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AIMS Online Courses

The mission of the AIMS academic programme is to provide an excellent, advanced education in
the mathematical sciences to talented African students in order to develop independent thinkers,
researchers and problem solvers who will contribute to Africa's scientific development.

Teaching at AIMS is based on the principle of learning and understanding, rather than simply
listening and writing, during classes, and on creating an atmosphere of increasing our knowledge
through class discussions, through small group discussions, by formulating conjectures

and assessing the evidence for them, and sometimes going down wrong paths and learning from
the mistakes that led us there. The essential features of the classes at AIMS are that, in contrast
to formal lecture courses, they are highly interactive, where the students engage with the lecturer
throughout the class time, are encouraged to learn together in a journey of questioning and
discovery, and where lecturers respond to the needs of the class rather than to a pre-determined
syllabus. AIMS teaching philosophy is to promote critical and creative thinking, to experience

the excitement of leaming from true understanding, and to avoid rote learning directed only
towards assessment.

Leading international and local experts offer the courses at AIMS, which are three weeks long
(each module consisting of 30 hrs) and collectively form the coursework for a structured masters
degree which also includes a research component. The advertised content is a guide, and the
lecturers are encouraged, and indeed expected, to adapt daily to meet the current needs of the
students.

Over the past ten years AIMS has achieved international recognition for this innovative and flexible
approach. It has been the starting point for the remarkable success of our students and alumni and
we all benefit from the support of many who have "witnessed the AIMS-magic and keep coming
back for more."

This year we have decided to film selected courses and to make them available to a larger
audience as an online facility. African universities may choose to use these courses to supplement
and enhance their own postgraduate programmes. We believe this would be best achieved
through engagement with AIMS. One way for this to happen, would be for AIMS to suggest or
nominate a specialist tutor to spend time at the university, guiding students who follow the online
programme. Where possible expert lecturers who have taught at AIMS may visit the university to
give a short introduction to the course. We would welcome this interaction as well as the
contribution our online courses will make to the growth of the mathematical sciences ecosystem in
Africa.

Barry Green
Director & Professor of Mathematics

African Institute for Mathematical Sciences
January 2013

AIMS Council
Ramesh Bharuthram (University of the Western Cape) Hendrik Geyer (Stellenbosch University) Barry Green (AIMS) Grae Worster ((ambridge University) Daya Reddy (University of Cape Town)
Graham Richards (Oxford University) Stephané Ouvry {Université de Paris Sud X1) Tsou Sheung Tsun {Oxford University) Neil Turok (Perimeter Institute)
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Statistical discovery

© Important problem
@ Good survey / experimental design
© Good quality data
© Data exploration and visualisation

© Modelling data as random variables arising from some
distribution

@ Formal statistical inference about the truth
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The concept of 'likelihood’

Assume we have a set of independent and identically distributed random
variables Xi, .., X, each with probability density f(x;|é) for some unknown
parameter 6.

Then the joint density of the observations x is f(x|6) = [[; f(x;|0)
The likelihood is a function L(6|x) of 6 which is proportional to f(x|6), i.e.

L(f]x) o H f(xi|6).

It contains the parts of f(x|@) that contain 6: it is only defined up to an
arbitrary multiplicative constant.

e.g. for the Binomial distribution (x = sum of n Bernoulli variables)

f(x|0) = < )’: ) 0*(1 — 6)"=*, the likelihood is

L(O|x) o< (1 —0)".
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Plotting likelihoods

likelihood for 3 out of 10 successes

theta
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Plotting likelihoods

likelihood for 30 out of 100 successes

0.0 0.2 0.4 0.6 0.8 1.0

theta
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Maximum likelihood estimation

What parameter value to use an estimate?

Use the mode (the maximum value) of the likelihood - the 'maximum

A

likelihood estimate’ (MLE) 6
In most cases can find this value by differentiation (although not if
maximum is on boundary of the parameter space)

Easiest to take log-likelihood ¢(0|x) = log L(6]x) and differentiate it
(natural log)
These have the same maximum by chain rule)

L'(01x)

(01 = 4 Vg LX) = 55

Works the same for a vector 6 of parameters: solve for ¢'(6|x) = 0.
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Can't always differentiate to find maximum

likelihood for 0 out of 10 successes

0.0 0.2 0.4 0.6 0.8 1.0

theta
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Maximum likelihood estimation

Example: Binomial
¢(0]x) = constant + x log 8 + (n — x) log(1 — 6).

