Title: Constraining RG flow in three-dimensional field theory

Date: Oct 16, 2012 02:00 PM

URL: http://pirsa.org/12100054

Abstract: The entanglement entropy S(R) across a circle of radius R has been invoked recently in deriving general constraints on renormalization group flow in three-dimensional field theory. At conformal fixed points, the negative of the finite part of the entanglement entropy, which is called F, is equal to the free energy on the round three-sphere. The F-theorem states that F decreases under RG flow.

Along the RG flow it has recently been shown that the renormalized entanglement entropy $\{\claim F\}(R) = -S(R) + R S'(R)$, which is equal to F at the fixed points, is a monotonically decreasing function. I will review various three-dimensional field theories where we can calculate F on the three-sphere and compute its change under RG flow, including free field theories, perturbative fixed points, large N field theories with double trace deformations, gauge theories with large numbers of flavors, and supersymmetric theories with at least $\{\claim N\} = 2$ supersymmetry. I will also present calculations of the renormalized entanglement entropy along the RG flow in free massive field theory and in holographic examples.

Pirsa: 12100054 Page 1/112

Constraining RG flow in (2+1)-dimensional field theory

Ben Safdi

Princeton University

August 2012

Table of Contents

```
Introduction: C-theorems in QFT (C_{\rm UV} > C_{\rm IR})

D=2: The Zamolodchikov c-theorem (c_{\rm UV} > c_{\rm IR})

D=4: Cardy's a-theorem (a_{\rm UV} > a_{\rm IR})

D=3: Previous attempts

D=3: The F-theorem (F_{\rm UV} > F_{\rm IR})

Calculating F=-\log |Z_{S^3}| on the three-sphere

Free fields

Perturbed conformal field theory

Double-trace deformations

CS gauge theories with many flavors and SUSY localization

The renormalized EE along the RG flow

Massive free fields
```

A holographic example: the CGLP background

Pirsa: 12100054 Page 3/112

References

This talk is based mostly on ...

- ▶ Daniel L. Jafferis, Igor R. Klebanov, Silviu S. Pufu, B.R.S., Towards the F-Theorem: $\mathcal{N}=2$ Field Theories on the Three-Sphere, 1103.1181
- ▶ Igor R. Klebanov, Silviu S. Pufu, B.R.S., **F-Theorem without Supersymmetry**, 1105.4598
- Igor R. Klebanov, Silviu S. Pufu, Subir Sachdev, B.R.S., Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors, 1112.5342
- Igor R. Klebanov, Tatsuma Nishioka, Silviu S. Pufu, B.R.S., On Shape Dependence and RG Flow of Entanglement Entropy, 1204.4160
- ► B.R.S., Exact and Numerical Results on Entanglement Entropy in (5+1)-Dimensional CFT, 1206.5025
- ▶ Igor R. Klebanov, Tatsuma Nishioka, Silviu S. Pufu, B.R.S., Is Renormalized Entanglement Entropy Stationary at RG Fixed Points?, 1207.3360

Pirsa: 12100054 Page 4/112

▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...

C decreases monotonically under RG flow

C is stationary at conformal fixed points

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points

What is known?

D = (1+1): Zamolodchikov c-theorem

c-theorems in higher dimensions still unproven! There are proposals ..

Pirsa: 12100054 Page 6/112

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points
- ► What is known?
 - ▶ D = (1 + 1): Zamolodchikov c-theorem.

proposed by Komargodski and Schwimmer)

O (2 - 1) The Estheorem (E - 109 Zoul) (recent

D=(2+1): The F-theorem (F==-log $Z_{S^{++}}$) (receptoposed by Casini and Huerta)

c-theorems in higher dimensions still unproven! There are proposals ..

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points
- ► What is known?
 - ▶ D = (1+1): Zamolodchikov *c*-theorem.
 - ▶ D = (3 + 1): Cardy's a-theorem $(a_{UV} > a_{IR})$ (recent proof proposed by Komargodski and Schwimmer)

c-theorems in higher dimensions still unproven! There are proposals ..

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points
- What is known?
 - D = (1+1): Zamolodchikov *c*-theorem.
 - ▶ D = (3 + 1): Cardy's a-theorem $(a_{UV} > a_{IR})$ (recent proof proposed by Komargodski and Schwimmer)
 - ▶ D = (2 + 1): The F-theorem ($F = -\log |Z_{S^3}|$) (recent proof proposed by Casini and Huerta)

c-theorems in higher dimensions still unproven! There are proposals ..

In even D, it is natural to continue Cardy's c "A" anomaly coefficient (see Elvang, Freedm Kiermaier, Myers, Theisen for recent work in

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points
- What is known?
 - D = (1+1): Zamolodchikov *c*-theorem.
 - ▶ D = (3 + 1): Cardy's a-theorem $(a_{UV} > a_{IR})$ (recent proof proposed by Komargodski and Schwimmer)
 - ▶ D = (2 + 1): The F-theorem ($F = -\log |Z_{S^3}|$) (recent proof proposed by Casini and Huerta)
- ► c-theorems in higher dimensions still unproven! There are proposals ..
 - ▶ In even D, it is natural to continue Cardy's conjecture for the "A" anomaly coefficient (see Elvang, Freedman, Hung, Kiermaier, Myers, Theisen for recent work in 6d)

- ▶ The C-theorem In a D = d + 1 dimensional QFT, a quantity C is said to satisfy a C-theorem if ...
 - C decreases monotonically under RG flow
 - C is stationary at conformal fixed points
- What is known?
 - D = (1+1): Zamolodchikov *c*-theorem.
 - ▶ D = (3 + 1): Cardy's a-theorem $(a_{UV} > a_{IR})$ (recent proof proposed by Komargodski and Schwimmer)
 - ▶ D = (2 + 1): The F-theorem ($F = -\log |Z_{S^3}|$) (recent proof proposed by Casini and Huerta)
- ► c-theorems in higher dimensions still unproven! There are proposals ..
 - ► In even *D*, it is natural to continue Cardy's conjecture for the "A" anomaly coefficient (see Elvang, Freedman, Hung, Kiermaier, Myers, Theisen for recent work in 6d)
 - ▶ In odd D, it is natural to consider $(-1)^{\frac{D+1}{2}}F_{S^D}$ (see Myers, Sinha, Klebanov, Pufu, B.R.S.)

Definitions

The metric: $ds^2 = \frac{1}{2} dz d\bar{z}$, $r^2 \equiv z\bar{z}$

Two-point functions of the stress-energy tensor \mathcal{T}_m

 $F(r^2) \equiv z^4 (T_{zz}(z,\bar{z}) T_{zz}(0,0)$

 $G(r^2) = 4z^3 \bar{z} (T_{zz}(z,\bar{z}) T_{z\bar{z}}(0,0)$

 $H(r^2) \equiv 16z^2\bar{z}^2/T_{rs}(z,\bar{z})T_{rs}(0,0)$

The Zamolodchikov c-theorem

The C-function: $C(r^2)=2F(r^2)-G(r^2)-rac{2}{5}H(r^2)$

Pirsa: 12100054 Page 12/112

Definitions

The metric: $ds^2=\frac{1}{2}dzd\bar{z}\,,\qquad r^2\equiv z\bar{z}$ Two-point functions of the stress-energy tensor $T_{\mu\nu}$:

$$F(r^{2}) \equiv z^{4} \langle T_{zz}(z, \bar{z}) T_{zz}(0, 0) \rangle$$

$$G(r^{2}) \equiv 4z^{3} \bar{z} \langle T_{zz}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

$$H(r^{2}) \equiv 16z^{2} \bar{z}^{2} \langle T_{z\bar{z}}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

The Zamolodchikov c-theorem

The C-function: $C(r^2) = 2F(r^2) - G(r^2) - \frac{3}{8}H(r^2)$ Proof of the C-theorem:

$$\frac{\partial C(r^2)}{\partial \log(r^2)} = -\frac{3}{4}H(r^2)$$
. $H(r) \ge 0$ in unitary QFT

Definitions

The metric: $ds^2=\frac{1}{2}dzd\bar{z}\,,\qquad r^2\equiv z\bar{z}$ Two-point functions of the stress-energy tensor $T_{\mu\nu}$:

$$F(r^{2}) \equiv z^{4} \langle T_{zz}(z, \bar{z}) T_{zz}(0, 0) \rangle$$

$$G(r^{2}) \equiv 4z^{3} \bar{z} \langle T_{zz}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

$$H(r^{2}) \equiv 16z^{2} \bar{z}^{2} \langle T_{z\bar{z}}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

► The Zamolodchikov c-theorem

The C-function:
$$C(r^2) = 2F(r^2) - G(r^2) - \frac{3}{8}H(r^2)$$

Definitions

The metric: $ds^2=\frac{1}{2}dzd\bar{z}\,,\qquad r^2\equiv z\bar{z}$ Two-point functions of the stress-energy tensor $T_{\mu\nu}$:

$$F(r^{2}) \equiv z^{4} \langle T_{zz}(z, \bar{z}) T_{zz}(0, 0) \rangle$$

$$G(r^{2}) \equiv 4z^{3} \bar{z} \langle T_{zz}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

$$H(r^{2}) \equiv 16z^{2} \bar{z}^{2} \langle T_{z\bar{z}}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

► The Zamolodchikov c-theorem

The C-function: $C(r^2) = 2F(r^2) - G(r^2) - \frac{3}{8}H(r^2)$ Proof of the C-theorem:

$$\frac{\partial C(r^2)}{\partial \log(r^2)} = -\frac{3}{4}H(r^2), \qquad H(r) \ge 0 \quad \text{in unitary QFT}$$

Definitions

The metric: $ds^2=\frac{1}{2}dzd\bar{z}\,,\qquad r^2\equiv z\bar{z}$ Two-point functions of the stress-energy tensor $T_{\mu\nu}$:

$$F(r^{2}) \equiv z^{4} \langle T_{zz}(z, \bar{z}) T_{zz}(0, 0) \rangle$$

$$G(r^{2}) \equiv 4z^{3} \bar{z} \langle T_{zz}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

$$H(r^{2}) \equiv 16z^{2} \bar{z}^{2} \langle T_{z\bar{z}}(z, \bar{z}) T_{z\bar{z}}(0, 0) \rangle$$

► The Zamolodchikov c-theorem

The C-function: $C(r^2) = 2F(r^2) - G(r^2) - \frac{3}{8}H(r^2)$ Proof of the C-theorem:

$$\frac{\partial C(r^2)}{\partial \log(r^2)} = -\frac{3}{4}H(r^2), \qquad H(r) \ge 0 \quad \text{in unitary QFT}$$

▶ At conformal fixed-points $(H(r^2) = 0)$ Conformal symmetry should imply $\langle T^{\mu}{}_{\mu} \rangle = 0$...

