Title: Astrophysical shear-driven turbulence
Date: Oct 17, 2012 02:00 PM
URL: http://pirsa.org/12100043
Abstract: Astronomical hydrodynamics is usually almost ideal in the sense that the Reynolds number (Re) is enormous and any effective viscosity must be due to shocks or turbulence.\ Astronomical magnetohydrodynamics (MHD) is often also nearly ideal, so that magnetic fields and plasma are well coupled.\ In particular, dissipation of orbital energy in accretion disks around black holes is readily explained by MHD turbulence.\ On the other hand, the planet-bearing disks around protostars are magnetically far from ideal because of very low fractional ionization.\ MHD turbulence is at best marginal in these disks, yet accretion is observed.\ The Reynolds numbers based on orbital-velocity gradients are enormous, so by analogy with high-Re terrestrial flows, one might expect hydrodynamic (i.e., unmagnetized) turbulence.\ Direct numerical simulations indicate that such turbulence is somehow suppressed by keplerian rotation, though the mechanism is
unclear and the simulations are limited in Re.\ Recently, a few groups have studied the question via Taylor-Couette experiments at somewhat higher Re, obtaining conflicting results.\ Complicating and enriching this debate is the recent discovery that turbulence tends to have a finite lifetime in shear flows that admit a formally linearly stable laminar solution: this includes flow in smooth pipes and probably also unmagnetized keplerian disks.\ Some suggestions will be offered as to how these open questions might be resolved.

Astrophysical Turbulence

Jeremy Goodman
Princeton University

Perimeter Institute
17 October 2012

d2CMSO

Turbulence is an old problem

Snascural-Diecortation
sur trangung dor poktoretirdo dor
Mohon ph1200ghinchon Thautert II sootion

vorgologt men 10.0411 1023
von
Hornor Yot bonborg.

Plan of talk

- Types of astrophysical turbulence
- Accretion disks \& shear-driven turbulence
- Magnetorotational instability
- Two major developments in turbulence
- Transience
- Structures
- Quasi-keplerian hydrodynamic shear flow

Acknowledgments

Collaborators:

Hantao ji, Princeton Plasma Physics Lab
Xue-Ning Bai, Princeton
Michael Burin, Cal State San Marcos
Eric Edlund, PPPL
Jose Garmilla, Princeton
Christophe Gissinger, ENS, Paris
Isom Herron, Rensselaer Polytechnic Inst.
Akira Kageyama, Kobe University
Wei Liu, M.D.Anderson Cancer Ctr.
Mark Nornberg, UWisconsin Madison
Austin Roach, PPPL
Ethan Schartman, Nova Photonics \& PPPL
Erik Spence, PPPL
Funding:
NASA, NSF, DOE
Center for Magnetic Self-Organization

Varieties of turbulence

Shocks
[NASA/CSX/SAO/MPIA]

Jets
[NRAO/VLA/Perley et al. 1984]

Turbulent processes

- Dissipation
- Mixing \& Transport
- heat, momentum, composition
- Magnetic-field generation
- Particle acceleration

Intractable problems in astrophysics

Process	Fudge factor Parameter $\alpha=l_{M} / H_{P}$
Convection	$\alpha=T_{r \phi} / P$
Accretion	$\alpha=\bar{E} / \bar{B}$
Dynamo	$Q=\omega_{\text {iuc }} \Delta E_{\text {pox }} / E$
Tides	$V_{\text {rcomm }} / V_{A}$
Reconnection	

Disks

planetary rings
$r \sim 10^{4}-10^{5} \mathrm{~km}$
rocks, ices
debris disks
$r \sim 10^{9} \mathrm{~km} \sim 100 \mathrm{AU}$)
dust

galactic disks
$r \sim 10^{17} \mathrm{~km} \sim 10^{4} \mathrm{lt}-\mathrm{yr}$
stars+gas+dust

Disks

planetary rings

$r \sim 10^{4}-10^{5} \mathrm{~km}$
rocks, ices
debris disks
$r \sim 10^{9} \mathrm{~km} \sim 100 \mathrm{AU}$)
Common dynamical properties

Rotation balances gravity: $\frac{V_{\phi}^{2}}{r} \approx \frac{G M(r)}{r^{2}}$

Thickness is often small: $\underline{\Delta z} \approx \underline{\text { sound speed or random velocity }}$

protostellar disks
$\left.r \sim 10^{9} \mathrm{~km} \sim 100 \mathrm{AU}\right)$
gas+dust (+planets?)

