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Abstract: <span>The question of finite range gravity, or equivalently,
whether graviton can have a non-zero mass, has been one of the major challenges
in classical field theory for the last 70 years.

Generically, amassive gravity theory contains an extra

degree in addition to the 5 polarizations of massive graviton, which turns out

to be aghost. Recently, de Rham, Gabadadze and Tolley constructed a nonlinear
theory of massive gravity, which successfully eliminates the ghost. Moreover,
the theory has also phenomenological relevance, since the graviton mass may
account for the accelerated expansion of the present universe, providing an
aternative to dark energy. | will present self-accelerating cosmological
solutions in the framework of this theory. The cosmological perturbations
around these backgrounds have an interesting behavior: instead of the 5 degrees
of freedom expected from amassive spin-2 field, only the 2 gravity wave
polarizations are dynamical, at linear level. However, nonlinear analysis of

the extra modes reveal the existence of ghost instabilities. Thisimplies that
aconsistent universe solution in this theory should be inhomogeneous and/or
anisotropic.</span>
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Why massive gravity?

@ Theoretical motivation: Is there a massive gravity theory
which reduces smoothly to GR in the massless limit? Are
the predictions of GR stable against small graviton mass?
= A major challenge for more than 70 years.

@ Observational motivation: Supernovae = dark energy.
Alternative approach: associate this effect with the gravity
sector, by large distance modifications of GR.

A. Emir Gimrikcltoglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Pirsa: 12100002 Page 2/67



Can graviton have a mass/finite range?

@ Extending linearized GR with a mass term
Lm= mgz; (hm,h/w - h2) : (G =npr+hy)

Fierz, Pauli
@ Massive spin 2 field = 5 dynamical degrees of freedom

@ Discontinuity with GR in the limit mg — O van pDam, Veltman ’70
Zakharov ’70 |

_ _ 1/5
@ Linear theory breaks down at distances r < (mg * rg)
= Non-linear effects can recover continuity Vainshtein /72

@ Since mass term breaks diffeomorphism invariance, there are
generically 6 degrees of freedom. The additional degree has a
wrong sign kinetic term (BD ghost). Boulware, Deser ’72
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Why do we get the ghost degree?

Counting the physical degrees of freedom

Classify perturbations with respect to 3d rotational symmetries:
@ DOF in metric dg,,:

:
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Why do we get the ghost degree?

Counting the physical degrees of freedom

Classify perturbations with respect to 3d rotational symmetries:
@ DOF in metric 6g,,.:

@ dgo, components are non-dynamical:

@ In GR, general coordinate invariance x* — x* + &

C soals D 2 vectors D 0 tonsors

— GR has only 2 tensors (gravity waves).
@ In a generic massive theory, no gauge invariance:

@ However, we expect massive spin—2 particle to have 5
d.of. (1s,2v, 2t). The extra scalar is the BD ghost.
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Covariant EFT formulation
Arkani-Hamed, Georgi, Schwartz '03

@ Mass term breaks general coordinate invariance.

@ Gauge degrees are redundancies of description. Introduce
four scalar (Stlckelberg) fields, one for each broken gauge
degree: ¢? (a=0.1,2,3)

@ Introduce covariant analogue of h,, = 9., — N,

r’)b ’

A h8 ¢ pa __ ya a
Hf”’ = Guv — MNab ();:(f’) g P =X"+7

H,, — h,, in the unitary gauge ¢ = x4.
@ Decoupling limit

1/5

BD ghost < Helicity—0 part of 72, i.e. ngpm? = da7
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Removing the instability
de Rham, Gabadadze '10

@ Generalization of F-P: EH + zero derivative mass terms

2

M2 X
S = 7" / daixX/—g {Ff - mT (Ua(g, H) + Us(g, H) +...)

Ua(g, H) = [H?] - [H]*,
U3(g, H) = C1 [Hs] + CQ[HZ][H] + C;g,[H]:3 ,

(g;”,:UI,,,Jrhi”,:Ijab(');,(,‘)a:"),,q‘)quH“,, , [O]*’Oﬂ,,gl"r!)
@ In the decoupling limit, the mass term is built out of

H‘H.U —_ 2 (:)‘”(.)uﬂ— - (2);’(‘)”71. (:)(T(').f/ s

@ F-P term U is a total derivative in decoupling limit

@ Tune c; at each order by requiring mass terms are full
derivatives in DL. From quintic order on, the terms vanish
identically.

A. Emir Gumrikcltoglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Page 14/67



Pirsa: 12100002

Removing the instability
de Rham, Gabadadze '10

@ Generalization of F-P: EH + zero derivative mass terms

2

M2 .
S = 7" / a>x\/[—g {Ff - mT (Ua(g, H) + Us(g, H) +...)

Ua(g, H) = [H?] - [H]*,
U3(g, H) = C4 [Hs] + CQ[HZ][H] + C;g,[H]:3 ,

(Q;w:U,,,,Jrhi”,:ijab(');,(,")af),,(;‘iquH’“, . [O];O;”,gl”’)
@ In the decoupling limit, the mass term is built out of

H‘H.U — 2 (:)‘”(.)u?-r - (5)“(‘)(771. (.)(T(')V ﬂ-

@ F-P term U is a total derivative in decoupling limit

@ Tune c; at each order by requiring mass terms are full
derivatives in DL. From quintic order on, the terms vanish
identically.