But there is a VVevi anomaly:

$$\langle T''_{n} \rangle = -rac{\epsilon}{12} R ...$$

where c is the central charge $C(r^2) = c$ and R is the curvature scalar.

We can isolate c by putting the theory on the S^2 of radius R

$$c = -\frac{3}{2} \int_{S^2} d^2 x \sqrt{g} \langle T''_{ii} \rangle = \frac{3}{4 i log R} \cdot \frac{\partial F}{\partial r}$$

where $F = -\log |Z_{S2}|$

▶ At conformal fixed-points $(H(r^2) = 0)$ Conformal symmetry should imply $\langle T^{\mu}{}_{\mu} \rangle = 0$... But there is a Weyl anomaly:

$$\langle T^{\mu}{}_{\mu} \rangle = -\frac{c}{12} R \,,$$

where c is the central charge $C(r^2)=c$ and R is the curvature scalar.

We can isolate c by putting the theory on the S^2 of radius R:

$$c = -\frac{3}{2} \int_{S^2} d^2 x \sqrt{g} \langle T^{\mu}_{\mu\nu} \rangle = \frac{3}{4 \ln \log R} \cdot \frac{\partial F}{\partial \log R}$$

where $F=-\log Z_{S^2}$

▶ At conformal fixed-points $(H(r^2) = 0)$ Conformal symmetry should imply $\langle T^{\mu}{}_{\mu} \rangle = 0$... But there is a Weyl anomaly:

$$\langle T^{\mu}{}_{\mu} \rangle = -\frac{c}{12} R \,,$$

where c is the central charge $C(r^2)=c$ and R is the curvature scalar.

We can isolate c by putting the theory on the S^2 of radius R:

$$c = -\frac{3}{2} \int_{S^2} d^2 x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle = \frac{3}{4} \frac{\partial F}{\partial \log R} \,,$$

where $F = -\log |Z_{S^2}|$.

D = 4: Cardy's a-theorem

▶ Two Weyl anomaly coefficients in D = 4:

$$\langle T^{\mu}{}_{\mu}
angle = -rac{c}{16\pi^2} W_{\mu
u
ho\sigma} W^{\mu
u
ho\sigma} - 2a E_4 - rac{a'}{16\pi^2}
abla^2 R$$

We can isolate a by considering the integral of $\langle T^{\mu}{}_{\mu} \rangle$ on the S^4 of radius R:

$$a = -\frac{1}{4} \int_{S^4} d^4 x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle = \frac{1}{16} \frac{\partial F}{\partial \log R}$$

The a-theorem

Cardy proposed that a satisfies a C-theorem (

This is called the *a*-theorem

Recently Komargodski and Schwimmer proved

They constructed a monotonic interpolating f

D = 4: Cardy's a-theorem

▶ Two Weyl anomaly coefficients in D = 4:

$$\langle T^{\mu}{}_{\mu}
angle = -rac{c}{16\pi^2} W_{\mu
u
ho\sigma} W^{\mu
u
ho\sigma} - 2$$
a $E_4 - rac{a'}{16\pi^2}
abla^2 R$

We can isolate a by considering the integral of $\langle T^{\mu}{}_{\mu} \rangle$ on the S^4 of radius R:

$$a = -\frac{1}{4} \int_{S^4} d^4 x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle = \frac{1}{16} \frac{\partial F}{\partial \log R}$$

► The a-theorem

Cardy proposed that a satisfies a C-theorem ($a_{\rm UV}>a_{\rm IR}$). This is called the a-theorem.

Recently Komargodski and Schwimmer proved the *a*-theorem. They constructed a monotonic interpolating function along RG flow between the fixed points.

D = 4: Cardy's a-theorem

The proof of the a-theorem was preceded by more than 20 years of evidence. Much of this evidence came from studying QFT with supersymmetry.

a-maximization

In supersymmetric QFT, a can be written as a function of the R-charges

At super-conformal fixed points the correct R-symmetry locally maximizes a (Intriligator and Wecht)

Pirsa: 12100054 Page 22/112

D=4: Cardy's a-theorem

The proof of the a-theorem was preceded by more than 20 years of evidence. Much of this evidence came from studying QFT with supersymmetry.

a-maximization

In supersymmetric QFT, a can be written as a function of the R-charges.

At super-conformal fixed points the correct R-symmetry locally maximizes a (Intriligator and Wecht)

Pirsa: 12100054 Page 23/112

There is no conformal anomaly in D=3!The trace of the stress-energy tensor vanishes identically at conformal fixed points: $\langle T^{\mu}{}_{\mu} \rangle = 0$.

There have been many attempts at constructing a C-theorem in D=3

One attempt, by Appelquist, was to consider the free energy at finite temperature:

 ${\cal F}_{\cal T} = -rac{\Gamma(D-2) \zeta(D)}{-D-2} c_{\sf Therm} V_{D-1} {\cal T}^D$.

Pirsa: 12100054 Page 24/112

- ▶ There is no conformal anomaly in D=3!The trace of the stress-energy tensor vanishes identically at conformal fixed points: $\langle T^{\mu}{}_{\mu} \rangle = 0$.
- ► There have been many attempts at constructing a C-theorem in D=3 ...

One attempt, by Appelquist, was to consider the free energy at finite temperature:

 $F_{\mathcal{T}} = -rac{\Gamma(D-2) \zeta(D)}{\pi D-2} c_{\mathsf{Therm}} V_{D-1} \mathcal{T}^D$.

However, there are counter-examples. For examples increases under RG flow from critical $\mathcal{O}(N)$ m to Goldstone phase of N-1 free fields. (Sach

Pirsa: 12100054 Page 25/112

- There is no conformal anomaly in D=3!The trace of the stress-energy tensor vanishes identically at conformal fixed points: $\langle T^{\mu}{}_{\mu} \rangle = 0$.
- ► There have been many attempts at constructing a C-theorem in $D=3\ldots$

One attempt, by Appelquist, was to consider the free energy at finite temperature:

$$F_T = -\frac{\Gamma(D/2)\zeta(D)}{\pi^{D/2}}c_{\mathsf{Therm}}V_{D-1}T^D.$$

However, there are counter-examples. For examples ander RG flow from critical $\mathcal{O}(N)$ m to Goldstone phase of N-1 free fields. (Sach

- ► There is no conformal anomaly in D=3!The trace of the stress-energy tensor vanishes identically at conformal fixed points: $\langle T^{\mu}{}_{\mu} \rangle = 0$.
- ► There have been many attempts at constructing a C-theorem in D=3 ...

One attempt, by Appelquist, was to consider the free energy at finite temperature:

$$F_T = -\frac{\Gamma(D/2)\zeta(D)}{\pi^{D/2}}c_{\mathsf{Therm}}V_{D-1}T^D.$$

However, there are counter-examples. For example, $c_{\rm therm}$ increases under RG flow from critical O(N) model fixed point to Goldstone phase of N-1 free fields. (Sachdev)

► The *F*-theorem

The finite part of the free energy $F = -\log |Z_{S^3}|$ of CFTs on S^3 satisfies a C-theorem ($F_{\rm UV} > F_{\rm IR}$). (recent proof proposed by Casini and Huerta)

Some motivation

In D dimensions

$$\partial F = -D \int_{S^{n}} d^{D} x \sqrt{g} T^{n} \mu$$

This vanishes at conformal fixed points in odd dimensions. The natural quantity to consider is then the finite part of F itself.

► The *F*-theorem

The finite part of the free energy $F = -\log |Z_{S^3}|$ of CFTs on S^3 satisfies a C-theorem ($F_{\rm UV} > F_{\rm IR}$). (recent proof proposed by Casini and Huerta)

► Some motivation

▶ In D dimensions

$$\frac{\partial F}{\partial \log(R)} = -D \int_{S^D} d^D x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle$$

This vanishes at conformal fixed points in odd dimensions. The natural quantity to consider is then the finite part of F itself.