[Note: the same likelihood as if considered as n Bernoulli trials]

0(0]x) = g _(n=x)

Setting this to 0 and solving for 8 gives

X
0

n

0 =

which is what we would expect.
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Maximum likelihood estimation: vector 6 of parameters

_x=n)
Normal example: f(x|u,0) = \/2172e 202, and so
o

_ (xi—p)? n 2 _
log f(x1, .., Xn|pt, 0) = constant — E T5or T o log o = ¢(u, o|x)
" g

1

For MLEs (i, 5), need

(S‘i/(u,a\x)

z(x' -

i,6

1)
70_6(:“7 O-|K)

o i

and so & = /13" (x — X)2 = \/var(x) = standard deviation(x).
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Fitting a distribution

Fitted normal, superimpose on histogram for heights

Histogram of ht

Frequency

140 150 160 170 180 1980

ht
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How accurate is the MLE?

We want to know how close the MLE is likely to be to the 'true’ value 6q

For this we need to know that, as the sample size gets bigger, the MLE

@ tends to the true value ('consistency’)

@ has a known (or at least estimable) variance
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Fisher Information

The Fisher Information /(#) tells us how much information is in the
likelihood for a single observation.

It is the expectation of the negative 2nd derivative (the curvature) of the
log-likelihood.
2

1(0) = —E [:02 log f(X|0)] .
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Example for a Bernoulli trial with parameter 6

First derivative:

je log F(X|0) = ee(G\X) _ % [Xlog 6+ (1 — X)log(1 — 0)]

X (1-X)
0 (1-6)

Second derivative:

2 _
9 rog F(X10) = L rax) = 2 [X (L X)]

do? do 490 (1-90)
X (1-X)
2 (1-0)2
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Example for a Bernoulli trial with parameter 6

Take negative expectation to give:

/(9)—_1@{)( (1-)0] o (1-90) 1

T2 (1-60)2  (1-0)

02 (1-0)
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Asymptotic distribution of MLE

Under fairly general conditions, as n — oo, then

@ 'Consistency’,: 6 — 6y; with enough data MLE will give the 'true’
value

@ 'Efficiency’: The variance of the MLE, V[d] tends to ﬁ, which is
(asymptotically) the minimum possible variance

© "Normality’: The distribution of § tends to § ~ Normal (00, ﬁ)

Binomial example: according to MLE theory, § = x/n has a
Normal (00 p(1= )> distribution, just as we found earlier.
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Invariant property

Really important!

If § is the MLE of 6, then g(f) is the MLE of g(f) for 1-1 transformations
4
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Stages for MLEs

©0 06 006060 ©

® O

Write down f(x|0) for a single observation

Take natural logs to give log-likelihood ¢(0]x) = log f(x|6), ignoring
additive terms that do not contain ¢

Get log-likelihood for n observations 6(9|x) > log f(x,|9)
Differentiate, set to 0 and solve for MLE @: ie ;94 (0]x) |9
Go back to log-likelihood for a single random variable X, i.e.
(0|1X) = log f(X]0)

Take first derivative £/(]X) = & Iog f(X|0)

Take second derivative ¢”(6|X) = d02 log f(X|6)

Take negative expectation to give Fisher Information

16) = —E [57 log £(X|6)

MLE @ has asymptotic variance 1/(nl(f)).

Since 6 is unknown, in practice we need to estimate the Fisher
Information by substituting in the MLE to give /() = 1(0)|;

September 26, 2012 16 (1-16)



Stages for MLE for a Poisson

©0© 0060 © 00

® O

f(x|0) = e~ %0%/x!

log-likelihood £(6|x) = log f(x|0) = —8 + x log f+constant
log-likelihood for n observations

0(0]x) = >, log f(x;|0) = —nf + >, x; log O+constant
Solve for MLE 4 £(0|x)|; = —n + =% = 0, s0 = x.
Log-likelihood for X, i.e. £(68|X) = —6 + X log f+constant
First derivative ¢/(0|X) = =1+ X/0

Second derivative ¢"(0|X) = —X/6?

Fisher Information

10) = —E [;7 log F(X|0)| = —E[-X/6%] = 0/6% = 1/¢
MLE @ has asymptotic variance 1/(nl(6)) = 6/n.
Estimated variance: 1(0) = 1(0)|; =X/n
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