmetry in

the UV.

R-charge can mix with other abelian symmetries:

RIXi]=ri+ > taQ.

a

where r; is the UV R-charge, the Q7 are the charges of the
field X; under abelian @°“.

Z-extremization: J¢,Zs3 is proportional to a 1-point function,
which vanishes at IR CFT (Jafferis).
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Intermission: F-maximization in N/ 2 theories

The R-symmetry in A/ 2 theories is abelian. R-symmetry at

IR fixed point is not necessarily the same as R-symmetry in
the UV.

R-charge can mix with other abelian symmetries:

RIXil=ri+> t.QF.

where r; is the UV R-charge, the Q7 are the charges of the
field X; under abelian @°.

Z-extremization: J¢,Zs3 is proportional to a 1-point function,
which vanishes at IR CFT (Jafferis).
fi-jl—

Dy

F-maximization: L~ o [{Jsdp), which is negative definite
th )

-]

(Closset et al.)
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2 CS U(1l) gauge theory with flavors

Example: N

- N 2 U(1l) at CS level kK and N pairs of oppositely charged
chiral multiplets (Q. Q).
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2 CS U(1l) gauge theory with flavors

Example: N

> N 2 U(1l) at CS level kK and N pairs of oppositely charged
chiral multiplets (Q. Q).
The R-symmetry can mix with the U(1) which rotates Q and
QR by the same phase.

-
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Example: N 2 CS U(1l) gauge theory with flavors

» N =2 U(1) at CS level kK and N pairs of oppositely charged
chiral multiplets (Q. Q).

The R-symmetry can mix with the U(1) which rotates Q and
Q by the same phase.

Partition function as a function of trial R-charge A:

. / > d\ e,-rA,\DeN(f(l A+iA)+0(1—A—iN)) _

where O.,0(z2) —7mz cot(mz).
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Example: N 2 CS U(1l) gauge theory with flavors

» N =2 U(1l) at CS level kK and N pairs of oppositely charged
chiral multiplets (Q. Q).

The R-symmetry can mix with the U(1) which rotates Q and
Q by the same phase.

-

Partition function as a function of trial R-charge A:

. / > dA\ e,-rA,\QeN(f(l A+iAN)+0(1—A ,‘,\))_

where .,0(z2) —mz cot(mz).
» A is the scaling dimension of the flavors!

(Darker colors are
increasing k from O to 4N. )
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Side-note: large N. field theories with M-theory duals

» Let's consider AdS,; < Y compactifications of M-theory
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Side-note: large N_. field theories with M-theory duals

Let's consider AdS,; < Y compactifications of M-theory
To begin, take stack of NN M2-branes at the tip of a CY cone

over Y
Zoom in close to the M2-branes (take the near-horizon limit),

. 2 2 2 2
and the metric becomes dsy, dsagys, + 4Ldsy
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Side-note: large N. field theories with M-theory duals

Let's consider AdS, < Y compactifications of M-theory

To begin, take stack of NN M2-branes at the tip of a CY cone
over Y

Zoom in close to the M2-branes (take the near-horizon limit),
and the metric becomes ds¢, dsﬁ(JrS4 - 4L2ds3

Free energy scales as N(? 2, as does the thermal free energy
(Klebanov, Tsyetlin)

2 /n 276
F = N2/*°
‘ 27 Vol(Y)

We can compute the free energy in three different ways and
they all agree!

» We can evaluate the on-shell supergravity action.
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Side-note: large N. field theories with M-theory duals

Let's consider AdS,; < Y compactifications of M-theory

To begin, take stack of NN M2-branes at the tip of a CY cone
over Y

Zoom in close to the M2-branes (take the near-horizon limit),
and the metric becomes ds¢, dsﬁda - 4L2ds3

Free energy scales as Nf 2, as does the thermal free energy
(Klebanov, Tsyetlin)

~ 276
F = N2/*?
27 Vol (Y)

We can compute the free energy in three different ways and
they all agree!

» We can evaluate the on-shell supergravity action.

» We can calculate the EE holographically (next section).

» We can, in certain cases, calculate F directly in the field
theory using localization.
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Massive free fields

Recall the renormalized entanglement entropy, which is a
monotonic interpolating function for the F-values along the RG
flow:

F(R) = —S(R) + RS'(R) .

F(mR) F (mR)
0.06]
(l(l_‘“\é
0.04|
tltl,%é
0.02|
muE

0.00t
()
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Massive free fields
Massive EE related to the anomaly in higher d (Casini, Huerta):

I < R? B

S
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Massive free fields
Massive EE related to the anomaly in higher d (Casini, Huerta):
S

S

- -

Consider entanglement entropy of massless scalar field in

4-dimensions across 2 5 >, x S! (Solodhukin):

: : 1
Sz, 3 (72‘2w / o 24%" / (k‘f”"k?fw N zk-f’wk"’)”)> hed
N "N Z_} " . }:_3

KK reduce in direction of S! of length L: 3d masses
m= (27 /L)% n".

Log term in 4d massless EE related to 1/m term in 3d
massive EE: 5({1) x [ dm Ségl)(n)).

(Huerta, BRS.) F(mR) = & (Fr+ S mhp + )

32 (mR)>
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A holographic example: the CGLP background
A few more details ...

|

>

The warped product metric looks like

ds?2 = H2/3(—dt? + dr® + r’d¢?) + HY/3ds3

dsg is parameterized by radial coordinate 7 € [0.c0) and 7
angles in Vs o.

At 7 0O an S2 shrinks to zero size

The minimal surfaces and renormalized EE for this theory looks
like ...
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Massive free fields
Massive EE related to the anomaly in higher d (Casini, Huerta):
S

S

- -

Consider entanglement entropy of massless scalar field in

4-dimensions across 2 5 >, < S! (Solodhukin):

. . 1
S}(:‘{i) D) ( 72% = / RZ T 24C(;)v / (k‘»‘?"’k"fﬂ _— 5 k‘f?ur k;’?,,) ) |Og ¢
= a Z;’ i Z;’

KK reduce in direction of S! of length L: 3d masses
m>= (27 /L)% n".

Log term in 4d massless EE related to 1/m term in 3d
massive EE: 5({1) x [ dm S;;l)(n)).

(Huerta, B.R.S.) F(mR) = 2, (”;,‘, e i )
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A holographic example: the CGLP background

» Holographic prescription for calculating the
entanglement entropy (Ryu, Takayanagi, Klebanov,
Kutasov, Murugan): find the minimal area codimension 2
hypersurface in the bulk which approaches entangling surface

at the boundary: Sy o [y = dP QrT\/Gi(”[(;; 2)

A nice example is the CGLP (Cvetic, Gibbons, Lu, Pope)
background of M-theory. Supergravity background is a warped
product of R2:1 and an eight dimensional Stenzel space

(similar to KS background)
E Z’;E ('.3 .
i=1

This background is dual to a confining gauge theory, with UV
fixed point dual to AdSs < Vg5 5.
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A holographic example: the CGLP background
A few more details ...

» The warped product metric looks like
ds? H—2/3(—dt? + dr? + r’d¢?) + HY/3ds3

The minimal surfaces and renormalized EE for this theory looks

like ...

IeT)

1.5}

1.0k

o m e e e e e e M m e m e e ——
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