F-maximization. The F-value of the IR CFT is locally maximized by the trial F charges

► The *F*-theorem

The finite part of the free energy $F = -\log |Z_{S^3}|$ of CFTs on S^3 satisfies a C-theorem ($F_{\rm UV} > F_{\rm IR}$). (recent proof proposed by Casini and Huerta)

► Some motivation

► In D dimensions

$$\frac{\partial F}{\partial \log(R)} = -D \int_{S^D} d^D x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle$$

This vanishes at conformal fixed points in odd dimensions. The natural quantity to consider is then the finite part of F itself.

F-maximization. The F-value of the IR CFT is locally maximized by the trial R-charges.

► The *F*-theorem

The finite part of the free energy $F = -\log |Z_{S^3}|$ of CFTs on S^3 satisfies a C-theorem ($F_{\rm UV} > F_{\rm IR}$). (recent proof proposed by Casini and Huerta)

Some motivation

In D dimensions

$$\frac{\partial F}{\partial \log(R)} = -D \int_{S^D} d^D x \sqrt{g} \langle T^{\mu}{}_{\mu} \rangle$$

This vanishes at conformal fixed points in odd dimensions. The natural quantity to consider is then the finite part of F itself.

► There is a direct analogue of a-maximization: Jafferis's F-maximization. The F-value of the IR CFT is locally maximized by the trial R-charges.

F is related to the entanglement entropy.

$$S = -Tr(\rho_A \log \rho_A),$$

where ρ_A is the reduced density matrix:

$$\rho_A = Tr_B |0\rangle\langle 0|$$
.

В

$$S = -F_{S^3}$$

Myer's and Sinha proposed that the finite part of the entanglement entropy should satisfy a C-theorem. **This is** the same as the F-theorem

F is related to the entanglement entropy.

$$S = -Tr(\rho_A \log \rho_A),$$

where ρ_A is the reduced density matrix: $\rho_A = Tr_B |0\rangle\langle 0|$.

At conformal fixed points in D=2+1, when the entangling surface is an S^1 at t=0 of radius R, (Casini, Huerta, Myers)

$$S=-F_{S^3}$$
.

Myer's and Sinha proposed that the finite par entanglement entropy should satisfy a C-theo the same as the F-theorem

F is related to the entanglement entropy.

$$S = -Tr(\rho_A \log \rho_A),$$

where ρ_A is the reduced density matrix: $\rho_A = Tr_B |0\rangle\langle 0|$.

At conformal fixed points in D=2+1, when the entangling surface is an S^1 at t=0 of radius R, (Casini, Huerta, Myers)

$$S = -F_{S^3}$$
.

► Myer's and Sinha proposed that the finite part of the entanglement entropy should satisfy a *C*-theorem. **This is** the same as the *F*-theorem

The entanglement entropy has a leading area law divergence. At conformal fixed points the EE across a circle of radius R is

$$S(R) = \alpha \frac{2\pi R}{\epsilon} - F,$$

where ϵ is the short-distance cut-off and the constant α is regularization dependent.

► Casini and Huerta's proposed proof of the F-theorem relies on the renormalized entanglement entropy (Liu, Mezei)

$$\mathcal{F}(R) = -S(R) + RS'(R).$$

They showed $\mathcal{F}'(R) \leq 0$, with equality only coming at fixed points where $\mathcal{F}(R) = F$.

F **isn't stationary!** Question: Is there a stationar 3-dimensions?

D = 3: The F-theorem

► Casini and Huerta's proposed proof of the F-theorem relies on the renormalized entanglement entropy (Liu, Mezei)

$$\mathcal{F}(R) = -S(R) + RS'(R).$$

They showed $\mathcal{F}'(R) \leq 0$, with equality only coming at fixed points where $\mathcal{F}(R) = F$.

 \mathcal{F} isn't stationary! Question: Is there a stationary c-function in 3-dimensions?

If we perturb by an operator of dimension $\Delta = D - \delta$ and g is the renormalized, dimensionless coupling, then stationarity requires $c(\sigma) = c - \sigma^2 \delta = O(\sigma^3)$

D = 3: The F-theorem

► Casini and Huerta's proposed proof of the F-theorem relies on the renormalized entanglement entropy (Liu, Mezei)

$$\mathcal{F}(R) = -S(R) + RS'(R).$$

They showed $\mathcal{F}'(R) \leq 0$, with equality only coming at fixed points where $\mathcal{F}(R) = F$.

 \mathcal{F} isn't stationary! Question: Is there a stationary c-function in 3-dimensions?

If we perturb by an operator of dimension $\Delta = D - \delta$ and g is the renormalized, dimensionless coupling, then stationarity requires $c(g) = c_{\text{uv}} - g^2 \delta + O(g^3)$.

2. Calculating F on the three-sphere

Pirsa: 12100054 Page 39/112

D = 3: The F-theorem

► Casini and Huerta's proposed proof of the F-theorem relies on the renormalized entanglement entropy (Liu, Mezei)

$$\mathcal{F}(R) = -S(R) + RS'(R).$$

They showed $\mathcal{F}'(R) \leq 0$, with equality only coming at fixed points where $\mathcal{F}(R) = F$.

 ${\cal F}$ isn't stationary! Question: Is there a stationary 3-dimensions?

If we perturb by an operator of dimension $\Delta = D$ -renormalized, dimensionless coupling, then stational $c(g) = c_{uv} - g^2 \delta + O(g^3)$.

The simplest F-value to calculate is that of the free conformal scalar.

▶ F_s is calculated from the partition function on the S^3 of radius a:

$$F_s = \log |Z_s| = \frac{1}{2} \log \det \left[\mu_0^{-2} \mathcal{O}_s \right] , \qquad \mathcal{O}_s = -\nabla^2 + \frac{3}{4a^2} .$$

The eigenvalues and degeneracies of ${\cal O}_s$:

$$F_{\mathrm{s}} = rac{1}{2} \sum_{n=0}^{\infty} m_n \log \left(/ \epsilon_0^2 \lambda_n
ight) .$$

$$\lambda_n = rac{1}{s^2} \left(n - rac{1}{2}
ight) \left(n - rac{3}{2}
ight) \cdot m_n = (n - 1)$$

The simplest F-value to calculate is that of the free conformal scalar.

▶ F_s is calculated from the partition function on the S^3 of radius a:

$$F_s = \log |Z_s| = rac{1}{2} \log \det \left[\mu_0^{-2} \mathcal{O}_s
ight] \;, \qquad \mathcal{O}_s = - \nabla^2 + rac{3}{4a^2} \,.$$

▶ The eigenvalues and degeneracies of \mathcal{O}_s :

$$F_s = \frac{1}{2} \sum_{n=0}^{\infty} m_n \log \left(\mu_0^{-2} \lambda_n \right) ,$$

$$\lambda_n = \frac{1}{a^2} \left(n + \frac{1}{2} \right) \left(n + \frac{3}{2} \right) , \quad m_n = (n+1)^2 , \quad n \ge 0 .$$

The simplest F-value to calculate is that of the free conformal scalar.

▶ F_s is calculated from the partition function on the S^3 of radius a:

$$F_s = \log |Z_s| = rac{1}{2} \log \det \left[\mu_0^{-2} \mathcal{O}_s
ight] \;, \qquad \mathcal{O}_s = - \nabla^2 + rac{3}{4a^2} \,.$$

▶ The eigenvalues and degeneracies of \mathcal{O}_s :

$$F_s = \frac{1}{2} \sum_{n=0}^{\infty} m_n \log \left(\mu_0^{-2} \lambda_n \right) ,$$

$$\lambda_n = \frac{1}{a^2} \left(n + \frac{1}{2} \right) \left(n + \frac{3}{2} \right) , \quad m_n = (n+1)^2 , \quad n \ge 0 .$$

► The sum is evaluated using zeta-function regularization:

$$F_s = \frac{1}{2^4} \left(2 \log 2 - \frac{3\zeta(3)}{\pi^2} \right) \approx .0638$$
.

The analogous calculation for the Majorana fermion gives

$$F_{NI} = \frac{1}{2^4} \left(2 \log 2 - \frac{3 \zeta(3)}{\pi^2} \right) \approx 0.110$$

F for a chiral multiplet (complex scalar plus Dirac fermion)

$$F_{\rm chiral} = 2(F_{\rm s} - F_{M}) = \frac{\log 2}{2}$$

▶ The sum is evaluated using zeta-function regularization:

$$F_s = \frac{1}{2^4} \left(2 \log 2 - \frac{3\zeta(3)}{\pi^2} \right) \approx .0638$$
.

▶ The analogous calculation for the Majorana fermion gives

$$F_M = \frac{1}{2^4} \left(2 \log 2 + \frac{3\zeta(3)}{\pi^2} \right) \approx 0.110$$
.

F for a chiral multiplet (complex scalar plus

 $F_{\rm chiral} = 2(F_{\rm s} - F_{\rm AI}) = \frac{\log 2}{2}$

▶ The sum is evaluated using zeta-function regularization:

$$F_s = \frac{1}{2^4} \left(2 \log 2 - \frac{3\zeta(3)}{\pi^2} \right) \approx .0638$$
.

The analogous calculation for the Majorana fermion gives

$$F_M = \frac{1}{2^4} \left(2 \log 2 + \frac{3\zeta(3)}{\pi^2} \right) \approx 0.110$$
.

F for a chiral multiplet (complex scalar plus Dirac fermion):

$$F_{\text{chiral}} = 2(F_s + F_M) = \frac{\log 2}{2}.$$

Perturb a CFT by a slightly relevant operator such that the flow ends at a perturbative fixed point. We will see that F decreases .

