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AIMS Online Courses

The mission of the AIMS academic programme is to provide an excellent, advanced education in
the mathematical sciences to talented African students in order to develop independent thinkers,
researchers and problem solvers who will contribute to Africa's scientific development.

Teaching at AIMS is based on the principle of learning and understanding, rather than simply
listening and writing, during classes, and on creating an atmosphere of increasing our knowledge
through class discussions, through small group discussions, by formulating conjectures

and assessing the evidence for them, and sometimes going down wrong paths and learning from
the mistakes that led us there. The essential features of the classes at AIMS are that, in contrast
to formal lecture courses, they are highly interactive, where the students engage with the lecturer
throughout the class time, are encouraged to learn together in a journey of questioning and
discovery, and where lecturers respond to the needs of the class rather than to a pre-determined
syllabus. AIMS teaching philosophy is to promote critical and creative thinking, to experience

the excitement of leaming from true understanding, and to avoid rote learning directed only
towards assessment.

Leading international and local experts offer the courses at AIMS, which are three weeks long
(each module consisting of 30 hrs) and collectively form the coursework for a structured masters
degree which also includes a research component. The advertised content is a guide, and the
lecturers are encouraged, and indeed expected, to adapt daily to meet the current needs of the
students.

Over the past ten years AIMS has achieved international recognition for this innovative and flexible
approach. It has been the starting point for the remarkable success of our students and alumni and
we all benefit from the support of many who have "witnessed the AIMS-magic and keep coming
back for more."

This year we have decided to film selected courses and to make them available to a larger
audience as an online facility. African universities may choose to use these courses to supplement
and enhance their own postgraduate programmes. We believe this would be best achieved
through engagement with AIMS. One way for this to happen, would be for AIMS to suggest or
nominate a specialist tutor to spend time at the university, guiding students who follow the online
programme. Where possible expert lecturers who have taught at AIMS may visit the university to
give a short introduction to the course. We would welcome this interaction as well as the
contribution our online courses will make to the growth of the mathematical sciences ecosystem in
Africa.

Barry Green
Director & Professor of Mathematics

African Institute for Mathematical Sciences
January 2013

AIMS Council
Ramesh Bharuthram (University of the Western Cape) Hendrik Geyer (Stellenbosch University) Barry Green (AIMS) Grae Worster ((ambridge University) Daya Reddy (University of Cape Town)
Graham Richards (Oxford University) Stephané Ouvry {Université de Paris Sud X1) Tsou Sheung Tsun {Oxford University) Neil Turok (Perimeter Institute)
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Distinguishing real from pretend coin flips

Suppose we observe a sequence of 20 coin flips - how can we tell if they
are real or fake?

Two standard measures are

@ Longest sequence of either heads or tails. We can get a rough idea by
noting that a sequence of length 4 being all the same has probability
1/8, there are 16 sequences of length 4 (although clearly not
independent as they overlap), so we might expect two runs of 4. Use
simulation to get full distribution.

@ The number of 'switches' between heads and tails. The waiting time
till a switch is Geometric(0.5), so the gap between switches is 2. So
we would expect 10 switches. Use simulation to get full distribution.
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The longest run in 20 coin flips

20 coin flips, repeated 10000 times
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Frequency

e number of switches in 20 coin flips
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Continuous random variables

Definition: a random variable X is continuous if
e P(X =x) =0, for all x (i.e. there is probability 0 of taking on any x
precisely, e.g. 3.7128464537383993..
@ It has a distribution function F(x) = P(X < x), such that
F(—o0) =0,F(0) =1
e P(a< X < b)=F(b)— F(a) (whether < or < does not matter since
continuous)
If F(xp) = p, the x, is known as the '100pth percentile’.
Xo.5 is the 50th percentile, also known as the median.

X0.25, X0.75 are known as the quartiles.
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Probability density functions

If F is absolutely continuous, then

) = F(x) = < F(x)

exists and is known as the probability density function, where

/_Z f(t)dt =1, /XOO f(t)dt = F(x).

Can think the probability that X is in a small interval (x, x + dt) is f(x)dt.
Note: f(x) can be > 1!
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Normal distributions

@ Denoted X ~ Normal(, o?)
e Standardised density: if Z = (X u)/

z

Z ~ Normal(0,1) : f(z): 2 ez —o00<z<oo

@ Standardised distributior; function:

P(Z<z)=[*_ re2dt d(z2).
(ep)
@ Density: f(x|u,0) = ﬁge 202
Distribution function: P(X < x) = & (*>£) .