Accretion disks

- A disk, usually gaseous, whose material flows gradually onto the central object
- $\quad t_{\text {flow }} \gg \Omega^{-1} \equiv r / V_{\phi}$
- Accretion liberates gravitational potential energy
- available for radiation or outflow
- $\sim 0.1 c^{2} \Delta M$ for neutron-star or black-hole accretors
- Orbital angular momentum must be removed
- transport through the disk ("viscosity")
- magnetocentrifugal wind or jet
- tides from a companion

Accretion disks: CVs

Cataclysmic Variables
$r \sim 10^{4}-10^{6} \mathrm{~km} \sim R_{\oplus}-R_{\odot}$
Above: artist's conception (K. Smale)
Below: Doppler tomography (D. Steeghs et al.)

Kepler light curve of VI504 Cygni (Cannizzo et al. 201I)

X-ray binaries

- Neutron star or black hole accretor

$$
M_{\mathrm{ns}} \sim 1.4 M_{\odot} ; \quad M_{\mathrm{bh}} \sim 10 M_{\odot}
$$

- Higher luminosity \& harder spectrum than CVs
- Deep gravitational potential

$$
\frac{G M_{*}}{r_{\text {min }}} \sim 0.1 c^{2}
$$

Protoplanetary disks

Artist's impression

HH-30 (HST/NASA)

Protostellar disks

- Mostly neutral gas: $\mathrm{H}_{2}, \mathrm{He}$
- traces of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \ldots$
- $\sim 1 \%$ dust by mass
- cool: $10-10^{3} \mathrm{~K}$
- $M_{\text {disk }} \sim 10^{-3}-10^{-1} \mathrm{M}_{\odot}$
- Accretion $\sim 10^{-8} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$

$$
L_{\text {disk }} \approx \dot{M} \frac{G M_{.}}{R_{.}} \sim L_{.}
$$

- Nonthermal ionization by stellar X-rays, cosmic rays

$$
n(e) \lesssim 10^{-11} n\left(\mathrm{H}_{2}\right)
$$

Magnetorotational instability

MRI: Open issues

- It is a linear instability only if the magnetic field is given as part of the background state; else the turbulence itself must generate a large-scale field
- magnetic dynamo problem
- subcritical instability
- Even linear instability fails when the disk is a poor electrical conductor
- protostellar disks are problematic
- nonthermal ionization is required
- dust tends to soak up free electrons

New paradigm for nonlinear turbulent transition in linearly stable flows

New paradigm for nonlinear turbulent transition in linearly stable flows

- Turbulence is transient unless continually forced

New paradigm for nonlinear turbulent transition in linearly stable flows

- Turbulence is transient unless continually forced
- Lifetime at a given $R e$ is stochastic \& exponentially distributed
- Mean lifetime increases (super-?)exponentially with $R e$
- Applies also to zero-net-flux MRI
- Characteristic structures occur near transition

New paradigm for nonlinear turbulent transition in linearly stable flows

- Turbulence is transient unless continually forced
- Lifetime at a given $R e$ is stochastic \& exponentially distributed
- Mean lifetime increases (super-?)exponentially with $R e$
- Applies also to zero-net-flux MRI
- Characteristic structures occur near transition
- reproduced by semianalytic calculations for simple wall-bounded---and linearly stable---flows
- plane-Couette, pipe (cylindrical Pouseille) flow
- also for cyclonic ($d \ln \Omega / d r>0$) but not anti-cyclonic ($d \ln \Omega$ wall-bounded flow (Rincon, Ogilvie, \& Cossu 2007).