The action of the perturbed QFT on S^3

$$S = S_0 = \lambda_0 \int d^3x \sqrt{g} \mathcal{O}(x)$$

where S_0 is the action of the unperturbed CFT. $\mathcal{O}(x)$ is a scalar operator of dimension $\Delta=3-\epsilon$ with $0<\epsilon\ll 1$. λ_0 is the UV bare coupling defined at the UV scale m_0 .

Conformal invariance fixes the coefficients of the 2 and 3-point functions

$$O(x)O(y)_{0} = \frac{1}{s(x,y)^{2(3-x)}}.$$

$$O(x)O(y)O(z)_{0} = \frac{C}{s(x,y)^{3-x}s(y,z)^{3-x}s(z,x)^{3-x}}.$$

Pirsa: 12100054 Page 47/112

Perturb a CFT by a slightly relevant operator such that the flow ends at a perturbative fixed point. We will see that F decreases

The action of the perturbed QFT on S³

$$S = S_0 + \lambda_0 \int d^3x \sqrt{g} O(x),$$

where S_0 is the action of the unperturbed CFT, O(x) is a scalar operator of dimension $\Delta=3-\epsilon$ with $0<\epsilon\ll 1$. λ_0 is the UV bare coupling defined at the UV scale μ_0 .

Conformal invariance fixes the coefficients of the 2 and 3-point functions

 $\frac{1}{s(x,y)^{2(3-x)}} = \frac{1}{s(x,y)^{2(3-x)}}.$

Luctuations
Scale

Perturb a CFT by a slightly relevant operator such that the flow ends at a perturbative fixed point. We will see that F decreases

▶ The action of the perturbed QFT on S^3

$$S = S_0 + \lambda_0 \int d^3x \sqrt{g} O(x) ,$$

where S_0 is the action of the unperturbed CFT, O(x) is a scalar operator of dimension $\Delta=3-\epsilon$ with $0<\epsilon\ll 1$. λ_0 is the UV bare coupling defined at the UV scale μ_0 .

► Conformal invariance fixes the coefficients of the 2 and 3-point functions

$$\begin{split} \langle O(x)O(y)\rangle_0 &= \frac{1}{s(x,y)^{2(3-\epsilon)}}\,,\\ \langle O(x)O(y)O(z)\rangle_0 &= \frac{C}{s(x,y)^{3-\epsilon}s(y,z)^{3-\epsilon}s(z,x)^{3-\epsilon}}\,. \end{split}$$

Perturb a CFT by a slightly relevant operator such that the flow ends at a perturbative fixed point. We will see that F decreases

The action of the perturbed QFT on S³

$$S = S_0 + \lambda_0 \int d^3x \sqrt{g} O(x) ,$$

where S_0 is the action of the unperturbed CFT, O(x) is a scalar operator of dimension $\Delta=3-\epsilon$ with $0<\epsilon\ll 1$. λ_0 is the UV bare coupling defined at the UV scale μ_0 .

 Conformal invariance fixes the coefficients of the 2 and 3-point functions

$$\begin{split} \langle O(x)O(y)\rangle_0 &= \frac{1}{s(x,y)^{2(3-\epsilon)}}\,,\\ \langle O(x)O(y)O(z)\rangle_0 &= \frac{C}{s(x,y)^{3-\epsilon}s(y,z)^{3-\epsilon}s(z,x)^{3-\epsilon}}\,. \end{split}$$

The theory flows:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\epsilon g + 2\pi C g^2 + \mathcal{O}(g^3) ,$$

where $g=\lambda\mu^{-\epsilon}$, $g(\mu_0)=\lambda_0\mu_0^{-\epsilon}\ll 1$, and μ is the RG parameter.

$$g^* = \frac{1}{2-C} (-O(r^2)).$$

A short calculation gives the change in free energy between the UV and IR fixed points:

$$\delta F(\mathbf{g}^*) = -\frac{-2.3}{72C^2}$$
.

The theory flows:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\epsilon g + 2\pi C g^2 + \mathcal{O}(g^3) ,$$

where $g = \lambda \mu^{-\epsilon}$, $g(\mu_0) = \lambda_0 \mu_0^{-\epsilon} \ll 1$, and μ is the RG parameter. There is a perturbative fixed point if C > 0:

$$g^* = rac{1}{2\pi C}\epsilon + O(\epsilon^2)$$
 .

A short calculation gives the change in free energy between the UV and IR fixed points:

$$\Delta F(g^*) = -\frac{\pi^2 r^3}{72C^2}$$
.

Pirsa: 12100054

The theory flows:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\epsilon g + 2\pi C g^2 + \mathcal{O}(g^3) ,$$

where $g = \lambda \mu^{-\epsilon}$, $g(\mu_0) = \lambda_0 \mu_0^{-\epsilon} \ll 1$, and μ is the RG parameter. There is a perturbative fixed point if C > 0:

$$g^* = rac{1}{2\pi C}\epsilon + O(\epsilon^2)$$
 .

A short calculation gives the change in free energy between the UV and IR fixed points:

$$\delta F(g^*) = -\frac{\pi^2 \epsilon^3}{72C^2}.$$

► Double-trace deformations

$$Z = \int D\phi \exp\left(-S_0 - rac{\lambda_0}{2} \int d^D x \sqrt{G} \Phi^2
ight) \, ,$$

where Φ is a single-trace operator of dimension $\Delta \in ((D-2)/2, D/2)$ and S_0 describes a large N CFT.

Pirsa: 12100054 Page 54/112

► Double-trace deformations

$$Z = \int D\phi \exp\left(-S_0 - rac{\lambda_0}{2} \int d^D x \sqrt{G} \Phi^2
ight) \, ,$$

where Φ is a single-trace operator of dimension $\Delta \in ((D-2)/2, D/2)$ and S_0 describes a large N CFT.

Pirsa: 12100054 Page 55/112

Double-trace deformations

$$Z = \int D\phi \exp\left(-S_0 - rac{\lambda_0}{2} \int d^D x \sqrt{G} \Phi^2
ight) \, ,$$

where Φ is a single-trace operator of dimension $\Delta \in ((D-2)/2, D/2)$ and S_0 describes a large N CFT.

The theory flows to a fixed point where Φ has dimension $D-\Delta$.

 $Z = \int D\pi \left(\exp \int d^{D}x \times G \left(\frac{1}{2} \right) d^{D}x \times G \right)$ $Z_{0} = \int D\pi \exp(\frac{1}{2} \int d^{D}x \times G)$

Double-trace deformations

$$Z = \int D\phi \exp\left(-S_0 - rac{\lambda_0}{2} \int d^D x \sqrt{G} \Phi^2
ight) \,,$$

where Φ is a single-trace operator of dimension $\Delta \in ((D-2)/2, D/2)$ and S_0 describes a large N CFT.

- ▶ The theory flows to a fixed point where Φ has dimension $D \Delta$.
- ► The F-value is smaller at the IR fixed point. We can compute the difference explicitly, beginning with a Hubbard-Stratonovich transformation

$$\frac{Z}{Z_0} = \frac{\int D\sigma \left\langle \exp \left[\int d^D x \sqrt{G} \left(\frac{1}{2\lambda_0} \sigma^2 + \sigma \Phi \right) \right] \right\rangle_0}{\int D\sigma \exp \left(\frac{1}{2\lambda_0} \int d^D x \sqrt{G} \sigma^2 \right)}.$$

Double-trace deformations

$$Z = \int D\phi \exp\left(-S_0 - rac{\lambda_0}{2} \int d^D x \sqrt{G} \Phi^2
ight) \,,$$

where Φ is a single-trace operator of dimension $\Delta \in ((D-2)/2, D/2)$ and S_0 describes a large N CFT.

- ▶ The theory flows to a fixed point where Φ has dimension $D \Delta$.
- ► The F-value is smaller at the IR fixed point. We can compute the difference explicitly, beginning with a Hubbard-Stratonovich transformation

$$\frac{Z}{Z_0} = \frac{\int D\sigma \left\langle \exp \left[\int d^D x \sqrt{G} \left(\frac{1}{2\lambda_0} \sigma^2 + \sigma \Phi \right) \right] \right\rangle_0}{\int D\sigma \exp \left(\frac{1}{2\lambda_0} \int d^D x \sqrt{G} \sigma^2 \right)}.$$

Higher point functions of Φ are suppressed relative to the two-point function by powers of 1/N:

$$\left\langle \exp\left(\int d^D x \sqrt{G} \sigma(x) \Phi(x)\right) \right\rangle_0 = \exp\left[\frac{1}{2} \left\langle \left(\int d^D x \sqrt{G} \sigma(x) \Phi(x)\right)^2 \right\rangle_0 + O(1/N)\right].$$

The Gaussian integral over the auxiliary field $\sigma(x)$ then gives

$$\delta \mathcal{F}_{\Delta} = \frac{1}{2} \operatorname{tr} \log(K)$$

 $K(x,y) = \frac{1}{\sqrt{G(x)}} A(x-y) - \lambda_0 s^D \langle \Phi(x) \rangle$

Pirsa: 12100054

Higher point functions of Φ are suppressed relative to the two-point function by powers of 1/N:

$$\left\langle \exp\left(\int d^D x \sqrt{G} \sigma(x) \Phi(x)\right) \right\rangle_0 = \exp\left[\frac{1}{2} \left\langle \left(\int d^D x \sqrt{G} \sigma(x) \Phi(x)\right)^2 \right\rangle_0 + O(1/N)\right].$$