A. Emir Gimrikcltoglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Page 15/67



Pirsa: 12100002

Removing the instability
de Rham, Gabadadze '10

@ Generalization of F-P: EH + zero derivative mass terms

2

M2 X
S = 7" / dix /=g {H - mT (Ua(g, H) + Us(g, H) +...)

Ua(g, H) = [H?] - [H]*,
U3(g, H) = C1 [H3] + CQ[HZ][H] + C;g,[H]:3 ,

(g;w:UI,,,Jrhi”,:”ab(');,(,’)a('),,(;‘)quH’“, . [O];O’””gl”’)
@ In the decoupling limit, the mass term is built out of

H‘H.U — 2 (:)‘”(‘)uﬂ - (:)“(‘)(Tﬂ- (:)(T(').f/ ﬂ-

@ F-P term U is a total derivative in decoupling limit

@ Tune c; at each order by requiring mass terms are full
derivatives in DL. From quintic order on, the terms vanish
identically.

A. Emir Gimrikcltoglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Page 16/67



Pirsa: 12100002

Removing the instability
de Rham, Gabadadze '10

@ Generalization of F-P: EH + zero derivative mass terms

2

M2 .
S = 7" / d*x\/—g {Ff - mT (Ua(g, H) + Us(g, H) + ...

Ua(g, H) = [H?] - [H]*,
U3(g, H) = Cq [Hs] + CQ[HZ][H] . E C;g,[H]:3 ,

(g;”/ :U;urJrh;u/:Uab“ﬂffl’a“rf‘;"bﬂLHpH s [O]*"O;“,gl”’)
@ In the decoupling limit, the mass term is built out of

H‘H.U —_— 2 (:)“(.)uﬂ— - (:)’r,(‘)nﬂ- (.)n-(')u m

@ F-P term U is a total derivative in decoupling limit

@ Tune c; at each order by requiring mass terms are full
derivatives in DL. From quintic order on, the terms vanish
identically.

A. Emir Gimrikcloglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Page 17/67



Nonlinear massive gravity
de Rham, Gabadadze, Tolley '10

@ Impose Poincaré symmetry in the Stlickelberg field space.
Invariant “line element”:

ds3 = 1ap d¢p? dp®

@ Mass term depends only on g,,, and the fiducial metric

a a9 b
f,ru/ = Tlab ()“(;’) (),/(,f)

@ Requiring that the sixth degree (BD ghost) is canceled at
any order, the most general action is:

SmlGyw f] = M2m2 / 0*x\/=G (L2 + asLls + asLa)

L po
lr ’rf

o o [Tper (8 6]
Lo 5t KHK,,

HVf

) er oy - . I"
Lo = e KO, KAK, and K, =60, — (\/g~TF)
1%

Vo

- ¢ €EnfB~d } 16} g y
L4 = L0ams Ko KB KY KO,

@ K,, — 0,0,min DL = L; become total derivatives.
@ Away from the DL, still 5 dof Hassan, Rosen ’11
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Nonlinear massive gravity
de Rham, Gabadadze, Tolley '10

@ Impose Poincaré symmetry in the Stlickelberg field space.
Invariant “line element”:

ds? = nap do? dpP

@ Mass term depends only on g,,, and the fiducial metric

a a0 b
ff”/ = Tab ();r(.r’) ¢

@ Requiring that the sixth degree (BD ghost) is canceled at
any order, the most general action is:
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L po
lf ’rf

" Fpo (& 3
Lo 2 K [IK v

S

) T - ; - . I"
v

Vo

» [§ CA~d ] )J ‘J \)
L4 = T e Ko KB KY KO

@ K,, — 0,0,min DL = L; become total derivatives.
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Massive cosmology

@ A general massive gravity theory with 5 degrees of freedom,
built partly to address the dark energy problem.
= Can we get cosmological solutions?

@ Look for simplest solutions in the simplest version of the theory.

—>Does it work?
(continuity with GR, stability, description of thermal history...)

e yes = predictions of observables to constrain the theory
@ no = relax the solution and/or theory
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Which theory?

Massive gravity zoology in 3+1

@ Drop Poincaré symmetry in the field space
f;uu e ﬁab (‘)‘H.(:/)a (‘)u(/)b )

with generic I_] Hassan, Rosen, Schmidt-May ’11 |

@ Ghost-free bigravity: introduce dynamics for the fiducial

metric Hassan, Rosen ‘11

© Ghost-free trigravity, multigravity etc...  Khosravi et al /11 |

Nomura, Soda ’12 |

AT : d’Amico et al ’12 |
Q CQuasi-dilaton, varying mass, ... Huang, Piae, shou 13 |

The list is still growing...

In this talk, | will only allow extensions of the type 1.
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© Ghost-free trigravity, multigravity etc...  Khosravi et al "11

Nomura, Soda ’'12 j

¥ i d’'Amico et al ’125
Q@ Quasi-dilaton, varying mass, ... fuang, Biao, Zhou ’1|
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Which cosmology?

