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AIMS Online Courses

The mission of the AIMS academic programme is to provide an excellent, advanced education in
the mathematical sciences to talented African students in order to develop independent thinkers,
researchers and problem solvers who will contribute to Africa's scientific development.

Teaching at AIMS is based on the principle of learning and understanding, rather than simply
listening and writing, during classes, and on creating an atmosphere of increasing our knowledge
through class discussions, through small group discussions, by formulating conjectures

and assessing the evidence for them, and sometimes going down wrong paths and learning from
the mistakes that led us there. The essential features of the classes at AIMS are that, in contrast
to formal lecture courses, they are highly interactive, where the students engage with the lecturer
throughout the class time, are encouraged to learn together in a journey of questioning and
discovery, and where lecturers respond to the needs of the class rather than to a pre-determined
syllabus. AIMS teaching philosophy is to promote critical and creative thinking, to experience

the excitement of leaming from true understanding, and to avoid rote learning directed only
towards assessment.

Leading international and local experts offer the courses at AIMS, which are three weeks long
(each module consisting of 30 hrs) and collectively form the coursework for a structured masters
degree which also includes a research component. The advertised content is a guide, and the
lecturers are encouraged, and indeed expected, to adapt daily to meet the current needs of the
students.

Over the past ten years AIMS has achieved international recognition for this innovative and flexible
approach. It has been the starting point for the remarkable success of our students and alumni and
we all benefit from the support of many who have "witnessed the AIMS-magic and keep coming
back for more."

This year we have decided to film selected courses and to make them available to a larger
audience as an online facility. African universities may choose to use these courses to supplement
and enhance their own postgraduate programmes. We believe this would be best achieved
through engagement with AIMS. One way for this to happen, would be for AIMS to suggest or
nominate a specialist tutor to spend time at the university, guiding students who follow the online
programme. Where possible expert lecturers who have taught at AIMS may visit the university to
give a short introduction to the course. We would welcome this interaction as well as the
contribution our online courses will make to the growth of the mathematical sciences ecosystem in
Africa.

Barry Green
Director & Professor of Mathematics

African Institute for Mathematical Sciences
January 2013

AIMS Council
Ramesh Bharuthram (University of the Western Cape) Hendrik Geyer (Stellenbosch University) Barry Green (AIMS) Grae Worster ((ambridge University) Daya Reddy (University of Cape Town)
Graham Richards (Oxford University) Stephané Ouvry {Université de Paris Sud X1) Tsou Sheung Tsun {Oxford University) Neil Turok (Perimeter Institute)
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Random variable as a function

A discrete valued random variable X on a probability space (2,4, P) is a
function X from Q to the real numbers R

The real-valued function f defined on R by fx(x) = P(X = x) is called
the discrete density function (probability mass function)

Fx(x) = P(X < x) is called the discrete distribution function : the event
X < x is interpreted as w : X(w) < x

Example: flip coin twice, let X be the total number of heads H
Then

fx(0) = P(X=0)=P(TT)=0.25
(1) = P(X=1)=P(HT U TH) = 0.50
f(2) = P(X =2)=P(HH) =025
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Expectation and variance

For a discrete random variable X with a finite set of possible values
X1, .., Xy, we define

e Expectation (mean): Ex[X] = >"7_; xif(xi)
e Variance: Vx[X] =Y I_; (xi — Ex[X])?f(x)
e Standard deviation = v/Variance

Generally easier to compute (dropping suffix)
VIX] =P f(x) — (E[X])* = Ex[X?] - E[X]?
i=1

since 377, (xi — E[X])?F(xi) = i [ — 2E[X] x; + E[X]]f (x;) =
E[X?] —2Y_ E[X] xif(x;) + E[X]? = E[X?] — E[X]?