The Gaussian integral over the auxiliary field $\sigma(x)$ then gives

$$\delta F_{\Delta} = \frac{1}{2} \operatorname{tr} \log(K) ,$$

$$K(x,y) = \frac{1}{\sqrt{G(x)}} \delta(x-y) + \lambda_0 a^D \langle \Phi(x) \Phi(y) \rangle_0 .$$

▶ In the IR limit $(a \to \infty)$ we find

$$\delta F_{\Delta} = -\frac{\pi}{6} \int_{\Delta}^{3/2} dx (x-1)(x-\frac{3}{2})(x-2) \cot(\pi x) \,.$$

When $\Delta=1$ this describes the critical $\mathcal{O}(N)$ model, and we find

$$NF_{\Delta-1} = -\frac{\zeta(3)}{8-2} \approx -0.0152$$

▶ In the IR limit $(a \to \infty)$ we find

$$\delta F_{\Delta} = -\frac{\pi}{6} \int_{\Delta}^{3/2} dx (x-1)(x-\frac{3}{2})(x-2) \cot(\pi x) \,.$$

When $\Delta=1$ this describes the critical $\mathcal{O}(N)$ model, and we find

$$NF_{\Delta-1} = -\frac{\sqrt{3}}{8\pi^2} \approx -0.0152$$

▶ In the IR limit $(a \to \infty)$ we find

$$\delta F_{\Delta} = -\frac{\pi}{6} \int_{\Delta}^{3/2} dx (x-1)(x-\frac{3}{2})(x-2) \cot(\pi x) \,.$$

 $lackbox{lack}{lack}$ When $\Delta=1$ this describes the critical O(N) model, and we find

$$\delta F_{\Delta=1} = -\frac{\zeta(3)}{8\pi^2} \approx -0.0152$$
.

Pirsa: 12100054

▶ The critical O(N) model:

$$S[\vec{\Phi}] = \frac{1}{2} \int d^3x \left[\partial \vec{\Phi} \cdot \partial \vec{\Phi} + m_0^2 \vec{\Phi}^2 + \frac{\lambda_0}{2N} \left(\vec{\Phi} \cdot \vec{\Phi} \right)^2 \right] .$$

The UV fixed point: $m_0 = \lambda_0 = 0$ gives $F_{\text{LLV}} = N F_{\text{e.s.}}$

The critical $\mathcal{O}(N)$ model fixed point ($m_0=0$):

 $F_{\rm crit} = N F_{\rm s} - \frac{S(3)}{2}$

Pirsa: 12100054

▶ The critical O(N) model:

$$S[\vec{\Phi}] = rac{1}{2} \int d^3x \left[\partial \vec{\Phi} \cdot \partial \vec{\Phi} + m_0^2 \vec{\Phi}^2 + rac{\lambda_0}{2N} \left(\vec{\Phi} \cdot \vec{\Phi}
ight)^2
ight] \, .$$

- ▶ The UV fixed point: $m_0 = \lambda_0 = 0$ gives $F_{\text{UV}} = N F_s$.
- ► The critical O(N) model fixed point $(m_0 = 0)$: $F_{\rm crit} = N F_s \frac{\zeta(3)}{8\pi^2}$

The goldstone phase ($m_0 = 0$): $F_{
m goldstone} = (N-1)F_{
m s}$

Under RG flow from critical O(N) model phase to goldstone phase:

 $F_{\text{goldstone}} - F_{\text{crit}} = -\frac{1}{16} \left(2 \log 2 - 5 \frac{\zeta(3)}{12} \right)$

▶ The critical O(N) model:

$$S[\vec{\Phi}] = \frac{1}{2} \int d^3x \left[\partial \vec{\Phi} \cdot \partial \vec{\Phi} + m_0^2 \vec{\Phi}^2 + \frac{\lambda_0}{2N} \left(\vec{\Phi} \cdot \vec{\Phi} \right)^2 \right] .$$

- ▶ The UV fixed point: $m_0 = \lambda_0 = 0$ gives $F_{UV} = N F_s$.
- ► The critical O(N) model fixed point $(m_0 = 0)$: $F_{\rm crit} = N F_s \frac{\zeta(3)}{8\pi^2}$
- ▶ The goldstone phase $(m_0 < 0)$: $F_{\text{goldstone}} = (N-1)F_s$

Under RG flow from critical O(N) model phase to goldstone

 $F_{\text{goldstone}} - F_{\text{crit}} = -\frac{1}{16} \left(2 \log 2 - 5 \right)^{2}$

► The critical O(N) model:

$$S[\vec{\Phi}] = \frac{1}{2} \int d^3x \left[\partial \vec{\Phi} \cdot \partial \vec{\Phi} + m_0^2 \vec{\Phi}^2 + \frac{\lambda_0}{2N} \left(\vec{\Phi} \cdot \vec{\Phi} \right)^2 \right] .$$

- ▶ The UV fixed point: $m_0 = \lambda_0 = 0$ gives $F_{\text{UV}} = N F_s$.
- ► The critical O(N) model fixed point $(m_0 = 0)$: $F_{\rm crit} = N F_s \frac{\zeta(3)}{8\pi^2}$
- ▶ The goldstone phase $(m_0 < 0)$: $F_{\text{goldstone}} = (N-1)F_s$
- Under RG flow from critical O(N) model phase to goldstone phase:

$$F_{\rm goldstone} - F_{\rm crit} = -\frac{1}{16} \left(2 \log 2 - 5 \frac{\zeta(3)}{\pi^2} \right) \approx -.0486$$

101151E1E1 E 990

► The gauge sector Lagrangian is

$$\mathcal{L}_A = rac{1}{2e^2} Tr F^2 + rac{ik}{2\pi} Tr \left(F \wedge A - rac{1}{3} A \wedge A \wedge A
ight) \, .$$

The gauge coupling e^2 has dimension of mass and flows to infinity in the IR.

When the gauge group is U(1), the F-value is simply

Man the state of the second of the Man the second of the s

fermions and N_s massless complex scalars, we find

 $-O(1(N_D - F_s))$.

► The gauge sector Lagrangian is

$$\mathcal{L}_A = rac{1}{2e^2} Tr F^2 + rac{ik}{2\pi} Tr \left(F \wedge A - rac{1}{3} A \wedge A \wedge A
ight) \, .$$

The gauge coupling e^2 has dimension of mass and flows to infinity in the IR.

▶ When the gauge group is U(1), the F-value is simply $F_{CS} = \frac{1}{2} \log k$. (Witten)

When the gauge theory is coupled to N_D massless Dirac fermions and N_c massless complex scalars, we find

The gauge sector Lagrangian is

$$\mathcal{L}_A = rac{1}{2e^2} Tr F^2 + rac{ik}{2\pi} Tr \left(F \wedge A - rac{1}{3} A \wedge A \wedge A
ight) \, .$$

The gauge coupling e^2 has dimension of mass and flows to infinity in the IR.

- ▶ When the gauge group is U(1), the F-value is simply $F_{CS} = \frac{1}{2} \log k$. (Witten)
- ▶ When the gauge theory is coupled to N_D massless Dirac fermions and N_s massless complex scalars, we find

$$F = N_D F_D + N_s (2F_s) + \frac{1}{2} \log \left[\pi \sqrt{\left(\frac{N_D + N_s}{8}\right)^2 + \left(\frac{k}{\pi}\right)^2} \right] + O(1/(N_D + F_s)).$$

The gauge sector Lagrangian is

$$\mathcal{L}_A = rac{1}{2e^2} Tr F^2 + rac{ik}{2\pi} Tr \left(F \wedge A - rac{1}{3} A \wedge A \wedge A
ight) \, .$$

The gauge coupling e^2 has dimension of mass and flows to infinity in the IR.

- ▶ When the gauge group is U(1), the F-value is simply $F_{CS} = \frac{1}{2} \log k$. (Witten)
- ▶ When the gauge theory is coupled to N_D massless Dirac fermions and N_s massless complex scalars, we find

$$F = N_D F_D + N_s (2F_s) + \frac{1}{2} \log \left[\pi \sqrt{\left(\frac{N_D + N_s}{8}\right)^2 + \left(\frac{k}{\pi}\right)^2} \right] + O(1/(N_D + F_s)).$$

Schematically this is derived as follows. Consider N_D Dirac fermions ψ_{α} ...

$$Z=rac{1}{\mathsf{Vol}(G)}\int DA\,D\psi\,e^{-S[A,\psi]}\,.$$

Write $A = B + d\phi$, where d * B = 0. Integrating over ψ gives effective action for B ...

$$Z \approx e^{-F_0} \int DB \ e^{-S_{\text{eff}}^{\text{vec}}[B]}$$

with ...

 $S_{\rm an}^{\rm vec}[B] = rac{7\kappa}{4\pi} \int B \wedge dB$

 $-rac{1}{2}\int d^3r\,\sqrt{g}(r)\int d^3r'\,\sqrt{g}(r')B_{ll}(r)B_{ll}(r')\,\langle J''(r)J''(r')
angle_{
m line}^{S^3}$

and ..