@ Homogeneous and isotropic universe solution, which can |
accommodate the history of the universe.

@ Preserved homogeneity/isotropy for linear perturbations

@ FRW ansatz for the both physical and fiducial metrics

! : o S I ym
ds? = —N(t)2 di? + a(t)? Q; dx’ dx! Qjj = b + 1nm X

1=K §mx'xm

dS?,-) = _n(q,-‘)O)2 (d(,-f50)2 + (‘«((f)o)z Qi do' do/
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Which cosmology?

@ Homogeneous and isotropic universe solution, which can
accommodate the history of the universe.

@ Preserved homogeneity/isotropy for linear perturbations

@ FRW ansatz for the both physical and fiducial metrics

¢ . 8 I ym
ds? = —N(t)? dt? + a(t)? Q; dx’ dx/ Qjj = 0 + 1nm X

1 K fS’;”X{X”?

de,-) = —n(q‘)o)z (d(f)o)2 + (r((f)o)z Qi do' do/

s this form for f,, the only choice?

@ Case with different f,, — FRW g,,,, S A
Kovamet et ailldli-s Vel koI e 2= Ko b ayashtitrat a2
@ Although background dynamics homogeneous+isotropic,
there is a broken FRW symmetry in the Stlckelberg sector,
which can be probed by perturbations.
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Cosmological solutions for Minkowski fiducial metric
AEG, Lin, Mukohyama '11a

@ No flat FRW, for Minkowski fiducial. d’Amico et al ‘11
@ But open FRW solutions exist

K< p ’
ds? = —N?af? + &2 Q™ ax’ dx/
ds?2 = —rP af? + a2 Q; " ax’ ax/
/ »[n ('1/\/|K] <= Minkowski in open chart

Minkowski in open coordinates

@ Minkowski metric ds3 = —[d¢°)? + 6;d¢'dY |
@ After coordinate transformation

- a(¢®)

¢
Vala{

\/1 + |K|d59'¢/ , ¢ = (\-((f)o)(,f)j !

becomes:

B CC0) Rt V2 Q. ({5 sl g
K] [d(;) ] -+ [(r((p )] QU({(:) 1) do' d¢

@ No closed FRW chart of Minkowski = no closed solution
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Cosmological solutions for Minkowski fiducial metric
AEG, Lin, Mukohyama '11a
@ No flat FRW, for Minkowski fiducial. d’Amico et al ’11

@ But open FRW solutions exist )_ e
ds? = ~N2 a2 + a2 Q" dx!

ds2 = —rP af? + a2 Q; " ax’ ax/
/A »[n ('1/\/|K] «= Minkowski in open chart

Minkowski in open coordinates

@ Minkowski metric dsﬁ, = —[d¢°)® + (S,}-d(ﬁ"d(ﬁf |
|

@ After coordinate transformation

. (4° R 7i ‘
(K)O = (]((K? \/1 + |K|(Njff)'(f)f y (f){ = ("'((J'J)O)(fb’ "

VIKI

becomes:

§ "0 . : f .
ds? = — lo ‘(;‘ ) [de°)? + [a(6®))? Qi({¢'}) do'dey

@ No closed FRW chart of Minkowski = no closed solution
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Cosmological solutions for Minkowski fiducial metric
AEG, Lin, Mukohyama '11a

Equation of motion for ¢° = 3 branches of solutions:
é (@8
(5-vKT) % (%) =0
@ Branch I = a = /|K|N = g, is also Minkowski (open chart)

= No cosmological expansion!

@ Branch Il = J,(a/a) =0

D

J(X) 3+3az3+ a4 —2(14+2a3 4 u,;)X (s + ag) X

1+2n3+n4i\/1+r|3+(|§—n4 .
a=aXs, withXi= = constant
a3 + oy f

For K = 0, this branch not present. Only Branch I remains.
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Cosmological solutions for Minkowski fiducial metric
AEG, Lin, Mukohyama '11a

Equation of motion for ¢° = 3 branches of solutions:
é (@
(5-vKT) % (%) =0
@ Branch I = a = /|K|N = g,,, is also Minkowski (open chart)

= No cosmological expansion!

@ Branch Il = J,(a/a) =0

.

J,(X) 3 I 311":} T~ (X4 2(1 | 2(!\':} 1 rl4)X 1 (flj-; i fl‘q)X‘_

1+2(13+(|4ﬂ:\/1+fl3+(l§—(14 |
a=aXs, with X; = = constant | |
a3 + 04 :

For K = 0, this branch not present. Only Branch I remains.
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Extension to generic fiducial metric
AEG, Lin, Mukohyama '11b

@ Extending the field space metric, the line elements are
ds? = —N2 dt? + a° Q;dx’ dx/
dsz = —n? dt® + o? Q,-jdx" ax/
Generically, we can have spatial curvature with either sign

e.g. at the cost of introducing a new scale (H;), de Sitter fiducial \
can be brought into flat, open and closed FRW form. |

Equations of motion for ¢° = 3 branches of solutions
@ Branch1: aH=aH
« @ Branch IL.. : 2 cosmological branches
(aH —aHy) Jy () =0 at) = Xz a(t)
—= same solution as in Minkowski fiducial
@ Expansion in Branch I can be determined by the matter content

= in principle, can have cosmology.