Expectation (mean): u

Variance: o2

Standard deviation = o
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Normal tail areas

To calculate areas, use

P(a<X<b):P(a_’“‘<X_“<b_“)=

= u - 2 TR i I+ ar TR L TR
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Exponential distribution

Denoted X ~ Exp()\)
Standardised density: Z ~ Exp(1): f(z)=e7%, 0<z<

Standardised distribution function:
P(Z<z)=[?_etdt=1—e"

Density: f(x|\) = e

Distribution function: P(X < x) =1 — e ?*.
Expectation (mean): 1/\

Variance: 1/\?

Standard deviation = 1/

September 26, 2012 8 (1-27)



Exponential distribution
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Used as a distribution for waiting times between random events

"Memoryless property’: if the event has not happened by time t, then the
distribution for the future waiting time is still the same exponential
distribution

i.e. (X —t)|(X > t) has an Exponential(\) distribution
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Uniform distribution

Denoted X ~ Uniform(a, b)

Density: f(x|a,b) = ;2=; a<x<b

Distribution function: P(X < x) =0if x < a; (x—a)/(b— a) if
a<x<b; 1ifb<x

Expectation (mean): (a+ b)/2

Variance: (b — a)?/12

Standard deviation = (b — a)/v/12

September 26, 2012 10 (1-27)



Inverse distribution function

If X has distribution function F, what is the distribution of F(X)?

P(F < f) = P(F(X) < f) = P(X < F7}(f)) = F(FX(f)) = f

So the distribution function of any X has a uniform distribution!
This provides a means of sampling X: if F is available in closed form and
can be inverted, then we

@ Sample a random number u between 0 and 1

o Calculate x = F~1(u)

@ Then x is an observation from the distribution defined by F

September 26, 2012 11 (1-27)



Inverse distribution function

Example: how to sample from an exponential distribution with mean 1/\.
F(x|]A) =1— e ™ and so if we set U = F(X) =1 — e, this can be
inverted to give

X = —log(1—U)/A.
So we sample a uniform number U between 0 and 1, apply this
transformation, and we have an observation from an exponential
distribution.
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Joint distributions for pairs of continuous random variables

The joint density for X, Y is given by

52 52
f(X,y) = MF(XL)/) = 5X5yP(X va Y S}/)

The conditional distribution for X|Y is given by
f(x|ly) = f(x,y)/f(y) if f(y) exists, 0 elsewhere.
We obtain the marginal distribution for X by integrating over the Y:

Flx) = / Fx.y)dy = / F(xly)F(y)dy

'Extending the conversation’

They are said to be mutually independent if their joint density function is
given by

f(x,y) =f(x) f(y).

September 26, 2012 13 (1-27)



Vectors of random variables

Let X = X1, Xo, .., X,; be a vector of random variables.

The joint density for X is given by f(xi, .., x,) We obtain the marginal
distribution for a scalar X; by integrating (summing if discrete) over the
remaining elements:

f(x1) :/f(xl,..,x,,)dxde3..dx,,.

They are said to be mutually independent if their joint density function is

given by
f(x1,..,xn) = f(x1) f(x2), .., F(xn)-

September 26, 2012 14 (1-27)



Sums of random variables

Let X1, Xo, .., X;; be any random variables, not necessarily independent.
Let Y =>"" ; X; be their sum. Then

> %
i=1

E[Y] =E

= > E[X].
i=1

So the expectation of a sum is always the sum of the expectations.
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Variance of sums of independent random variables

Let X1, X2, .., X, be any independent random variables Let Y =37 | X;
be their sum. Then

VY] =V

> oXi| = VX
i1 i=1

So the variance of the sum is the sum of the variances if independent
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Distribution of sums of independent discrete random

variables

The Binomial(n, p) is the sum of n independent Bernoulli trials. Therefore
it has mean np and variance np(1 — p).

The sum of n independent Poisson variables with means (expectations)
W41, -+ fbn is Poisson with mean p1 + .. + pp.

Can prove all these using probability generating functions (pgf)
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Distribution of sums of independent continuous random

variables

If X; ~ Normal(;,0?) are independent RVs, i,1,..,n, then

Y=Xi+Xo+.+X,~ Normal(z i, Za,-z)

So if all have the same distribution,
Y ~ Normal(np, no?)

And so the average Y /n = X has distribution

o2
Y /n ~ Normal(p, —)
n

September 26, 2012 18 (1-27)



Weak Law of Large Numbers

Averages of random variables tends to the mean

Let X; be independent and identically distributed (iid) RVs, 7,1, .., n, with
finite mean g, and their mean be X = (X1 + Xz + .. + X;,)/n. Then for
any 6 > 0,

lim

" oo P(‘X—M‘Z(S):O.