 $J''(r) = \overline{C}_{col}(r) \gamma'' C_{col}(r) \Rightarrow \langle J''(r) J''(0)
angle_{
m free}^{2\beta} = rac{N_D}{2\pi^2} r^{15} \delta'''' - 2r'' r''$

Pirsa: 12100054

Schematically this is derived as follows. Consider N_D Dirac fermions ψ_{α} ...

$$Z = rac{1}{\mathsf{Vol}(G)} \int DA \, D\psi \, e^{-S[A,\psi]} \, .$$

Write $A = B + d\phi$, where d * B = 0. Integrating over ψ gives effective action for B ...

$$Z \approx e^{-F_0} \int DB \ e^{-S_{\text{eff}}^{\text{vec}}[B]}$$

with ...

$$\begin{split} S_{\rm eff}^{\rm vec}[B] &= \frac{ik}{4\pi} \int B \wedge dB \\ &- \frac{1}{2} \int d^3r \, \sqrt{g(r)} \int d^3r' \, \sqrt{g(r')} B_\mu(r) B_\nu(r') \, \big\langle J^\mu(r) J^\nu(r') \big\rangle_{\rm free}^{S^3} \; . \end{split}$$

Schematically this is derived as follows. Consider N_D Dirac fermions ψ_{α} ...

$$Z=rac{1}{\mathsf{Vol}(G)}\int DA\,D\psi\,e^{-S[A,\psi]}\,.$$

Write $A = B + d\phi$, where d * B = 0. Integrating over ψ gives effective action for B ...

$$Z \approx e^{-F_0} \int DB \ e^{-S_{\text{eff}}^{\text{vec}}[B]}$$

with ...

$$\begin{split} S_{\rm eff}^{\rm vec}[B] &= \frac{ik}{4\pi} \int B \wedge dB \\ &- \frac{1}{2} \int d^3r \, \sqrt{g(r)} \int d^3r' \, \sqrt{g(r')} B_\mu(r) B_\nu(r') \, \big\langle J^\mu(r) J^\nu(r') \big\rangle_{\rm free}^{S^3} \; . \end{split}$$

$$J^{\mu}(r) = \bar{\psi}_{\alpha}(r)\gamma^{\mu}\psi_{\alpha}(r) \Rightarrow \langle J^{\mu}(r)J^{\nu}(0)\rangle_{\text{free}}^{\mathbb{R}^{3}} = \frac{N_{D}}{8\pi^{2}}\frac{|r|^{2}\delta^{\mu\nu} - 2r^{\mu}r^{\nu}}{|r|^{6}}.$$

Schematically this is derived as follows. Consider N_D Dirac fermions ψ_{α} ...

$$Z = rac{1}{\mathsf{Vol}(G)} \int DA \, D\psi \, e^{-S[A,\psi]} \, .$$

Write $A = B + d\phi$, where d * B = 0. Integrating over ψ gives effective action for B ...

$$Z \approx e^{-F_0} \int DB \ e^{-S_{\text{eff}}^{\text{vec}}[B]}$$

with ...

$$\begin{split} S_{\rm eff}^{\rm vec}[B] &= \frac{ik}{4\pi} \int B \wedge dB \\ &- \frac{1}{2} \int d^3r \, \sqrt{g(r)} \int d^3r' \, \sqrt{g(r')} B_\mu(r) B_\nu(r') \, \big\langle J^\mu(r) J^\nu(r') \big\rangle_{\rm free}^{S^3} \; . \end{split}$$

$$J^{\mu}(r) = \bar{\psi}_{\alpha}(r)\gamma^{\mu}\psi_{\alpha}(r) \Rightarrow \langle J^{\mu}(r)J^{\nu}(0)\rangle_{\text{free}}^{\mathbb{R}^{3}} = \frac{N_{D}}{8\pi^{2}}\frac{|r|^{2}\delta^{\mu\nu} - 2r^{\mu}r^{\nu}}{|r|^{6}}.$$

The gauge sector Lagrangian is

$$\mathcal{L}_{A} = rac{1}{2e^{2}} \mathit{Tr} F^{2} + rac{ik}{2\pi} \mathit{Tr} \left(F \wedge A - rac{1}{3} A \wedge A \wedge A
ight) \, .$$

The gauge coupling e^2 has dimension of mass and flows to infinity in the IR.

- ▶ When the gauge group is U(1), the F-value is simply $F_{CS} = \frac{1}{2} \log k$. (Witten)
- ▶ When the gauge theory is coupled to N_D massless Dirac fermions and N_s massless complex scalars, we find

$$F = N_D F_D + N_s(2F_s) + \frac{1}{2} \log \left[\pi \sqrt{\left(\frac{N_D + N_s}{8}\right)^2 + \left(\frac{k}{\pi}\right)^2} \right] + O(1/(N_D + F_s)).$$

Schematically this is derived as follows. Consider N_D Dirac fermions ψ_{α} ...

$$Z=rac{1}{\mathsf{Vol}(G)}\int DA\,D\psi\,e^{-S[A,\psi]}\,.$$

Write $A = B + d\phi$, where d * B = 0. Integrating over ψ gives effective action for B ...

$$Z \approx e^{-F_0} \int DB \ e^{-S_{\text{eff}}^{\text{vec}}[B]}$$

with ...

$$\begin{split} S_{\rm eff}^{\rm vec}[B] &= \frac{ik}{4\pi} \int B \wedge dB \\ &- \frac{1}{2} \int d^3r \, \sqrt{g(r)} \int d^3r' \, \sqrt{g(r')} B_\mu(r) B_\nu(r') \, \big\langle J^\mu(r) J^\nu(r') \big\rangle_{\rm free}^{S^3} \; . \end{split}$$

$$J^{\mu}(r) = \bar{\psi}_{\alpha}(r)\gamma^{\mu}\psi_{\alpha}(r) \Rightarrow \langle J^{\mu}(r)J^{\nu}(0)\rangle_{\text{free}}^{\mathbb{R}^{3}} = \frac{N_{D}}{8\pi^{2}}\frac{|r|^{2}\delta^{\mu\nu} - 2r^{\mu}r^{\nu}}{|r|^{6}}.$$

 $ightharpoonup \mathcal{N}=1$ SUSY multiplets in 4d become $\mathcal{N}=2$ SUSY multiplets in 3d under dimensional reduction.

 $\mathcal{N}=2$ vector multiplet: gauge field A_{jj} , real scalar σ_j complex spinor λ all in the adjoint representation.

 $\mathcal{N}=2$ chiral multiplet: complex scalar $lpha_{\ell}$ complex spinor lpha

Pirsa: 12100054 Page 78/112

- ${\cal N}=1$ SUSY multiplets in 4d become ${\cal N}=2$ SUSY multiplets in 3d under dimensional reduction.
- ▶ $\mathcal{N}=2$ vector multiplet: gauge field A_{μ} , real scalar σ , complex spinor λ all in the adjoint representation.

 $\mathcal{N}=4$ vector multiplet: $\mathcal{N}=2$ vector — chiral multiplet

Pirsa: 12100054 Page 79/112

- ${\cal N}=1$ SUSY multiplets in 4d become ${\cal N}=2$ SUSY multiplets in 3d under dimensional reduction.
- $\mathcal{N}=2$ vector multiplet: gauge field A_{μ} , real scalar σ , complex spinor λ all in the adjoint representation.
- $ightharpoonup \mathcal{N}=2$ chiral multiplet: complex scalar ϕ , complex spinor ψ .

 $\mathcal{N}=4$ vector multiplet: $\mathcal{N}=2$ vector — chiral multiplet.

 $\mathcal{N} = 4$ hypermultiplet: two $\mathcal{N} = 2$ chiral multiplets in conjugate representations.

Pirsa: 12100054 Page 80/112

- $\mathcal{N}=1$ SUSY multiplets in 4d become $\mathcal{N}=2$ SUSY multiplets in 3d under dimensional reduction.
- $\mathcal{N}=2$ vector multiplet: gauge field A_{μ} , real scalar σ , complex spinor λ all in the adjoint representation.
- $ightharpoonup \mathcal{N}=2$ chiral multiplet: complex scalar ϕ , complex spinor ψ .
- $\triangleright \mathcal{N} = 4$ vector multiplet: $\mathcal{N} = 2$ vector + chiral multiplet.

 $\mathcal{N}=4$ hypermultiplet: two $\mathcal{N}=2$ chiral multiplets in conjugate representations.

- $\mathcal{N}=1$ SUSY multiplets in 4d become $\mathcal{N}=2$ SUSY multiplets in 3d under dimensional reduction.
- ▶ $\mathcal{N}=2$ vector multiplet: gauge field A_{μ} , real scalar σ , complex spinor λ all in the adjoint representation.
- $ightharpoonup \mathcal{N}=2$ chiral multiplet: complex scalar ϕ , complex spinor ψ .
- $ightharpoonup \mathcal{N}=4$ vector multiplet: $\mathcal{N}=2$ vector + chiral multiplet.
- $\mathcal{N}=4$ hypermultiplet: two $\mathcal{N}=2$ chiral multiplets in conjugate representations.

▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)

We get an exact result:

Pirsa: 12100054 Page 83/112

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, \mathcal{V}\}$

We get an exact result:

Pirsa: 12100054 Page 84/112

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, \mathcal{V}\}$
 - $lackbox{ }Q$ is a supercharge and $\{Q,\mathcal{V}\}$ is positive definite

We get an exact result:

And his hours see a least a le

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, V\}$
 - ightharpoonup Q is a supercharge and $\{Q, \mathcal{V}\}$ is positive definite
 - ▶ Z_{S^3} is independent of t:

$$rac{dZ_{S^3}}{dt} = -\int DX\{Q,\mathcal{V}\}e^{-S_t} = \int DX\ Q\cdot \left(\mathcal{V}e^{-S_t}\right) = 0$$
 .