When there is a parameter, say p, then conditioning can be explicitly
represented as fx(x|p) etc
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Bernoulli distribution

The distribution of an 'indicator’ 0/1 variable :
Bernoulli trial with probability p of 'success’
o Density: fx(0|p) =1 — p;fx(1lp) = p
o Expectation (mean): Ex[X|p] =(1—p) x0+px1=p

@ Variance:
Vx[Xp] = Ex[X?] = Ex[X]* = (1 = p) x 0> + p x 1> — p* = p(1 — p)
e Standard deviation = /p(1 — p)

September 19, 2012 3 (1-14)



Binomial distribution

The distribution of the sum of n Bernoulli trials
How many successes out of n trials, each with probability p of success?

Probability of a particular sequence of x successes and n — x failures is
pX(l _ p)nfx

But there are WLX), = < Z ) such sequences
e Denoted: Binomial(n, p)
e Density: fx(x|p) = ( Z > p*(1—p)"% x=0,1,2,3,..,n

@ Expectation (mean): Ex[X|p] = np
e Variance: Vx[X|p] = np(1 — p)
e Standard deviation = y/np(1 — p)

[will see how to get this mean and variance later]
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Binomial distribution

Wahrscheinlichkeit
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Binomial distribution for n = 20; p = 0.1 (blue), p = 0.5 (green) and
p = 0.8 (red)
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Approximation to the Binomial distribution

Suppose each ticket in a lottery has a tiny probability p of winning

n tickets are sold: the total number of winning tickets is Binomial(n, p)
with mean np, denoted p, so that p = u/n

Then, as n — oo, the probability density function tends to

Px=x) = (1 )ra-p

%
X | —
_ iL(l—ﬁy(l—H) X
x! mX(n—r)! n n
“x
- —x1lxe*xl1
x|
X
o Fen x—0,1,2,3,...
x|

This is known as the Poisson distribution
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Poisson distribution

The distribution of the number of events X, when each has a very low
chance of occurring, but there are many opportunities for an event to
occur

e Density: fx(x|p) = e #u*/x!; x=10,1,2,3,..,00

o Expectation (mean): Ex[X|u] = p

e Variance: Vx[X|u] = 1

e Standard deviation = /1t

The Poisson is very widely used for count data, e.g.

@ Annual cases of disease in a particular area
@ Goals in a football match

@ Crimes per day
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Can we predict Premier
League football results
using a Poisson model?
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Goals 'Attack Goals 'Defence

Team Points

for strength’ against weakness'
Man United a7 67 1.46 24 1 5
Liverpoal 83 74 1.61 26 0.57
Chelsea 20 65 1.41 22 0.48
‘AttaCk A | 69 64 1.39 36 0.78
rsena : :
strength’ =
Everton 60 L5E] 1[50 37 0.e0
goals for / :
Aston Yilla 59 53 1.15 48 1.04
average goals
fOI" Fulham 53 39 0.85 32 0.70
Tottenham 51 44 0.96 42 0.91
o West Ham 43 40 0.87 44 0.96
Defence _
’ Man City 47 57 1.24 50 1.09
weakness’ =
Stoke 45 i 0.80 51 1.11
goals ,
. Wigan 42 33 0.72 45 0.98
against /
Bolton 41 41 0.89 52 1 e
average goals
. Portsmouth 41 38 0.83 56 1.22
against
Blackburn 40 40 0.87 60 sl
Sunderland 36 32 0.70 51 1.11
Hull 35 39 0.85 63 1S
Newcastle 34 40 0.87 58 1.26
Middlesbrough 32 27 0.59 55 1.20

West Brom 31 36 0.78 67 1.46



Assessing expected goals

Hull City vs Manchester United: expected goals

Hull: = home-average x attack strength x
defence weakness of opposition

1.36 x 0.85 x 0.52 = 0.60

Man U: =1.06x1.46x1.37 = 2.12

R

Hull City 0.60 10 2 0 0
Man U 2.12 12 25 27 19 10 4

Assume independent Poisson distributions to
give probability of any result

Add to give win/draw/lose probabilities
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The professor's Premiership probabilities

Africa
By Professor David Spiegelhalter

Americas oo ococcor for the Understanding of Risk, Cambridge University

Asia-Pacific

~ Europre  why should anyone take any notice
Middle East  of what a Cambridge professor of
South Asia  gtatistics, who knows little about

Y  fmmabiall e A
So I would not recommend anyone using these odds for betting. nes not l'aven SUppOll't
bout this weekend's

You have been warned.