Reynolds number

or, in other words, steady direct motion in round tubes is stable or unstable according as

$$
\rho \frac{\mathrm{DU}_{m}}{\mu}<1900 \text { or }>2000
$$

---Reynolds (1883, 1895)
$\operatorname{Re}=($ lengthscale $) \times($ timescale $) /($ kinematic viscosity $)$
kinematic viscosity: $v=\mu / \rho$ (water: $0.01 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$)

$R e \ll 1$
Re»1

Transient turbulence

Pipe flow
Peixinho \& Mullin (2006)

TC flow*
Borerro-Echeverry et al. (2010)

$$
\text { linearly stable: } \frac{d \ln \Omega}{d r}>0(\text { "cyclonic" })
$$

Lifetime vs. Reynolds number

Pipe flow
Peixinho \& Mullin (2006)

Lifetime vs. Reynolds number

Pipe flow
Avila et al. (2010)

Lifetime vs. Reynolds number

Pipe flow
Avila et al. (2010)

TC flow
Borerro-Echeverry et al. (2010)

Zero-net-flux MRI

Phase space of plane Couette flow

Phase space of plane Couette flow

Characteristic structures

FIG. 1. Sketch of the coherent structure educed from DNS data, from Ref. [3], see also [4].

Liftoff vortices and streaks in plane Couette flow Stretch (1990), reproduced by Waleffe (1998)

Waleffe (1998)

Why exponential scaling? A modest proposal

- Structures have size $l \sim \sqrt{v / S}$ (at least near "transition")
- Maximum number in volume V is $N(V) \sim V / l^{3} \propto \operatorname{Re}^{3 / 2}$ [or $R e^{9 / 4}$?]
- Individual structures have mean lifetime \bar{t}_{1} but may reproduce independently
- A colony of size N dies only if all members die before reproducing
\Rightarrow Mean lifetime of the colony $\bar{t}_{N} \sim \exp (c N) \bar{t}_{1} \sim \exp \left(c^{\prime} R e^{3 / 2}\right) \bar{t}$.

Why exponential scaling? A modest proposal

- Structures have size $l \sim \sqrt{V / S}$ (at least near "transition")
- Maximum number in volume V is $N(V) \sim V / l^{3} \propto R e^{3 / 2}$ [or $R e^{9 / 4}$?]
- Individual structures have mean lifetime \bar{t}_{1} but may reproduce independently
- A colony of size N dies only if all members die before reproducing
\Rightarrow Mean lifetime of the colony $\bar{t}_{N} \sim \exp (c N) \bar{t}_{1} \sim \exp \left(c^{\prime} R e^{3 / 2}\right) \bar{t}$.

Why exponential scaling? A modest proposal

- Structures have size $l \sim \sqrt{V / S}$ (at least near "transition")
- Maximum number in volume V is $N(V) \sim V / l^{3} \propto R e^{3 / 2}$ [or $R e^{9 / 4}$?]
- Individual structures have mean lifetime \bar{t}_{1} but may reproduce independently
- A colony of size N dies only if all members die before reproducing
\Rightarrow Mean lifetime of the colony $\bar{t}_{N} \sim \exp (c N) \bar{t}_{1} \sim \exp \left(c^{\prime} R e^{3 / 2}\right) \bar{t}$.

Survival-Extinction Transition in Bacteria Growth.

M. Y Y . Azbel

Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and
Astronomy, Tel Aviv University - Ramat Aviu, Tel Aviv 69978, Israel
(received 23 November 1992; accepted 12 March 1993)
PACS. 87.20 C - General theorien of interfacea.
PACS. 64.60 C Onder thorder and atatititical mechnice of model syytems.
PACS. 64.70 D - Solid-solid tranaitions. Abstract. -1 study an ensemble of bacteris colonies. Finite-size colonieses always die out. Their
Iffetime t, ise either sizize independent or exponentially increases with size. In the lateter caue, their Iffetime mean quadratic fuctuation ti tis large compared thether representative average lifetime
 spreading-percolation phenomena.