However, for dS fiducial = Higuchi vs. Vainshtein conflict
Fasiello, Tolley ’12
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Extension to generic fiducial metric
AEG, Lin, Mukohyama '11b

@ Extending the field space metric, the line elements are
ds® = —N2 dt? + a2 Q;dx’ dx/
dsz = —nP di? + o Q,-jdx" ax/

O

Generically, we can have spatial curvature with either sign

e.g. at the cost of introducing a new scale (H), de Sitter fiducial }
can be brought into flat, open and closed FRW form. |

Equations of motion for ¢° = 3 branches of solutions
@ Branchl: aH=aH;

a\ @ BranchlIl. : 2 cosmological branches
(@aH —aHy) Jy (5) =0 ot) = Xy a(t)

== same solution as in Minkowski fiducial
@ Expansion in Branch I can be determined by the matter content

= In principle, can have cosmology.

However, for dS fiducial = Higuchi vs. Vainshtein conflict
Fasiello, Tolley ’12
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Extension to generic fiducial metric
AEG, Lin, Mukohyama '11b

@ Extending the field space metric, the line elements are
ds? = —N2 dt? + a° Q;dx’ dx/
dsz = —n? dt® + o? Q,-jdx" ax/
Generically, we can have spatial curvature with either sign

e.g. at the cost of introducing a new scale (H;), de Sitter fiducial |
can be brought into flat, open and closed FRW form.

Equations of motion for ¢° = 3 branches of solutions
@ Branch1: aH=aH

a\ @ BranchlIl. : 2 cosmological branches
(aH —aHy) J (5) =10 at) = Xy a(t)

== same solution as in Minkowski fiducial
@ Expansion in Branch I can be determined by the matter content

= in principle, can have cosmology.

However, for dS fiducial = Higuchi vs. Vainshtein conflict
Fasiello, Tolley ’12
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Branch I1. : Self-acceleration

@ Evolution of Branch II.., with generic (conserved) matter

H= -8 . 2Ne Sl 1 independent
‘ aN 3H +¥—/\i+M—glﬂe of Hy

Branch - Branch +

]
[

| fl:), { r\:g
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Perturbing the solution

@ Lack of BD ghost does not guarantee stability.

@ Scalar sector may include additional couplings, giving rise
to potential conflict with observations. Does Vainshtein
mechanism still work?

@ Can we distinguish massive gravity from other models of
dark energy/modified gravity?
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b
@ Perturbations in the metric, Stlckelberg fields and matter fields:
goo = —N(O)[1+2¢], g = N(Da(t)B,, gy = &(t) [(x*) + hy]

L
" = X"+ 17 + sn0pn” + O(°), @au=1a)’ + o ) 2o

@ Scalar-vector-tensor decomposition:
o) == D;‘;‘)’ -+ S;‘. i = Dim + 7T,'T ) } D; < Q'f* A Q“D,D]

D'S;=D'n] =D'F =0
hj = 2yQy + (DiD; — 3;A) E + 3(Difj + DiF)) + i Ding = =0

M

@ Gauge invariant variables without Stlckelberg fields:
i s — ~ - 0) 0 2 -

Originate from g,,,, O = oo — L (;-( , = 4/ 4

and matter rw’ds‘,m, , ! 1 i 0 Z - N-} + WE
¢ — nH(NZT), Z' = 3Q"DE + F)
yaz0 1
Y — 32 s AE, Under x* — x* 4 &1 -
Si— x5Fi, " — Z" + ¢&¥

A ated with
@ However, we have 4 more degrees of freedom: Stiickelberg fields

o -
E"=E-2m, F" = F; —2m;
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b
@ Perturbations in the metric, Stlckelberg fields and matter fields:

goo = —N?(t)[1 +2¢], goi = N(ta(t)Bi, g;=a(t) [QU’(XK) i h,;]

1 p,
¢ = X"+ 1+ zn°0n® + O(c°), @aI=al ke

@ Scalar-vector-tensor decomposition:
o /B D;‘;‘)’ -+ S;‘. i = Dim + 7T,'T ) } D; < Q'f* A Q“D,D]

D'S, = D'n] = D'F, = 0
hj = 2yQ; + (DiD; — 30) E + 3(DiFj + DiFi) + i Dy =~ =0

@ Gauge invariant variables without Stlckelberg fields:

n 0) 0 v I
Originate from g,, .. O! — (5(7’ —_— ﬁzn-( , Z = _ a A a E
and matter fields 5o / N/ -+ NZ

~® = 6— 1H(NZ), Z' = }QV(DE + F))
_ a0 1
v = ¢- gZ . - EAE' Under x* — x* + &/ -
B = S-3Fi, " — Z* 4 &+

A ated with
@ However, we have 4 more degrees of freedom: Stiickelberg fields

e -
E"=E-2m, F" = F; —2m;
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b
@ Perturbations in the metric, Stlckelberg fields and matter fields:

goo = —N?(t)[1 +2¢], goi = N(ta(t)Bi, g;=a(t) [Q,}-(x") i h,;]