* Understanding Uncertainty: Animated Premier League Statistics

in the increasingly
athematical models

" Read how the professor did sed by sports betting FProfessor David Spiegelhalter
ARSENAL V STOKE 't odds and identif}f analyses the football table
bets.

Home win: 729%
Draw: 19%

Away win: 10%

Verdict: 2-0 (149%b0)

ASTON VILLA ¥ NEWCASTLE

Home win: 629%

AVFC 3
Draw: 21% . é@,\gz:{{b
') i | | 8
Away win: 17% e L ")If

Yerdict: 1-0 (10%0)



actual
4-1
1-0
0-0
0-2
0-1
3-1
1-0
2-3
2-1
1-0

Home Away Predict
Arsenal Stoke 2-0
Aston Villa Newcastle 1-0
Blackburn West Brom 1-1
Fulham Everton 0-0
Hull Man United 0-2
Liverpool Tottenham 1-0
Man City Bolton 2-1
Sunderland Chelsea 0-1
West Ham Middlesbro 1-0
Wigan Portsmouth 1-0

Statistics: 9/10 win/draw/lose, 2 exact scores

BBC expert Mark Lawrenson: 7/10 win/draw/lose, 1

exact



Was something special
about 10th Julx

Page last updated at 22:22 GMT, Saturday, 12 July 2008 23:22 U

E-rmail this to a friend & Printable version
Victims in day of stabbings named

Four men stabbed to death in
separate knife attacks in
London in a single day have
been named by police.

Melvin Bryan, 18, was fatally
stabbed during a fight in a bedsit
in Edmonton, north London, on
Thursday.

Three hours later Adnan Patel, 20
died of stab wounds after a g.:mg
chased him in Leyton, east
London.

Police said Adnan Patel had been
chased by a gang in Leyton

o "last yéar the Métropo/itan Police recorded 160 homicides - about three every
week. To have four fatal stabbings in one day could be a statistical freak, said
BBC correspondent Andy Tighe”



Homicides: Metropolitan Police,
April 2004 - March 2007

e 483 homicides in 3 years

e Removed 13 (7/7/05), 12 (unknown
date)

e On average: 160 per year, 13 per
month, 3 per week, 0.44 per day

e Just knowing this overall rate means
we can predict how often ‘rare
events’ will happen



number of homicides

Number of homicides each day, 2004 -2007

2005 2006

date

2007




Predicted clustering of 483 homicides over 1095 days, 2004-7

0 1 2 3

Number of homicides per day

Predict 702 days with no homicides (64%),
10 davs with 3 and 1 dav with 4

200 300 400 500 600 700
| | | | | |
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100
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Actual clustering of 483 homicides over 1095 days, 2004-7

II-_
0 1 2 3

Number of homicides per day

Observe 713 days with no homicides (65%),
16 days with 3 and 1 day with 4

200 300 400 500 600 700
| | | | |

Actual number of occurrences over 3 years

100
|

0
|




Poisson method applied by government to national homicide figures in UK-
average 1.78 incidents per day

distribution. For example, from knowing there is an average of 1.78 incidents a day it was
predicted that, over the period of 1,096 days, there would be 27 days on which there would be
exactly five independent incidents. The observed number was 26, indicating that the
occurrence of these apparent ‘clusters’ is not as surprising as one might anticipate. A
statistical test (x*) shows no significant difference between the expected and observed
figures. Thus, the observed figures are in fact Poisson distributed. This allows for calculation
of the number of days on which it would be expected that no incidents or one incident occurs
and so on.