New paradigm for nonlinear turbulent transition in linearly stable flows

- Turbulence is transient unless continually forced
- Lifetime at a given $R e$ is stochastic \& exponentially distributed
- Mean lifetime increases (super-?)exponentially with $R e$
- Applies also to zero-net-flux MRI
- Characteristic structures occur near transition
- reproduced by semianalytic calculations for simple wall-bounded---and linearly stable---flows
- plane-Couette, pipe (cylindrical Pouseille) flow
- also for cyclonic ($d \ln \Omega / d r>0$) but not anti-cyclonic ($d \ln \Omega / d r<0$) wall-bounded flow (Rincon, Ogilvie, \& Cossu 2007).
- dissipative (viscous, resistive) but steady solutions
- themselves unstable

Differential rotation

Frequency

Rotation: $\Omega(r)$
Shear: $\quad r \frac{d \Omega}{d r} \equiv S$
Vorticity: $\frac{1}{r} \frac{d}{d r}\left(r^{2} \Omega\right)=S+2 \Omega$
Epicyclic: $\sqrt{\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Omega\right)^{2}}=\sqrt{2 \Omega(S+2 \Omega)} \equiv \kappa$

Keplerian value
$\propto r^{-3 / 2}$
$-\frac{3}{2} \Omega$
$+\frac{1}{2} \Omega$
Ω

Differential rotation

Frequency

Rotation: $\Omega(r)$
Shear: $\quad r \frac{d \Omega}{d r} \equiv S$
Vorticity: $\frac{1}{r} \frac{d}{d r}\left(r^{2} \Omega\right)=S+2 \Omega$
Epicyclic: $\sqrt{\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Omega\right)^{2}}=\sqrt{2 \Omega(S+2 \Omega)} \equiv \kappa$

Keplerian value
$\propto r^{-3 / 2}$
$-\frac{3}{2} \Omega$
$+\frac{1}{2} \Omega$
Ω

Differential rotation

Frequency	Keplerian value
Rotation: $\Omega(r)$	$\propto r^{-3 / 2}$
Shear: $\quad r \frac{d \Omega}{d r} \equiv S$	$-\frac{3}{2} \Omega$
Vorticity: $\frac{1}{r} \frac{d}{d r}\left(r^{2} \Omega\right)=S+2 \Omega$	$+\frac{1}{2} \Omega$
Epicyclic: $\sqrt{\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Omega\right)^{2}}=\sqrt{2 \Omega(S+2 \Omega)} \equiv \kappa$	Ω
$\kappa^{2}<0 \Rightarrow$ linear instability	

Differential rotation

Frequency	Keplerian value
Rotation: $\Omega(r)$	$\propto r^{-3 / 2}$
Shear: $\quad r \frac{d \Omega}{d r} \equiv S$	$-\frac{3}{2} \Omega$
Vorticity: $\frac{1}{r} \frac{d}{d r}\left(r^{2} \Omega\right)=S+2 \Omega$	$+\frac{1}{2} \Omega$
Epicyclic: $\sqrt{\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Omega\right)^{2}}=\sqrt{2 \Omega(S+2 \Omega)} \equiv \kappa$	Ω
$\kappa^{2}<0 \Rightarrow$ linear instability \quad Marginal stability: $\Omega=0$ or $S=-2 \Omega$	

Differential rotation

Frequency

Rotation: $\Omega(r)$

Shear:

$$
r \frac{d \Omega}{d r} \equiv S
$$

Vorticity: $\frac{1}{r} \frac{d}{d r}\left(r^{2} \Omega\right)=S+2 \Omega$
Epicyclic: $\sqrt{\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \Omega\right)^{2}}=\sqrt{2 \Omega(S+2 \Omega)} \equiv \kappa$
$\kappa^{2}<0 \Rightarrow$ linear instability Marginal stability: $\Omega=0$ or $S=-2 \Omega$

It seems to be very difficult to have turbulence at $\kappa^{2}>0$, except near marginal linear stability, especially when $S / \Omega<0$.

