






Statistical discovery

1
Important problem

2
Good survey / experimental design

3
Good quality data

4
Data exploration and visualisation

5
Modelling data as random variables arising from some

distribution

6
Formal statistical inference about the truth
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The concept of ’likelihood’

Assume we have a set of independent and identically distributed random

variables X1, ..,Xn

each with probability density f (x

i

|✓) for some unknown

parameter ✓.

Then the joint density of the observations x is f (x |✓) =
Q

i

f (x

i

|✓)
The likelihood is a function L(✓|x) of ✓ which is proportional to f (x |✓), i.e.

L(✓|x) /
Y

i

f (x

i

|✓).

It contains the parts of f (x |✓) that contain ✓: it is only defined up to an

arbitrary multiplicative constant.

e.g. for the Binomial distribution (x = sum of n Bernoulli variables)

f (x |✓) =
✓

n

x

◆
✓x(1� ✓)n�x

, the likelihood is

L(✓|x) / ✓x(1� ✓)n�x .
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Plotting likelihoods
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Plotting likelihoods
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Maximum likelihood estimation

What parameter value to use an estimate?

Use the mode (the maximum value) of the likelihood - the ’maximum

likelihood estimate’ (MLE)

ˆ✓

In most cases can find this value by di↵erentiation (although not if

maximum is on boundary of the parameter space)

Easiest to take log-likelihood `(✓|x) = log L(✓|x) and di↵erentiate it

(natural log)

These have the same maximum by chain rule)

`0(✓|x) = d

d✓
log L(✓|x) = L

0
(✓|x)

L(✓|x) .

Works the same for a vector ✓ of parameters: solve for `0(✓|x) = 0.
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Can’t always di↵erentiate to find maximum
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Maximum likelihood estimation

Example: Binomial

`(✓|x) = constant + x log ✓ + (n � x) log(1� ✓).

[Note: the same likelihood as if considered as n Bernoulli trials]

`0(✓|x) = x

✓
� (n � x)

(1� ✓)

Setting this to 0 and solving for ✓ gives

ˆ✓ =

x

n

,

which is what we would expect.
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Maximum likelihood estimation: vector ✓ of parameters

Normal example: f (x |µ,�) = 1p
2⇡�2

e

� (x�µ)2

2�2
, and so

log f (x1, .., xn|µ,�) = constant�
X

i

(x

i

� µ)2

2�2
� n

2

log �2
= `(µ,�|x)

For MLEs (µ̂, �̂), need

�

�µ
`(µ,�|x)

����
µ̂,�̂

=

X

i

(x

i

� µ̂)

�̂2
= 0,

and so µ̂ = x = mean(x).

�

��
`(µ,�|x)

����
µ̂,�̂

=

X

i

(x

i

� µ̂)2

�̂3
� n

�̂
= 0,

and so �̂ =

q
1
n

P
i

(x

i

� x)

2
=

p
var(x) = standard deviation(x).
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Fitting a distribution

Fitted normal, superimpose on histogram for heights
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How accurate is the MLE?

We want to know how close the MLE is likely to be to the ’true’ value ✓0

For this we need to know that, as the sample size gets bigger, the MLE

tends to the true value (’consistency’)

has a known (or at least estimable) variance
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Fisher Information

The Fisher Information I (✓) tells us how much information is in the

likelihood for a single observation.

It is the expectation of the negative 2nd derivative (the curvature) of the

log-likelihood.

I (✓) = �E

d

2

d✓2
log f (X |✓)

�
.

September 26, 2012 11 (1–16)



Example for a Bernoulli trial with parameter ✓

First derivative:

d

d✓
log f (X |✓) = d

d✓
`(✓|X ) =

d

d✓
[X log ✓ + (1� X ) log(1� ✓)]

=

X

✓
� (1� X )

(1� ✓)
.

Second derivative:

d

2

d✓2
log f (X |✓) = d

d✓
`0(✓|X ) =

d

d✓


X

✓
� (1� X )

(1� ✓)

�

= �X

✓2
� (1� X )

(1� ✓)2
.
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Example for a Bernoulli trial with parameter ✓

Take negative expectation to give:

I (✓) = �E

�X

✓2
� (1� X )

(1� ✓)2

�
=

✓

✓2
+

(1� ✓)

(1� ✓)2
=

1

✓(1� ✓)
.
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Asymptotic distribution of MLE

Under fairly general conditions, as n ! 1, then

1
’Consistency’,:

ˆ✓ ! ✓0; with enough data MLE will give the ’true’

value

2
’E�ciency’: The variance of the MLE, V[ˆ✓] tends to 1

nI (✓) , which is

(asymptotically) the minimum possible variance

3
’Normality’: The distribution of

ˆ✓ tends to

ˆ✓ ⇠ Normal

⇣
✓0,

1
nI (✓)

⌘

Binomial example: according to MLE theory,

ˆ✓ = x/n has a

Normal

⇣
✓0,

p(1�p)
n

⌘
distribution, just as we found earlier.
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Invariant property

Really important!

If

ˆ✓ is the MLE of ✓, then g(

ˆ✓) is the MLE of g(✓) for 1-1 transformations

g
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Stages for MLEs

1
Write down f (x |✓) for a single observation

2
Take natural logs to give log-likelihood `(✓|x) = log f (x |✓), ignoring
additive terms that do not contain ✓

3
Get log-likelihood for n observations `(✓|x) =

P
i

log f (x

i

|✓)
4

Di↵erentiate, set to 0 and solve for MLE

ˆ✓: ie d

d✓ `(✓|x)
��
✓̂
= 0

5
Go back to log-likelihood for a single random variable X , i.e.

`(✓|X ) = log f (X |✓)
6

Take first derivative `0(✓|X ) =

d

d✓ log f (X |✓)
7

Take second derivative `00(✓|X ) =

d

2

d✓2 log f (X |✓)
8

Take negative expectation to give Fisher Information

I (✓) = �E
h

d

2

d✓2 log f (X |✓)
i

9
MLE

ˆ✓ has asymptotic variance 1/(nI (✓)).
10

Since ✓ is unknown, in practice we need to estimate the Fisher

Information by substituting in the MLE to give

ˆ

I (✓) = I (✓)|✓̂
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Stages for MLE for a Poisson

1
f (x |✓) = e

�✓✓x/x!

2
log-likelihood `(✓|x) = log f (x |✓) = �✓ + x log ✓+constant

3
log-likelihood for n observations

`(✓|x) =
P

i

log f (x

i

|✓) = �n✓ +
P

i

x

i

log ✓+constant

4
Solve for MLE

d

d✓ `(✓|x)
��
✓̂
= �n +

P
i

x

i

✓ = 0, so

ˆ✓ = x .

5
Log-likelihood for X , i.e. `(✓|X ) = �✓ + X log ✓+constant

6
First derivative `0(✓|X ) = �1 + X/✓

7
Second derivative `00(✓|X ) = �X/✓2

8
Fisher Information

I (✓) = �E
h

d

2

d✓2 log f (X |✓)
i
= �E[�X/✓2] = ✓/✓2 = 1/✓

9
MLE

ˆ✓ has asymptotic variance 1/(nI (✓)) = ✓/n.

10
Estimated variance:

ˆ

I (✓) = I (✓)|✓̂ = x/n
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