






Distinguishing real from pretend coin flips

Suppose we observe a sequence of 20 coin flips - how can we tell if they

are real or fake?

Two standard measures are

Longest sequence of either heads or tails. We can get a rough idea by

noting that a sequence of length 4 being all the same has probability

1/8, there are 16 sequences of length 4 (although clearly not

independent as they overlap), so we might expect two runs of 4. Use

simulation to get full distribution.

The number of ’switches’ between heads and tails. The waiting time

till a switch is Geometric(0.5), so the gap between switches is 2. So

we would expect 10 switches. Use simulation to get full distribution.
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The longest run in 20 coin flips

20 coin flips, repeated 10000 times

Longest run in 20 coin flips
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The number of switches in 20 coin flips

20 coin flips, repeated 10000 times

Number of switches in 20 coin flips
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Continuous random variables

Definition: a random variable X is continuous if

P(X = x) = 0, for all x (i.e. there is probability 0 of taking on any x

precisely, e.g. 3.7128464537383993..

It has a distribution function F (x) = P(X  x), such that

F (�1) = 0,F (1) = 1

P(a < X < b) = F (b)� F (a) (whether < or  does not matter since

continuous)

If F (x

p

) = p, the x

p

is known as the ’100pth percentile’.

x0.5 is the 50th percentile, also known as the median.

x0.25, x0.75 are known as the quartiles.
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Probability density functions

If F is absolutely continuous, then

f (x) = F

0
(x) =

d

dx

F (x)

exists and is known as the probability density function, where

Z 1

�1
f (t)dt = 1,

Z
x

�1
f (t)dt = F (x).

Can think the probability that X is in a small interval (x , x + dt) is f (x)dt.

Note: f (x) can be > 1 !
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Normal distributions

Denoted X ⇠ Normal(µ,�2
)

Standardised density: if Z = (X � µ)/�,

Z ⇠ Normal(0, 1) : f (z) =

1p
2⇡
e

z

2

2 �1 < z < 1
Standardised distribution function:

P(Z < z) =

R
z

�1
1p
2⇡
e

t

2

2
dt = �(z).

Density: f (x |µ,�) = 1p
2⇡�

e

(x�µ)2

2�2

Distribution function: P(X < x) = �

�
x�µ
�

�
.

Expectation (mean): µ

Variance: �2

Standard deviation = �
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Normal tail areas

To calculate areas, use

P(a < X < b) = P

✓
a� µ

�
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�
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✓
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Exponential distribution

Denoted X ⇠ Exp(�)

Standardised density: Z ⇠ Exp(1) : f (z) = e

�z , 0 < z < 1
Standardised distribution function:

P(Z < z) =

R
z

�1 e

�t

dt = 1� e

�z .

Density: f (x |�) = �e��x

Distribution function: P(X < x) = 1� e

��x .

Expectation (mean): 1/�

Variance: 1/�2

Standard deviation = 1/�
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Exponential distribution

Used as a distribution for waiting times between random events

’Memoryless property’: if the event has not happened by time t, then the

distribution for the future waiting time is still the same exponential

distribution

i.e. (X � t)|(X > t) has an Exponential(�) distribution
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Uniform distribution

Denoted X ⇠ Uniform(a, b)

Density: f (x |a, b) = 1
b�a

; a < x < b

Distribution function: P(X < x) = 0 if x < a; (x � a)/(b � a) if

a < x < b; 1 if b < x

Expectation (mean): (a+ b)/2

Variance: (b � a)

2/12

Standard deviation = (b � a)/
p
12
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Inverse distribution function

If X has distribution function F , what is the distribution of F (X )?

P(F < f ) = P(F (X ) < f ) = P(X < F

�1
(f )) = F (F

�1
(f )) = f

So the distribution function of any X has a uniform distribution!

This provides a means of sampling X : if F is available in closed form and

can be inverted, then we

Sample a random number u between 0 and 1

Calculate x = F

�1
(u)

Then x is an observation from the distribution defined by F
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Inverse distribution function

Example: how to sample from an exponential distribution with mean 1/�.

F (x |�) = 1� e

��x
, and so if we set U = F (X ) = 1� e

��X
, this can be

inverted to give

X = � log(1� U)/�.

So we sample a uniform number U between 0 and 1, apply this

transformation, and we have an observation from an exponential

distribution.
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Joint distributions for pairs of continuous random variables

The joint density for X ,Y is given by

f (x , y) =
�2

�x�y
F (x , y) =

�2

�x�y
P(X  x ,Y  y)

The conditional distribution for X |Y is given by

f (x |y) = f (x , y)/f (y) if f (y) exists, 0 elsewhere.

We obtain the marginal distribution for X by integrating over the Y :

f (x) =

Z
f (x , y)dy =

Z
f (x |y)f (y)dy

’Extending the conversation’

They are said to be mutually independent if their joint density function is

given by

f (x , y) = f (x) f (y).
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Vectors of random variables

Let X = X1,X2, ..,Xn

be a vector of random variables.

The joint density for X is given by f (x1, .., xn) We obtain the marginal

distribution for a scalar X1 by integrating (summing if discrete) over the

remaining elements:

f (x1) =

Z
f (x1, .., xn)dx2dx3..dxn.

They are said to be mutually independent if their joint density function is

given by

f (x1, .., xn) = f (x1) f (x2), .., f (xn).
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Sums of random variables

Let X1,X2, ..,Xn

be any random variables, not necessarily independent.

Let Y =

P
n

i=1 Xi

be their sum. Then

E[Y ] = E
"

nX

i=1

X

i

#
=

nX

i=1

E[X
i

].