Taylor-Couette experiments

Dimensions	Princeton	Maryland
r_{1}	7 cm	16 cm
r_{2}	21 cm	22 cm
h	28 cm	$70(41) \mathrm{cm}$
Endcaps	independently controlled	fixed to outer

$$
\Omega(r)=A+\frac{B}{r^{2}}
$$

"quasi-keplerian": $A B>0 \Leftrightarrow 0<\kappa^{2}<(2 \Omega)^{2}$

Reynolds number: $\quad R e \equiv \frac{\left(r_{2}^{2}-r_{1}^{2}\right)\left(\Omega_{1}-\Omega_{2}\right)}{v}$

Taylor-Couette experiments

Dimensions	Princeton	Maryland
r_{1}	7 cm	16 cm
r_{2}	21 cm	22 cm
h	28 cm	$70(41) \mathrm{cm}$
Endcaps	independently controlled	fixed to outer

$$
\Omega(r)=A+\frac{B}{r^{2}}
$$

"quasi-keplerian": $A B>0 \Leftrightarrow 0<\kappa^{2}<(2 \Omega)^{2}$

Reynolds number: $\quad \operatorname{Re} \equiv \frac{\left(r_{2}^{2}-r_{1}^{2}\right)\left(\Omega_{1}-\Omega_{2}\right)}{v}$

The Princeton MRI \& HTX Experiments

Laser doppler velocimetry

Ji et al. 2006; Burin et al. 2010; Schartman et al. 2012

Paoletti \& Lathrop (2011)

Paoletti \& Lathrop (2011)

Quiescence at $R e=2 \times 10^{6}$

Quiescence at $R e=2 \times 10^{6}$

Transience

Transience

Stress vs. Rotation number

Evidence for characteristic structures

- By aligning multiple snapshots of the flow at the position of peak Reynolds stress, then averaging
- only the lowest wavenumbers are significant \& reproducible
- By computing bispectra, averaged over snapshots
- the bispectral coefficients so obtained appear not to be consistent with multiple instances (and positions) of a single structure

Summary

- Hydro. turbulence in linearly stable flow has
- finite lifetime, perhaps at all finite Reynolds number
- characteristic nonlinear structures, at least near turb. onset
- This may also be true of zero-net-flux MRI
- Experiments for quasi-keplerian flow at $\operatorname{Re} \sim 10^{6}$ disagree as to whether hydro turbulence exists
- Shearing-box simulations find no turbulence up to $\operatorname{Re} \sim 0.5 \times 10^{6}$ for $\mathrm{K}=\Omega$.
- Preliminary evidence is found for character structures in turbulence with $0 \leq \kappa \ll \Omega$

Summary

- Hydro. turbulence in linearly stable flow has
- finite lifetime, perhaps at all finite Reynolds number
- characteristic nonlinear structures, at least near turb. onset
- This may also be true of zero-net-flux MRI
- Experiments for quasi-keplerian flow at $\operatorname{Re} \sim 10^{6}$ disagree as to whether hydro turbulence exists
- Shearing-box simulations find no turbulence up to $R e \sim 0.5 \times 10^{6}$ for $\mathrm{K}=\Omega$.
- Preliminary evidence is found for characteristic structures in turbulence with $0 \leq \kappa \ll \Omega$

Summary

- Hydro. turbulence in linearly stable flow has
- finite lifetime, perhaps at all finite Reynolds number
- characteristic nonlinear structures, at least near turb. onset
- This may also be true of zero-net-flux MRI
- Experiments for quasi-keplerian flow at $\operatorname{Re} \sim 10^{6}$ disagree as to whether hydro turbulence exists
- Shearing-box simulations find no turbulence up to $R e \sim 0.5 \times 10^{6}$ for $\mathrm{K}=\Omega$.
- Preliminary evidence is found for characteristic structures in turbulence with $0 \leq \kappa \ll \Omega$