1
¢ = X"+ 1+ zn°0n® + O(c°), (REI=a ey

@ Scalar-vector-tensor decomposition:
.:"j)j — D.Hj, -+ S} ) i = Di?l- = TriT ) } D"l < Q'f ? /\ QU D' Df

D'S;=D'n{ =D'Fi =0
hj = 2yQ; + (DiD; — 30) E + 3(DiF; + DFi) + v D'yj=7 =0

@ Gauge invariant variables without Stlckelberg fields:

i . Y 0) 0 2 -
Originate from gy, .. O! = (5(7’ _— ﬁzn-( , Z = — a A a E
and matter fields 5o / N/ -+ 2NZ

~® = - 1H(NZ), Z' = }QU(DE + F))
_ a0 1
v = ¢- gZ . - EAE' Under x* — x* 4 &F .
B = S-34Fi, " — Z* 4 &+

A ated with
@ However, we have 4 more degrees of freedom: Stiickelberg fields

e -
E"=E -2, F" = F; —2m
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b
@ Perturbations in the metric, Stlckelberg fields and matter fields:

goo = —N?(t)[1 +2¢], goi = N(ta(t)Bi, g;=a(t) [Q,}-(xk) fiE h,;]

15 e
¢ = x"+ 1+ zn°0n® + O(c°), (EI=G oy

@ Scalar-vector-tensor decomposition:
Bi=DB+S;, m=Dm+n], }DM Q;, & =Q'DiD;

D'Sj=Dnl =DF =0
hj = 2y + (DiD; — 30) E + 3(DiFj + DiFi) + v D'yj=7 =0

@ Gauge invariant variables without Stlckelberg fields:

. Y 0) 0 2 .
Originate from gy, .. O! = (50—’ —_— ﬁzn-( , Z = — a A a E
and matter fields 5o / N/ -+ SN2

~® = ¢— (N2, Z' = 1QV(DE + F))
_ . az0 1
v = 9- gZ - AR Under x" — x* + &1 -
B = S-2AF, Z" — ZH 4 €

A ated with
@ However, we have 4 more degrees of freedom: Stiickelberg fields

e -
E"=E-2m, F" = F; —2m;
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b

@ Perturbations in the metric, Stlckelberg fields and matter fields:
goo = —N(O)[1+26], g = N(Da(t)B,, gy = &(t) [(x*) + hy]

i
o = X"+ 17 + 5n°0pn” + O(°), @au=1ai" + oy P 2o

@ Scalar-vector-tensor decomposition:
B = D;‘;‘i -+ S;‘. i = Dim + 7T,'T ) } D; « Q'f* A Q“D,D]

D'S; =Dl =DF =0
hj = 2¢Q; + (DiD; — 3;) E + 3(DiF; + DiFi) + D'yj =7 =0

@ Gauge invariant variables without Stlckelberg fields:

. 0) 0 2 .
Originate from g, .. O! = (5(7’ —_— £Z(7( : Z = — a A a E
and matter fields 5o / N/ -+ SN2

~® = - 1H(NZ), Z' = }QU(DE + F))
_ a0 1
v = y- gZ . - EAE' Under x* — x* + &/ -
B = S-3Fi, " — Z* 4 &+

A ated with
@ However, we have 4 more degrees of freedom: Stiickelberg fields

1_,-"”:e,--';A7r:7rO, E"=E -2, FFr=F-2nx
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Quadratic action

@ After using background constraint for Stlickelberg fields:

2 2 2 a2
8(2) = :hsl(*H) - 81(1111)“0[' -+ S/(\ 1) A Sl(nu)ss

_—

i &2 2 2
depend only on Q;, ®, WV, B;,v; SI(IM)\-\ Sl(llkl}\\ Sﬁ\ ‘)

@ The first part is equivalent to GR + A+ Matter flelds o

@ The additional term:

M2

GW ’”_f: ( 1

4"

S@, = M? / d*x N a®va Mz,

a
1
X !3(-f.-" )2~ 5 ETA(A +3K)ET+ 5 F (O + 2K)FF _é,},;WJ

@ The only common variable is ;. Dispersion relation of
tensor modes:

@ E™ o™, F[ have no kinetic term!
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Cancellation of kinetic terms

Other examples of cancellation

@ Self-accelerating solutions in the decoupling limit
de Rham, Gabadadze, Heisenberqg, Pirtskhalava ’10

@ Inhomogeneous de Sitter solutions
Kovama, " Nbtzi Tassinat o

@ dS and Schwarschild dS solutions in the decoupling limit
Berezhiani, Chkareuli, de Rham, Gabadadze, Tolley ’'11

A branch of self-accelerating solutions in bimetric gravity
[Eraal G eycheeinihl ~ Tiele b alal o i=ialile Lol |

Self-accelerating spherically symmetric, isotropic solutions .
Gratia, Hu, Wyman ‘12 |

Branch of self-accelerating solutions in quasi-dilaton massive gravity _
d’ Amico, Gabadadze, Hui, Pirtskhalava ’'12 |
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Cancellation of kinetic terms

What is the fate of these degrees?

@ |Infinitely strong coupling?