So the expectation of a sum is always the sum of the expectations.
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Variance of sums of independent random variables

Let X1,X2, ..,Xn

be any independent random variables Let Y =

P
n

i=1 Xi

be their sum. Then

V[Y ] = V
"

nX

i=1

X

i

#
=

nX

i=1

V[X
i

]

So the variance of the sum is the sum of the variances if independent
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Distribution of sums of independent discrete random

variables

The Binomial(n, p) is the sum of n independent Bernoulli trials. Therefore

it has mean np and variance np(1� p).

The sum of n independent Poisson variables with means (expectations)

µ1, .., µn

is Poisson with mean µ1 + ..+ µ
n

.

Can prove all these using probability generating functions (pgf)
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Distribution of sums of independent continuous random

variables

If X

i

⇠ Normal(µ
i

,�2
i

) are independent RVs, i , 1, .., n, then

Y = X1 + X2 + ..+ X

n

⇠ Normal(

X

i

µ
i

,
X

i

�2
i

)

So if all have the same distribution,

Y ⇠ Normal(nµ, n�2
)

And so the average Y /n = X has distribution

Y /n ⇠ Normal(µ,
�2

n

)
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Weak Law of Large Numbers

Averages of random variables tends to the mean

Let X

i

be independent and identically distributed (iid) RVs, i , 1, .., n, with
finite mean µ, and their mean be X = (X1 + X2 + ..+ X

n

)/n. Then for

any � > 0,

lim

n ! 1 P

���
X � µ

�� � �
�
= 0.

If X

i

have a finite variance �2
, then

P

���
X � µ

�� � �
�
<

�2

n�2
.
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Central Limit Theorem

Distribution of averages of random variables tends to Normal around mean

Let X

i

be independent and identically distributed (iid) RVs, i , 1, .., n, with
finite mean µ and finite variance �2

, and their mean be

X = (X1 + X2 + ..+ X

n

)/n. Then

lim

n ! 1 P

✓
(X � µ)

�/
p
n

 x

◆
= �(x).

This is very powerful: it means that any average, based on a big enough

sample, can be assumed to have a normal distribution.
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Average of uniform variables

The distribution very quickly tends to a normal

Average of independent uniform variables
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Sampling

We need to clearly distinguish between

sampling X : if we graph the results, should follow the original

distribution for X with standard deviation �

sampling X : if we graph the results, should follow a Normal

distribution with standard error �/
p
n

e.g. Let X

i

be a lottery number, n=6 on a ticket, and let X be the

average lottery number drawn

Then many replicates of X should follow a normal distribution
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Normal approximation to the Binomial

Let X

i

be independent and identically distributed (iid) Bernoulli random

variables, i = 1, .., n, each with mean p and variance p(1� p).

Let X = (X1 + X2 + ..+ X

n

)/n be their average: the overall proportion of

’successes’: then X = S

n

/n, where S

n

has a Binomial(n, p) distribution.

By the Weak Law of Large Numbers, X tends to p.

By the Central Limit Theorem,

X ⇠ Normal(p,
p(1� p)

n

)

or equivalently

S

n

⇠ Normal(np, np(1� p))

So the Binomial can be approximated by the Normal - can also show this

directly using Stirling’s approximation.
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Example

A parliament of size 100 is supposed to be based on equal opportunities,

but there are 65 men in the parliament, If ’equal opportunity’ is taken to

mean an equal chance that a seat will be held by a man or a woman, what

is the chance of getting such an extreme result?

Let X be the number of males. Under equal opportunities,

X ⇠ Binomial(100, 0.5), with mean 50 and variance 100

p(1� p) = 100⇥ 0.5⇥ 0.5 = 25, i.e. standard deviation 5. So

P(X � 65) ⇡ P(Z > 65�50p
25

) = P(Z > 3) = 1� �(3) = 0.001. So there is

approximately only 1 in 1000 chance of getting such an imbalance by

chance alone.
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’Wisdom of the Crowds’

In 1907 Francis Galton obtained 787 guesses of the weight of a butchered

ox. True weight: 1198 lb

September 26, 2012 25 (1–27)



log(Bean counts)

More symmetric. A variable whose logarithm is Normal, is known as

having a log-normal distribution
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Bean counts

Mean 977, median 925. The truth???
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Assignment 1

Please hand in solutions to these questions, preferably in Latex

1. The genetic code specifies an amino acid by a sequence of three nucleotides. Each
nucleotide can be one of four kinds: T,A,C or G, with repetitions permitted. How
many amino acids can be coded in this manner? How would the answer change if
repetitions were not allowed?

2. Experience shows that 10% of people who make reservations for a plane trip do not show
up. An airline takes 100 reservations - what is the distribution for the number of people
who will show up? What is its mean and variance?

The plane has 90 seats. What is the probability that the plane will be overbooked and
someone will not be able to travel? [This can be calculated exactly (using a suitable
program) or using a Normal approximation]

3. The number of goals scored by a football team in each match has a Poisson distribution
with mean 1. After 20 games, what is the mean and variance for the total number of
goals scored?

4. if X has an Exponential distribution Exp(�), show that the variance of X is 1/�2.

[You may want to use the definition of the Gamma function: �(z) =
R1
0 tz�1e�tdt =

(z � 1)!]

The following R questions do not need to be handed in.

1. Translate into R the previous Binomial dice throwing program (1000 simulations of
throwing 6 dice and counting the number of 6’s that appear). Use the barplot()

command to make bar charts of the true and simulated distributions.

Websites such as http://www.harding.edu/fmccown/r/ give the simplest commands,
and show how to make the graphs more pretty.

2. Read in the class bean-counting data from the website. Then you can get the genders
and counts from

Create a histogram for the counts for the combined groups, and separately for men and
women. Calculate the sample mean and variance of the counts within each gender.

Do you think there is a di↵erence between the genders?

1
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