Take t large. localize to configurations $\{Q, V\}$

We get an exact result:

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, V\}$
 - ightharpoonup Q is a supercharge and $\{Q, \mathcal{V}\}$ is positive definite
 - ▶ Z_{S^3} is independent of t:

$$rac{dZ_{S^3}}{dt} = -\int DX\{Q,\mathcal{V}\}e^{-S_t} = \int DX\ Q\cdot \left(\mathcal{V}e^{-S_t}\right) = 0$$
 .

Take t large, localize to configurations $\{Q, \mathcal{V}\} = 0$.

We get an exact result:

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, V\}$
 - ightharpoonup Q is a supercharge and $\{Q, \mathcal{V}\}$ is positive definite
 - ▶ Z_{S^3} is independent of t:

$$rac{dZ_{S^3}}{dt} = -\int DX\{Q,\mathcal{V}\}e^{-S_t} = \int DX\ Q\cdot \left(\mathcal{V}e^{-S_t}\right) = 0 \ .$$

- ▶ Take t large, localize to configurations $\{Q, \mathcal{V}\} = 0$.
- We get an exact result:

$$Z_{S^3} = \sum_{\{Q, \mathcal{V}\}=0} e^{-S_t|_{\{Q, \mathcal{V}\}=0}} \int D(\delta X) e^{-\frac{1}{2} \int d^3 x \sqrt{g} \frac{\delta^2 S_t}{\delta X^2} \Big|_{\{Q, \mathcal{V}\}=0} (\delta X)^2}$$

In practice we can take $\mathcal{V} = \mathcal{T}r\left((\mathcal{Q}\lambda)^*\lambda\right)$ for vector multiplets and $\mathcal{V} = \mathcal{T}r\left((\mathcal{Q}x)^*\lambda^* + r^*(\mathcal{Q}x^*)^*\right)$ for chiral multiplets.

- ▶ The goal is exactly evaluate $Z_{S^3} = \int DXe^{-S}$ with $N \ge 2$ SUSY. (Kapustin, Willett, Yaakov, Jafferis, Pestun)
- ▶ Idea: deform the action: $S_t = S + t\{Q, V\}$
 - ightharpoonup Q is a supercharge and $\{Q, \mathcal{V}\}$ is positive definite
 - $ightharpoonup Z_{S^3}$ is independent of t:

$$rac{dZ_{S^3}}{dt} = -\int DX\{Q,\mathcal{V}\}e^{-S_t} = \int DX\;Q\cdot\left(\mathcal{V}e^{-S_t}
ight) = 0\;.$$

- ▶ Take t large, localize to configurations $\{Q, \mathcal{V}\} = 0$.
- ► We get an exact result:

$$Z_{S^3} = \sum_{\{Q, \mathcal{V}\} = 0} e^{-S_t|_{\{Q, \mathcal{V}\} = 0}} \int D(\delta X) e^{-\frac{1}{2} \int d^3 x \sqrt{g} \frac{\delta^2 S_t}{\delta X^2} \Big|_{\{Q, \mathcal{V}\} = 0}} (\delta X)^2$$

▶ In practice we can take $\mathcal{V} = Tr\left((Q\lambda)^{\dagger}\lambda\right)$ for vector multiplet and $\mathcal{V} = Tr\left[(Q\psi)^{\dagger}\psi + \psi^{\dagger}(Q\psi^{\dagger})^{\dagger}\right]$ for chiral multiplet.

▶ $\mathcal{N}=4$ U(1) theory with k=0 and N pairs of oppositely charged chiral multiplets.

$$Z = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma\left(\frac{N}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N+1}{2}\right)}.$$

Expanding this at large N

$$F = -\log Z = N\log 2 + rac{1}{2}\log\left(rac{N\pi}{2}
ight) - rac{1}{4N} + rac{1}{24N^3} + \dots$$

This first two terms match exactly our non-SUSY result from two slides ago!

▶ $\mathcal{N} = 4$ U(1) theory with k = 0 and N pairs of oppositely charged chiral multiplets.

$$Z = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma\left(\frac{N}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N+1}{2}\right)}.$$

Expanding this at large N ...

$$F = -\log Z = N\log 2 + \frac{1}{2}\log\left(\frac{N\pi}{2}\right) - \frac{1}{4N} + \frac{1}{24N^3} + \dots$$

This first two terms match exactly our non-SU two slides ago!

We can repeat this with Chern-Simons level (without a superpotential (N=2) ...

▶ $\mathcal{N} = 4$ U(1) theory with k = 0 and N pairs of oppositely charged chiral multiplets.

$$Z = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma\left(\frac{N}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N+1}{2}\right)}.$$

Expanding this at large N ...

$$F = -\log Z = N\log 2 + \frac{1}{2}\log\left(\frac{N\pi}{2}\right) - \frac{1}{4N} + \frac{1}{24N^3} + \dots$$

This first two terms match exactly our non-SUSY result from two slides ago!

▶ We can repeat this with Chern-Simons level ($\mathcal{N}=3$) and without a superpotential ($\mathcal{N}=2$) ...

CONTRACTOR STATES

 $ightharpoonup \mathcal{N} = 4\ U(1)$ theory with k=0 and N pairs of oppositely charged chiral multiplets.

$$Z = \frac{1}{2^N} \int_{-\infty}^{\infty} \frac{d\lambda}{\cosh^N(\pi\lambda)} = \frac{2^{-N} \Gamma\left(\frac{N}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N+1}{2}\right)}.$$

Expanding this at large N ...

$$F = -\log Z = N\log 2 + \frac{1}{2}\log\left(\frac{N\pi}{2}\right) - \frac{1}{4N} + \frac{1}{24N^3} + \dots$$

This first two terms match exactly our non-SUSY result from two slides ago!

▶ We can repeat this with Chern-Simons level ($\mathcal{N}=3$) and without a superpotential ($\mathcal{N}=2$) ...

▶ The R-symmetry in $\mathcal{N}=2$ theories is abelian. R-symmetry at IR fixed point is not necessarily the same as R-symmetry in the UV.

 $R ext{-}\mathsf{charge}$ can mix with other abelian symmetries

$$\mathcal{R}[X_l] = r_l - \sum_j t_j Q_l^{\alpha_j}$$
.

where r_i is the UV R-charge, the Q_i^{α} are the charges of the field X_i under abelian Q^{α} .

Z-extremization: $\partial_{T_n}Z_{S^3}$ is proportional to a 1-point function. which vanishes at IR CFT (Jafferis).

- The R-symmetry in $\mathcal{N}=2$ theories is abelian. R-symmetry at IR fixed point is not necessarily the same as R-symmetry in the UV.
- ▶ R-charge can mix with other abelian symmetries:

$$R[X_i] = r_i + \sum_a t_a Q_i^a ,$$

where r_i is the UV R-charge, the Q_i^a are the charges of the field X_i under abelian Q^a .

Z-extremization: $\partial_{T_n} Z_{S^3}$ is proportional to a 1-point function. which vanishes at IR CFT (Jafferis).

F-maximization: $\int_{r_a/r_B}^{r_a} \propto \int \langle J_a J_b
angle$, which is negative definite (Closset et al.)

- The R-symmetry in $\mathcal{N}=2$ theories is abelian. R-symmetry at IR fixed point is not necessarily the same as R-symmetry in the UV.
- R-charge can mix with other abelian symmetries:

$$R[X_i] = r_i + \sum_a t_a Q_i^a ,$$

where r_i is the UV R-charge, the Q_i^a are the charges of the field X_i under abelian Q^a .

▶ Z-extremization: $\partial_{t_a} Z_{S^3}$ is proportional to a 1-point function, which vanishes at IR CFT (Jafferis).

- The R-symmetry in $\mathcal{N}=2$ theories is abelian. R-symmetry at IR fixed point is not necessarily the same as R-symmetry in the UV.
- R-charge can mix with other abelian symmetries:

$$R[X_i] = r_i + \sum_a t_a Q_i^a ,$$

where r_i is the UV R-charge, the Q_i^a are the charges of the field X_i under abelian Q^a .

- ▶ Z-extremization: $\partial_{t_a} Z_{S^3}$ is proportional to a 1-point function, which vanishes at IR CFT (Jafferis).
- ▶ F-maximization: $\frac{\partial^2 F}{\partial t_a \partial t_b} \propto \int \langle J_a J_b \rangle$, which is negative definite (Closset et al.)

• $\mathcal{N}=2$ U(1) at CS level k and N pairs of oppositely charged chiral multiplets (Q,\tilde{Q}) .

The R-symmetry can mix with the U(1) which rotates Q and $ilde{\mathcal{O}}$ by the same phase

Partition function as a function of trial R-charge Δ

 $Z = \int_{-\infty}^{\infty} d\lambda \, e^{i\pi k \lambda^2} e^{N(r(1-\Delta-l\lambda)+r(1-\Delta-l\lambda))} \,.$

where $\partial_z \ell(z) = -\pi z \cot(\pi z)$

Pirsa: 12100054 Page 98/112

- ▶ $\mathcal{N}=2$ U(1) at CS level k and N pairs of oppositely charged chiral multiplets (Q, \tilde{Q}) .
- ▶ The R-symmetry can mix with the U(1) which rotates Q and \tilde{Q} by the same phase.