©Q |Infinitely heavy degrees? Then, they can be integrated out
— same d.o.f. as in GR, Higuchi bound (or its analogue)
irrelevant, no need for Vainshtein mechanism. The only signature

imprinted in the perturbations is the GW signal.
AEG, Kuroyanagi, Lin, Mukohyama, Tanahashi '

(arXiv:1208.59

12

Need to go beyond linear order to determine which case is realized
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Probing the non-linear action with linear tools
de Felice, AEG, Mukohyama '12

@ Symmetry of the background = cancellation

@ Instead of computing the high order action, we slightly break the
isotropy and compute the quadratic terms.

@ The small deviation from isotropy in the background is
interpreted as a homogeneous perturbation in the FRW solution.
This will allow us to obtain information on the high order terms in
the exact FRW case.

Introducing small anisotropy

@ The simplest anisotropic extension of flat FRW is the degenerate '
Bianchi type—| metric lo| < 1
ds? = —N?df? + & [e*7 dx? + €727 (dy? + dz?)]
@ Different fiducial metric < different theory. In order to have
continuity with the FRW solutions, we keep f,, isotropic:

dsz = —r? dt? + o (dx® + dy? + dz?)

(4]

@ Vacuum configuration (with bare A)
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Probing the non-linear action with linear tools
de Felice, AEG, Mukohyama '12

@ Symmetry of the background = cancellation

@ Instead of computing the high order action, we slightly break the
isotropy and compute the quadratic terms.

@ The small deviation from isotropy in the background is
interpreted as a homogeneous perturbation in the FRW solution.
This will allow us to obtain information on the high order terms in
the exact FRW case.

Introducing small anisotropy

@ The simplest anisotropic extension of flat FRW is the degenerate
Bianchi type—| metric lo| < 1

ds® = —N2dt? + & | &7 1 627 (dy? + dz?)]
@ Different fiducial metric < different theory. In order to have
continuity with the FRW solutions, we keep f,, isotropic:
ds3 = —r? dt? + o? (dx® + dy? + dz?)
@ Vacuum configuration (with bare A)
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Perturbations around the anisotropic background

Strategy

@ Make use of the residual symmetry on the y—z plane;
decomposition wrt 2d rotations:
(2d) | 3S + 2V | dof expected to propagate in gravity sector

@ Write the quadratic action, define G.I. variables, expand
fields in Fourier space, integrate out non-dynamical
degrees.

@ Expand background around FRW for small o

@ Diagonalize the system —> obtain dispersion relations for
energy eigenstates
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Kinetic terms and eigenfrequencies

k. Kinetic term before canonical normalization
w: Frequency after diagonalization

2d vectors

2
o K1 = (o°)>0andw12:%§+M(2;W
— 1 of the GW in the isotropic limit

© x2=0(0) and w3 I:r—g
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q ~x = (no)>011ndw$:§§+Méw . . e
= 1 of the GW in the isotropic limit |

© x2=0(c) and w3 5;
© r3=-C(k)kz and wi o k;, with C(k) > 0
= Either 2 or 3 has always negative kinetic term! |

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Kinetic terms and eigenfrequencies

k. Kinetic term before canonical normalization
w: Frequency after diagonalization

2
0 K1 = (00)>0andw12:%§+M(2;W
— 1 of the GW in the isotropic limit

2
Q r2=0(0) and wi x &
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q == (no)>0andw$:§§+M(23w ; . e
—> 1 of the GW in the isotropic limit |

Q O(o) and wgu 5;

© r3=-C(k)kz and wi o k;, with C(k) > 0
= Either 2 or 3 has always negative kinetic term! |

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Kinetic terms and eigenfrequencies

k. Kinetic term before canonical normalization
w: Frequency after diagonalization

2d vectors

2
° K1 = (00)>0andw12:%§+M(2;W
— 1 of the GW in the isotropic limit

Q r2=0(0) and w3 x i—g
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q < = ((To)>0andw$:§§+Méw : ; o
= 1 of the GW in the isotropic limit |

© x2=0(c) and w5 5;
© r3=-C(k)kz and wi o k;, with C(k) > 0 !
— Either 2 or 3 has always negative kinetic term! \

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Kinetic terms and eigenfrequencies

k. Kinetic term before canonical normalization
w: Frequency after diagonalization

2d vectors

2
0 K1 = (0°)>0andw12:%§+M(2;W
— 1 of the GW in the isotropic limit

© x2=0(0) and w3 %2
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q = ((To)>0andw$:§§+Méw : . e
—> 1 of the GW in the isotropic limit |

@ =:—0lg) md w5 E‘;
© r3=-C(k)k2 and wi o k;, with C(k) > 0
— Either 2 or 3 has always negative kinetic term! |

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Kinetic terms and eigenfrequencies

. Kinetic term before canonical normalization
w: Frequency after diagonalization

2d vectors

2
o K1 = (00)>0andw12:%§+M(2;W
= 1 of the GW in the isotropic limit |

Q r2=0(0) and w3 x %2
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q@ x1=0(">0anduw? =5 + M3, -
= 1 of the GW in the isotropic limit |

Q O(o) and w% ( 5;

© r3=-C(k)k2 and wi o k;, with C(k) > 0
— Either 2 or 3 has always negative kinetic term! |

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Fate of isotropic solutions?