Figure 1.7 Observed and expected number of homicide incidents recorded on a day,
combined years 2007/08 to 2009/10

D expected figures Wobserved figures

Number of occurmrences over 3 years
- s N N w W o
o 8 8 838 8 8 8 8 8

[

T T T T T T T 1

0 1 2 3 4 5 6 7 or more
Number of homicide incidents per day




Predicted gaps between 'homicide days’

0 1 2 3 - 5 6 7 8 9 10 11

Consecutive days free of homicides

60 80 100 120 140
| | | |

Predicted number of occurrences over 3 years
40

20
1

C)_

Predict 18 periods in which there are no
homicides over 7 consecutive days



Observed gaps between 'homicide days’

0 1 2 3 4 5] 6 7 8 9 10 11

Consecutive days free of homicides

80 100 120 140
1 | L |

60
1

Number of occurrences over 3 years
40

20
1

D_

Observe 19 periods in which there are no
homicides over 7 consecutive days



Mean of a discrete RV X with infinite support

Exists provided that "2 |xi|fx(xi) < oo

Counterexample: St Petersburg paradox

Suppose | flip a coin until | get a head for the first time, say on flip X, so
P(X =x) = %.

Then | give you Y =2X Rand, so Y canbe y; =2, yp =4, ..., y; = 2.
What is my expected loss Ey[Y]?

Ey[Y]=) yiP(Y=y)=> 2P(X=i)=) 227 =1+1+1.. = 0
i=1 i=1 i=1

So the expected amount | have to pay you is infinite. How much will you
pay me to play this game?

September 19, 2012 8 (1-14)



Mean of a Poisson distribution

MX
Ex[X|u] = ) x— xe*

September 19, 2012 9 (1-14)



Geometric distribution

The waiting time until the first success in a series of Bernoulli trials
e Density: fx(x|p) = (1 — p)*"1p; x=1,2,3,..,00
e Expectation (mean): Ex[X|p]=1/p
e Variance: Vx[X|p] = (1 — p)/p?
e Standard deviation = /1 —p/p

September 19, 2012 10 (1-14)



Simple transformations of random variables

Scalar addition:

o Elc+ X] =3, (c+x)fx(x) = c+E[X].

o V[c+ X] =E[(c + X — E[c + X])?] = V[X].
Scalar multiplication:

o E[cX] =3, (cx)fx(x) = cE[X].

o V[cX] = E[((cX) — E[cX])?] = 2V[X].

September 19, 2012 11 (1-14)



Expectation of a function of a discrete random variable

[Best to put subscript for densities back in]
Other 1-1 functions Y = g(X)? Two ways to calculate:
@ Directly: Ex[g(X)] = >_, g(x)fx(x)
@ By finding distribution of Y i.e.
f(y)=P(Y =y) = P(X = g %(y)), and then calculating
Evlyl =2,y f(y)

September 19, 2012 12 (1-14)



Two discrete random variables

Let X, Y be a pair of discrete random variables.
(Drop subscript for densities when obvious)

The joint density for X, Y is given by
f(x,y)=P(X=x,Y =y).
The conditional distribution for X|Y is given by

f(xly) = f(x,y)/f(y) if f(y) exists, 0 elsewhere.
We obtain the marginal distribution for X by summing over the Y:

Fx) =Y flx,y)=>_ f(xly)f(y)
y y

'Extending the conversation’

They are said to be mutually independent if their joint density function is
given by
f(x,y) = f(x) f(y).

September 19, 2012 13 (1-14)



Covariance and correlation

Two random variables X and Y (not necessarily independent)
VIX+ Y] =E [(X+Y ~EIX + Y])’| =

E (X~ EX]) + (Y — E[Y]))?]

=V[X]+ V[Y]+2E[(X — E[X])(Y — E[Y])] (cross-multiply)

= V[X] + V[Y] +2COV[X, Y]

Covariance can also be written COV[X, Y] = E[XY] — E[X]E[Y]
Note that if X and Y are independent, then COV[X, Y] =0 and
E[XY] = E[X]E[Y]

The converse is NOT true: COV[X, Y] can be zero even if X, Y
dependent.

Correlation: p(X,Y) = COVIX. Y]

VVIXIVIY]

September 19, 2012 14 (1-14)
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