If X; have a finite variance o2, then

P(X—nl20) < 7.

September 26, 2012 19 (1-27)



Central Limit Theorem

Distribution of averages of random variables tends to Normal around mean

Let X; be independent and identically distributed (iid) RVs, 7,1, .., n, with
finite mean p and finite variance o, and their mean be
X = (X1 +Xo+ ..+ X,)/n. Then

o1 (Gt <) oo

This is very powerful: it means that any average, based on a big enough
sample, can be assumed to have a normal distribution.

September 26, 2012 20 (1-27)



Average of uniform variables

The distribution very quickly tends to a normal
0.5

M=4
M=3

0.4+

M=2

Probability Density, p=(&)

Average of independent uniform variables
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Sampling

We need to clearly distinguish between

e sampling X: if we graph the results, should follow the original
distribution for X with standard deviation o

e sampling X: if we graph the results, should follow a Normal
distribution with standard error o/+/n

e.g. Let X; be a lottery number, n=6 on a ticket, and let X be the
average lottery number drawn

Then many replicates of X should follow a normal distribution

September 26, 2012 22 (1-27)



Normal approximation to the Binomial

Let X; be independent and identically distributed (iid) Bernoulli random
variables, i =1, .., n, each with mean p and variance p(1 — p).

Let X = (X1 + X2 + .. + X,)/n be their average: the overall proportion of
'successes’: then X = S,/n, where S, has a Binomial(n, p) distribution.

By the Weak Law of Large Numbers, X tends to p.
By the Central Limit Theorem,

X ~ Normal(p, p(ln—p))

or equivalently
Sn ~ Normal(np, np(1 — p))

So the Binomial can be approximated by the Normal - can also show this
directly using Stirling's approximation.
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A parliament of size 100 is supposed to be based on equal opportunities,
but there are 65 men in the parliament, If 'equal opportunity’ is taken to
mean an equal chance that a seat will be held by a man or a woman, what
is the chance of getting such an extreme result?

Let X be the number of males. Under equal opportunities,

X ~ Binomial(100, 0.5), with mean 50 and variance 100

p(1 —p) =100 x 0.5 x 0.5 = 25, i.e. standard deviation 5. So

P(X > 65) ~ P(Z > 63—;5’0) = P(Z >3)=1-®(3) = 0.001. So there is
approximately only 1 in 1000 chance of getting such an imbalance by

chance alone.
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'Wisdom of the Crowds’

In 1907 Francis Galton obtained 787 guesses of the weight of a butchered
ox. True weight: 1198 |b
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log(Bean counts)

Histogram of log.beans
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More symmetric. A variable whose logarithm is Normal, is known as




Bean counts

Histogram of beans
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Mean 977, median 925. The truth???
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Assignment 1

Please hand in solutions to these questions, preferably in Latex

1.

The genetic code specifies an amino acid by a sequence of three nucleotides. Each
nucleotide can be one of four kinds: T, A,C or (G, with repetitions permitted. How
many amino acids can be coded in this manner? How would the answer change if
repetitions were not allowed?

Experience shows that 10% of people who make reservations for a plane trip do not show
up. An airline takes 100 reservations - what is the distribution for the number of people
who will show up? What is its mean and variance?

The plane has 90 seats. What is the probability that the plane will be overbooked and
someone will not be able to travel? [This can be calculated exactly (using a suitable
program) or using a Normal approximation]

. The number of goals scored by a football team in each match has a Poisson distribution

with mean 1. After 20 games, what is the mean and variance for the total number of
goals scored?

if X has an Exponential distribution Exp(\), show that the variance of X is 1/\%.

[You may want to use the definition of the Gamma function: T'(z) = [°t* e 'dt =

(z =1l

The following R questions do not need to be handed in.

1.

Translate into R the previous Binomial dice throwing program (1000 simulations of
throwing 6 dice and counting the number of 6’s that appear). Use the barplot()
command to make bar charts of the true and simulated distributions.

Websites such as http://www.harding.edu/fmccown/r/ give the simplest commands,
and show how to make the graphs more pretty.
Read in the class bean-counting data from the website. Then you can get the genders

and counts from

Create a histogram for the counts for the combined groups, and separately for men and
women. Calculate the sample mean and variance of the counts within each gender.

Do you think there is a difference between the genders?
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