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Abstract: <span>It is known that the entanglement entropy of quantum
fields on the black hole

background contributes to the Bekenstein-Hawking entropy,and that its
divergences can be absorbed into the renormalization of gravitational
couplings. By introducing a Wilsonian cutoff scale and the concepts of

the renormalization group, we can expand this observation

into a broader framework for understanding black hole entropy. At a
given RG scale, two contributions to the black hole entropy can be
identified: the "gravitational" contribution coming from the

running effective gravitational action, and the entanglement entropy of the
guantum degrees of freedom below the cutoff scale. At different RG
scales the balance is different, though the total black hole entropy is
invariant. | will describe this picture for free fields,

considering both minimal and non-mininal coupling, and discuss the extension
to interacting fields and the difficulties it raises.</span>
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|.Introduction

Approaches to black hole entropy

1973: Bekenstein postulates that black holes have an entropy proportional to the event horizon area

| 974: Hawking verifies that black holes exhibit thermodynamical properties when quantum field
theory in curved space is taken into account.

, W

—>  Bekenstein-Hawking entropy: S Temperature: > —

27

G

Attempts to understand it: —» e within a fundamental theory of quantum gravity: string theory, LQG.

* within an effective description.
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Approaches to black hole entropy

1973: Bekenstein postulates that black holes have an entropy proportional to the event horizon area

| 974: Hawking verifies that black holes exhibit thermodynamical properties when quantum field
theory in curved space is taken into account.

_ / : W
-  Bekenstein-Hawking entropy: Sy 1c Temperature: B~ =

27

Attempts to understand it: —» e within a fundamental theory of quantum gravity: string theory, LQG.

* within an effective description.

* Zeroth-order, ‘bare gravitational” contribution: from the saddle point evaluation of the Euclidean path
integral for gravity (Gibbons and Hawking 1977).

* Contribution of quantum fields on the gravitational background: scales with the horizon area, but
coefficient is UV divergent.

 Divergence, in principle, absorbable in G renormalization: A o A
(Susskind and Uglum 1994) G, €% Cren
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|.Introduction

Entanglement entropy

Quantum (pure) state |[\P) on a region AuB, can be written in a basis of products of states for each

region. The reduced density matrix pa formed by tracing over the B states has nonzero entropy:

Sy = —"TrpyInp, It can be proven that Sao = Sg.

The entanglement entropy has ultraviolet divergences.With a UV short-distance cutoff ¢, the leading
order scales as the area of the d-2 surface between A and B:

A4y

."f 2

..'!" ~
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On a black hole background, the restriction of the global Hartle-Hawking vacuum to the exterior is a
thermal state at the Hawking temperature

5 DA o—3H A entanglement entropy equals thermal
entropy of the fields in the exterior
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Using a Euclidean partition function representation for the density matrix:
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|.Introduction

Canonical partition function

Consider a partition function including both matter and metric fields. The matter fields integrate out
to give the effective action for gravity, and gravity is treated "‘classically’” with a saddle point evaluation:

. ! . ) g = g(B) solution of the
Z()’) _— / 'Z)U / 'D,J‘ ‘.7('H-lfi";]+"‘;[.tf‘r ]) — / 'D.(j (.*[ oly] ~ o 'ola) effective EOMs.
. . ) o= S, +W
) o o o . ,
Then by thermodynamics: SpH = — -’d_j, — 1) InZ(3) = "(, ;T L) Uolg(9)]
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|.Introduction

Canonical partition function

Consider a partition function including both matter and metric fields. The matter fields integrate out
to give the effective action for gravity, and gravity is treated "‘classically’” with a saddle point evaluation:

. . > ) g = g(B) solution of the
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. . . o= S, +W
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Then by thermodynamics: SpH = — ",j_,' — 1) InZ(3) = -’r/ 7 l olg(/3)]

The on-shell procedure and the off-shell one agree since:

dUolg]  Ololy]

o3 A7

-+~ dg Ol oly] | and the second term vanishes at the
q=i A Jdyg g=10 on-shell metric.

If /o can be approximated as the Einstein-Hilbert action with A=0 and Gibbons-Hawking boundary term, then g

is Euclidean Schwarzschild, and Sg=A/4Go comes only from the boundary term.

So formally the total black hole entropy equals the S, + Sc., and the divergences in the latter (matching those
in the effective action) are renormalized with G.

Can we make the renormalization property explicit in a calculation without dealing with divergences?
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2. RG and BHE: free fields

RG conceptualization of BH entropy

. . 4 Sulgl. Slg.»]
Instead of the integrating out all the martter v

F A
degrees of freedom at once, integrate out only . Su _ + S,
the modes above a Wilsonian scale k. .

The contributions from p > k add up with Sp[g]
into a flowing effective gravitational action
I'k[g] . which reduces to [/ as k—0.

I'[g] can be computed by integrating a flow

p— - (o], Sily. ¥)
equation “upwards” from [/o. No explicit handling |
of UV divergences

S —— S

BTG,
The modes with p < k are still “quantum’™ and
contribute entanglement/thermal entropy.