Partition function as a function of trial K-charge Δ

 $Z = \int \int d\lambda e^{i - \lambda \lambda^2} e^{N(i)(1 - \Delta - i\lambda) + i(1 - \Delta - i\lambda)}$

where $\partial_{z} \ell(z) = -\pi z \cot(\pi z)$

 Δ is the scaling dimension of the flavors! (Darker colors are increasing k from 0 to 4N.)

And treathons

SC a le

- ▶ $\mathcal{N} = 2$ U(1) at CS level k and N pairs of oppositely charged chiral multiplets (Q, \tilde{Q}) .
- ▶ The R-symmetry can mix with the U(1) which rotates Q and \tilde{Q} by the same phase.
- ▶ Partition function as a function of trial R-charge Δ :

$$Z = \int_{-\infty}^{+\infty} d\lambda \, e^{i\pi k\lambda^2} e^{N(\ell(1-\Delta+i\lambda)+\ell(1-\Delta-i\lambda))} \, ,$$

where $\partial_z \ell(z) = -\pi z \cot(\pi z)$.

 Δ is the scaling dimension of the flavors! (Darker colors are increasing k from 0 to 4 N)

- ▶ $\mathcal{N} = 2$ U(1) at CS level k and N pairs of oppositely charged chiral multiplets (Q, \tilde{Q}) .
- ▶ The R-symmetry can mix with the U(1) which rotates Q and \tilde{Q} by the same phase.
- ▶ Partition function as a function of trial R-charge Δ :

$$Z = \int_{-\infty}^{+\infty} d\lambda \, e^{i\pi k\lambda^2} e^{N(\ell(1-\Delta+i\lambda)+\ell(1-\Delta-i\lambda))} \,,$$

where $\partial_z \ell(z) = -\pi z \cot(\pi z)$.

 $ightharpoonup \Delta$ is the scaling dimension of the flavors! (Darker colors are increasing k from 0 to 4N.)

Pirsa: 12100054 Page 101/112

lacktriangle Let's consider $AdS_4 imes Y$ compactifications of M-theory

Pirsa: 12100054 Page 102/112

- Let's consider $AdS_4 \times Y$ compactifications of M-theory
- ▶ To begin, take stack of N_c M2-branes at the tip of a CY cone over Y
- ▶ Zoom in close to the M2-branes (take the near-horizon limit), and the metric becomes $ds_{11}^2 = ds_{AdS_4}^2 + 4L^2ds_Y^2$

Free energy scales as $N_c^{2/5}$, as does the thermal free energy (Klabanov, Tayotlin)

we can compute the free energy in three diffe

- Let's consider $AdS_4 \times Y$ compactifications of M-theory
- ▶ To begin, take stack of N_c M2-branes at the tip of a CY cone over Y
- ▶ Zoom in close to the M2-branes (take the near-horizon limit), and the metric becomes $ds_{11}^2 = ds_{AdS_4}^2 + 4L^2ds_Y^2$
- Free energy scales as $N_c^{3/2}$, as does the thermal free energy (Klebanov, Tsyetlin)

$$F = N_c^{3/2} \sqrt{\frac{2\pi^6}{27 \, \text{Vol}(Y)}}$$

- We can compute the free energy in three different ways and they all agree!
 - We can evaluate the on-shell supergravity action.

- Let's consider $AdS_4 \times Y$ compactifications of M-theory
- ▶ To begin, take stack of N_c M2-branes at the tip of a CY cone over Y
- ▶ Zoom in close to the M2-branes (take the near-horizon limit), and the metric becomes $ds_{11}^2 = ds_{AdS_4}^2 + 4L^2ds_Y^2$
- Free energy scales as $N_c^{3/2}$, as does the thermal free energy (Klebanov, Tsyetlin)

$$F = N_c^{3/2} \sqrt{\frac{2\pi^6}{27 \, \text{Vol}(Y)}}$$

- ► We can compute the free energy in three different ways and they all agree!
 - ▶ We can evaluate the on-shell supergravity action.
 - ▶ We can calculate the EE holographically (next section).
 - We can, in certain cases, calculate F directly in the field theory using localization.

Recall the **renormalized entanglement entropy**, which is a monotonic interpolating function for the F-values along the RG flow:

$$\mathcal{F}(R) = -S(R) + R S'(R).$$

We can construct $\mathcal{F}(R)$ in **free massive theory** by putting the scalars and fermions on the lattice (Srednicki, Casini, Huerta, Liu, Mezei, B.R.S. Klebanov, Pufu, Nishioka)

Pirsa: 12100054 Page 106/112

Massive EE related to the anomaly in higher d (Casini, Huerta):

Consider entanglement entropy of massless scalar field in 4-dimensions across $\Sigma_2 = \Sigma_1 \times S^1$ (Solodhukin):

$$S_{\Sigma_{2}}^{(4)} \equiv \left(\frac{3}{720\pi} \int_{\Sigma_{3}} R_{\Sigma} - \frac{c}{240\pi} \int_{\Sigma_{3}} \left(k_{3}^{\prime\prime\prime} k_{mn}^{3} - \frac{1}{2} k_{3}^{\prime\prime\prime} k_{mn}^{3}\right)\right) \log c$$

KK reduce in direction of S^1 of length L: 3d masses $m^2 = (2 - L)^2 n^2$.

Massive EE related to the anomaly in higher d (Casini, Huerta):

▶ Consider entanglement entropy of massless scalar field in 4-dimensions across $\Sigma_2 = \Sigma_1 \times S^1$ (Solodhukin):

$$S_{\Sigma_2}^{(4)} \supset \left(\frac{a}{720\pi} \int_{\Sigma_2} R_{\Sigma} + \frac{c}{240\pi} \int_{\Sigma_2} \left(k_a^{\mu\nu} k_{\nu\mu}^a - \frac{1}{2} k_a^{\mu\mu} k_{\nu\nu}^a\right)\right) \log \epsilon$$

- ► KK reduce in direction of S^1 of length L: 3d masses $m_n^2 = (2\pi/L)^2 n^2$.
- ▶ Log term in 4d massless EE related to 1/m term in 3d massive EE: $S_{\Sigma_2}^{(4)} \propto \int dm \, S_{\Sigma_1}^{(3)}(m)$.
- (Huerta, B.R.S.) $\mathcal{F}(mR) = \frac{\pi}{24} \left(\frac{1}{mR} + \frac{3}{32} \frac{1}{(mR)^3} + \dots \right)$

A holographic example: the CGLP background

A few more details ...

- The warped product metric looks like $ds^2=H^{-2/3}(-dt^2+dr^2+r^2d\phi^2)+H^{1/3}ds_8^2$
- ▶ ds_8^2 is parameterized by radial coordinate $\tau \in [0, \infty)$ and 7 angles in $V_{5,2}$.
- At $\tau = 0$ an S^3 shrinks to zero size

The minimal surfaces and renormalized EE for this theory looks like ...

Pirsa: 12100054 Page 109/112

Massive EE related to the anomaly in higher d (Casini, Huerta):

▶ Consider entanglement entropy of massless scalar field in 4-dimensions across $\Sigma_2 = \Sigma_1 \times S^1$ (Solodhukin):

$$S_{\Sigma_2}^{(4)} \supset \left(\frac{a}{720\pi} \int_{\Sigma_2} R_{\Sigma} + \frac{c}{240\pi} \int_{\Sigma_2} \left(k_a^{\mu\nu} k_{\nu\mu}^a - \frac{1}{2} k_a^{\mu\mu} k_{\nu\nu}^a\right)\right) \log \epsilon$$

- ► KK reduce in direction of S^1 of length L: 3d masses $m_n^2 = (2\pi/L)^2 n^2$.
- ▶ Log term in 4d massless EE related to 1/m term in 3d massive EE: $S_{\Sigma_2}^{(4)} \propto \int dm \, S_{\Sigma_1}^{(3)}(m)$.
- (Huerta, B.R.S.) $\mathcal{F}(mR) = \frac{\pi}{24} \left(\frac{1}{mR} + \frac{3}{32} \frac{1}{(mR)^3} + \dots \right)$

A holographic example: the CGLP background

- ▶ Holographic prescription for calculating the entanglement entropy (Ryu, Takayanagi, Klebanov, Kutasov, Murugan): find the minimal area codimension 2 hypersurface in the bulk which approaches entangling surface at the boundary: $S_{\Sigma} \propto \int_{\Sigma_{D-2}} d^{D-2} \sigma \sqrt{G_{\rm ind}^{(D-2)}}$
- ▶ A nice example is the CGLP (Cvetic, Gibbons, Lu, Pope) background of M-theory. Supergravity background is a warped product of $\mathbb{R}^{2,1}$ and an eight dimensional Stenzel space (similar to KS background)

$$\sum_{i=1}^5 z_i^2 = \epsilon^2 \,.$$

▶ This background is dual to a confining gauge theory, with UV fixed point dual to $AdS_4 \times V_{5,2}$.

 $V_{5,2}$ is the base of the CY 4-fold ($\epsilon=0$)

A holographic example: the CGLP background

A few more details ...

The warped product metric looks like $ds^2=H^{-2/3}(-dt^2+dr^2+r^2d\phi^2)+H^{1/3}ds_8^2$

The minimal surfaces and renormalized EE for this theory looks like \dots