@ Quadratic kinetic term for 1 >> [o| # 0
= Ok, Ok, Ok, type terms, with one k; = 0.
@ Homogeneous and isotropic solutions in massive gravity
have ghost instability which arises from the cubic order
action.

@ This conclusion is valid for + cosmological branch
solutions of massive gravity with arbitrary fiducial metric.

@ Non-linear analysis indicate the kinetic term for the
longitudinal degrees reappear at cubic order.  d’amico ’12

@ Similar solutions in variants of the theory (e.g. in bigravity,
quasi-dilaton...) have the vanishing kinetic term behavior.
= Are they also unstable?
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Kinetic terms and eigenfrequencies

k. Kinetic term before canonical normalization
w: Frequency after diagonalization

2d vectors

2
Q x1=0(c% > 0and w? = %g + Mg,
— 1 of the GW in the isotropic limit

2
Q r2=0(0) and wi x £
= k > 0 if a time dependent condition satisfied

2d scalars

2
Q «1=0( >0andw? =5 + Mg, : , S
—> 1 of the GW in the isotropic limit |

© x2=0(c) and w3 5;
© r3=-C(k)kz and wi o k;, with C(k) > 0
— Either 2 or 3 has always negative kinetic term! |

There is always a ghost in 2d scalar sector. Since w « k, we cannot integrate
it out from the low energy effective theory. The solution is unstable!
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Perturbations and gauge invariant variables
AEG, Lin, Mukohyama '11b

@ Perturbations in the metric, Stlckelberg fields and matter fields:
goo = —N(O[1+2¢], g = N(Da(t)B;, gy = &(t) [(x*) + hy]

1
0 = x? + 7%+ =70 + O(%),

2

oy = 0’50) + doy

@ Scalar-vector-tensor decomposition:

I;".‘)),' = D,‘.;")’ —+ S,‘ s

r
mi = Dimr+ 7w,

hj = 2yQj + (DiD; — 3 A) E + 3(DiFj + DiF) + i

}D’ S = Dr]
Df Yij A ’

I

@ Gauge invariant variables without Stlckelberg fields:

Originate fromg,., Q = o — ﬁzrr,(.o) :

and matter fields 5o

\\‘-

A. Emir Gimrikcloglu

(0]
v

Bi

@ However, we have 4 more degrees of freedom:

O — ‘N(‘),(NZO) y

/\ a 70 1
p— 220 _ LAE,

-
Si - &F,

Pl Seminar

0 — . -
Z2' = %Q”(D,E+ Fi)
Under x* — x* 4 &1 -
N — ZH + &H

Associated with
Stickelberg fields

gl -
E"=E-2m, F" = F; —2m;

Cosmology in non-linear massive gravity

matter
sector

D'F,
0

D+ Q;, & =Q'DiD,

0
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Fate of isotropic solutions?

@ Quadratic kinetic term for 1 >> [o| # 0
= ¢k, Ok, VK, type terms, with one k; = 0.
@ Homogeneous and isotropic solutions in massive gravity
have ghost instability which arises from the cubic order
action.

@ This conclusion is valid for + cosmological branch
solutions of massive gravity with arbitrary fiducial metric.

@ Non-linear analysis indicate the kinetic term for the
longitudinal degrees reappear at cubic order.  d’amico ’12

@ Similar solutions in variants of the theory (e.g. in bigravity,
quasi-dilaton...) have the vanishing kinetic term behavior.
= Are they also unstable?
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Alternatives

Introduce dynamics for fiducial metric
@ Branch I solutions in bigravity, quasi-dilaton? Can dynamics of
the fiducial metric resolve Higuchi/Vainshtein conflict?

Find new symmetry to naturally remove these degrees
@ Imposing a symmetry to remove the degrees with zero x?

Breaking the FRW symmetry in the fiducial metric

@ Itis still possible to have a H&I physical metric, while either H or I

is broken in Stlckelberg sector.

@ Inhomogeneous examples already exist, although d’ Amico 12 |
showed that cancellation occurs in two such examples (d’ amico |
et al 711 ama Koyama, Niz, Tasinato ’11). :

@ |n our analysis, anisotropy introduced only as a technical tool.
However, kinetic terms of these polarizations are second order. |
— A universe with finite anisotropy, which looks isotropic at the |
background level may have a chance to evade the ghost.

— This is our next step
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Alternatives

Introduce dynamics for fiducial metric
@ Branch I solutions in bigravity, quasi-dilaton? Can dynamics of
the fiducial metric resolve Higuchi/Vainshtein conflict?

Find new symmetry to naturally remove these degrees
@ Imposing a symmetry to remove the degrees with zero x?

Breaking the FRW symmetry in the fiducial metric

@ Itis still possible to have a H&I physical metric, while either H or I

is broken in Stluckelberg sector.

@ Inhomogeneous examples already exist, although d’ Amico 712 |
showed that cancellation occurs in two such examples (d’ Amico |
et al 711 amc Koyama, Niz, Tasinato ’11). |

@ |n our analysis, anisotropy introduced only as a technical tool.
However, kinetic terms of these polarizations are second order.
— A universe with finite anisotropy, which looks isotropic at the
background level may have a chance to evade the ghost.