O el '.H[,‘f]

As one moves the RG scale k, the total entropy \
remains constant while the balancing between Spn = T
the different contributions changes. '
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2. RG and BHE: free fields

Minimally coupled scalar

o~ Trlel — o—Suly /p o 5 VIS (=VIi+RL(=V]))es R.(2) IR cutoff function.
(=0 for z > k?
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2. RG and BHE: free fields

Minimally coupled scalar

: g . L 2y,
o Tolgl — (,—-*".r.l_ffl /’Dv:“_"_' | VTe(—=V3)y

e~ lulyl — o= Suly! / Dyo.e = [ Viwes(—Vi+Ru(=V]))e> R.(2) IR cutoff function.
(=0 for z > k?)
- . | fI)_«R,’_(*\_"'II
I« satisfies the Wetterich flow equation: Al [g) = STr L 3
2 —V2 + R, (—V32)
In this case it is integrated trivially: I | ] | [ ] ! Trl — V-
. — ( — = 1111 e o
g ) 4 MY 0Ly 5 1 V2 + R(—=V2)

The trace has an inbuilt UV cutoff at scale k. It can be computed with a heat kernel expansion.
(Assume Dirichlet boundary conditions).
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The trace has an inbuilt UV cutoff at scale k. It can be computed with a heat kernel expansion.

(Assume Dirichlet boundary conditions).

The entropy is computed evaluating at the Euclidean black hole metric and applying (f# d; - |):

»

A A . AL
1(1"“ l(l‘,‘l ll\;ﬁ

S

I » Can be identified with the entanglemet entropy
of (Euclidean!) modes below scale k.
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2. RG and BHE: free fields

Non-minimal coupling

l ' D] -
S .H',,[_f/l + 5 / \/‘_ (=N~ 4+ £ )y

The framework is applied in the same way:

I- I ] - 1» I ] - i'I“.l Atf 5
kl¥ NN =5 R RAA) | A, ==V, +&R

Assuming Dirichlet boundary conditions, the result is different for the running of G in the bulk term and
the boundary term. (See also Becker and Reuter 2012).

The running of boundary G is not affected by the & term, so the entropy comes out equal to the one for
minimal coupling.

We can use an alternative (Robin) boundary condition: (Vg —ER )| =0

Then boundary G and bulk G run in the same way:

o A A A 2 1
CEH T G, 4G, 4 2z \6 °
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3. RG and BHE: interacting fields

Interacting fields

For interacting fields, we need to keep track of how the matter action changes with RG scale.
We define the Wilsonian effective action Si by:

(3~Sk|9=¢1 _ D(p 6 1 J‘{p(fvi+nk(kv§))¢fsbzg,¢,+w] Sbl - gravuf:atlcfnal bare action,
plus non-kinetic terms of matter
bare action.

Sklg, » = 0] = I'k|g] Gravitational effective action.

Sklg,?) — Tklg] = .E:'k g, @] Wilsonian effective action for the interactions of ¢» modes below k.
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3. RG and BHE: interacting fields

Interacting fields

For interacting fields, we need to keep track of how the matter action changes with RG scale.
We define the Wilsonian effective action Si by:

o~ Sklg.®] _ Dpe L e(—V24+Re(—V32))p—Su(g,0+¢) Sbl = gravitational bare action,
plus non-kinetic terms of matter
bare action.

Sklg, » = 0] = I'k|g] Gravitational effective action.
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Then the black hole entropy is partitioned as:

Spn = (B3 — 1)I'k[g] — (BIs — 1) In [Nk (g] /qu)e_i .!'01’:;"0—5'kl§,¢]]
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3. RG and BHE: interacting fields

Momentum space entanglement?

Balasubramanian, McDermott and Van Raamsdonk (201 |) point out that in an interacting quantum field
theory, there is mutual entanglement between modes above and below a certain scale.

A simple order of magnitude estimate shows that this entanglement entropy scales as the volume of
spacetime and hence dominates over the spatial horizon entanglement entropy.

This entropy seems absent from our description.
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3. RG and BHE: interacting fields

Momentum space entanglement?

Balasubramanian, McDermott and Van Raamsdonk (201 |) point out that in an interacting quantum field
theory, there is mutual entanglement between modes above and below a certain scale.

A simple order of magnitude estimate shows that this entanglement entropy scales as the volume of
spacetime and hence dominates over the spatial horizon entanglement entropy.

This entropy seems absent from our description.

Answer:

It is misleading to describe the entropy computed from a partition function over the lower modes using
Sk as “‘the entropy of the lower modes’.

The partition function with a Wilsonian action is equivalent to the full theory, it does not involve tracing

over the upper modes and losing information. We are just identifying an “effective gravitational” and an
“effective quantum matter’ term in this description.
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4. Conclusions

Summary

* Black hole entropy, in a semiclassical approximation, comes from the full effective action for
gravity evaluated on shell. Formally, S = Sy + Sent, but this needs regularizing divergences.

* WWith a sliding RG scale k, the entropy comes partly from a flowing gravitational effective
action, partly from the “lower’” path integral using the Wilsonian effective action for the

quantum theory.

* For free fields, there is a clean interpretation for the latter contribution as the entropy of
the modes below k (just entanglement entropy, or also Wald entropy for nonminimally

coupled fields).
* (However, it is problematic to trace back this into the Lorentzian theory!)

e For interacting fields, we can still track both contributions with the Polchinski equation, but
we cannot in general make this interpretation due to the momentum entanglement of the
“upper’ and the “lower’ subsystems.
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