= This is our next step
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Anisotropic FRW

AEG, Lin, Mukohyama '12

@ Consider Bianchi | metric, with finite anisotropy

ds? = —N2df? + & [e‘*” dx2 + e~27(dy? + dz2)}

@ Fiducial metric is de Sitter

dss = —nfdt?+o (dx‘2 + dy® + dzz) ¢ {” == conslunl]

(0]

« I

Vacuum configuration: Fixed points
@ Seek solutions with H =X =6 = 0 +— [

@ Dropping isotropic F.P., and points that require fine tuning
gives H, X

e% =\ ——
H
@ The remaining equations of motion reduce to algebraic

equations on X and H.
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Anisotropic FRW

AEG, Lin, Mukohyama '12

@ Consider Bianchi | metric, with finite anisotropy

ds® = —N2df? + & [e‘*” dx2 + 27 (dy? + dz2)}

@ Fiducial metric is de Sitter

dss = —nfdt?+o (dx‘2 + dy® + dzz) ¢ {” == consmnl]

(0]

« I

Vacuum configuration: Fixed points
@ Seek solutions with H =X =6 = 0 +— [

@ Dropping isotropic F.P., and points that require fine tuning
gives H, X

e” =\ ——
H
@ The remaining equations of motion reduce to algebraic

equations on X and H.
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Anisotropic FRW

AEG, Lin, Mukohyama '12

@ Consider Bianchi | metric, with finite anisotropy

ds? = —N2df? + & [e‘*” dx2 + =27 (dy? + dz2)}

@ Fiducial metric is de Sitter

ds? = —n?dt*+a? (dx2 + dy° + dzz) o {” =S consuml]

o

« I

Vacuum configuration: Fixed points
@ Seek solutions with H =X =6 = 0 +— [

@ Dropping isotropic F.P., and points that require fine tuning
gives H, X

e% =1/ ——

H

@ The remaining equations of motion reduce to algebraic
equations on X and H.
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Stability of the anisotropic fixed point

Local stability

@ Perturb H, o and X around the F.P. value

@ Can reduce the equations to
60" +3Xo 677 60" + M0 =0 — |' = gy 4]

@ Local stability requirement: MQ(”;—!Q, oz, o) > 0

Global Stability

il T @ Parameters:

\ 1

mg=20H;, a3 = —55, a4 = 1

3

@ Fixed point:
: Xﬂ_-f4,e”f:%,H':16H,

@ On F.P, isotropic expansion ¢ = 0.
In GR, this is equivalent to a FRW
universe. In MG, a coordinate
redefinition renders physical metric
isotropic, but now the fiducial
metric becomes anisotropic.
T T T = Anisotropic FRW
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Stability of the anisotropic fixed point

Local stability

@ Perturb H, o and X around the F.P. value

@ Can reduce the equations to
60" +3Xo 677 60" + M0 =0 — |' = gy 4]

@ Local stability requirement: Mz(ﬁ—f, oz, ag) > 0

Global Stability

T @ Parameters:

\ 1

mg=20H;, a3 = —55, a4 = 1

3

@ Fixed point:
& Xﬂ_-f4,e”f:%,H':16H,

@ On F.P, isotropic expansion ¢ = 0.
In GR, this is equivalent to a FRW
universe. In MG, a coordinate
redefinition renders physical metric
isotropic, but now the fiducial
metric becomes anisotropic.
TR T = Anisotropic FRW

A. Emir Gimrikcltoglu Pl Seminar Cosmoloqgy in non-linear massive gravity

Pirsa: 12100002 Page 64/67



Stability of the anisotropic fixed point

Local stability

@ Perturb H, o and X around the F.P. value

@ Can reduce the equations to
b +3Xp 727060’ + MP 60 = 0 «— [I R H:N :ﬂ

@ Local stability requirement: MQ(’:—!Q, oz, o) > 0

Global Stability

N @ Parameters:

\ 1

mg=20H;, a3 = —55, a4 = 1

3

@ Fixed point:
k Xz4,e”*:%,H:16H;

@ On F.P, isotropic expansion ¢ = 0.
In GR, this is equivalent to a FRW
universe. In MG, a coordinate
redefinition renders physical metric
isotropic, but now the fiducial
metric becomes anisotropic.
o = Anisotropic FRW
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Summary

@ We finally have a non-linear massive gravity theory which
Is free of the pathologies encountered in earlier extensions.

@ Although the theory admits self-accelerating, isotropic and
homogeneous universe solutions, these suffer from a
non-linear instability. This conclusion is valid for any
fiducial metric, and may extend to spherically symmetric
solutions, as well as self-accelerating solutions in other
versions of the theory.

We have introduced a new solution with finite anisotropy,
while the expansion is purely isotropic. The background
dynamics is equivalent to FRW, Anisotropy appears in the
Stluckelberg sector, can be probed by metric perturbations.
We expect the breaking of statistical anisotropy to be
subdominant by the smallness of my.

The study of cosmological perturbations around the
anisotropic fixed point background is in progress.
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