






Random variable as a function

A discrete valued random variable X on a probability space (⌦,A,P) is a
function X from ⌦ to the real numbers R

The real-valued function f defined on R by f
X

(x) = P(X = x) is called
the discrete density function (probability mass function)

F
X

(x) = P(X  x) is called the discrete distribution function : the event
X  x is interpreted as ! : X (!)  x

Example: flip coin twice, let X be the total number of heads H

Then

f
X

(0) = P(X = 0) = P(TT ) = 0.25

f
X

(1) = P(X = 1) = P(HT [ TH) = 0.50

f
X

(2) = P(X = 2) = P(HH) = 0.25
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Expectation and variance

For a discrete random variable X with a finite set of possible values
x1, .., xr , we define

Expectation (mean): E
X

[X ] =
P

r

i=1 xi f (xi )

Variance: V
X

[X ] =
P

r

i=1(xi � E
X

[X ])2f (x
i

)

Standard deviation =
p
Variance

Generally easier to compute (dropping su�x)

V[X ] =
rX

i=1

x2
i

f (x
i

)� (E[X ])2 = E
X

[X 2]� E[X ]2

since
P

r

i=1(xi � E[X ])2f (x
i

) =
P

r

i=1[x
2
i

� 2E[X ] x
i

+ E[X ]2]f (x
i

) =
E[X 2]� 2

P
r

i=1 E[X ] x
i

f (x
i

) + E[X ]2 = E[X 2]� E[X ]2

When there is a parameter, say p, then conditioning can be explicitly
represented as f

X

(x |p) etc
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Bernoulli distribution

The distribution of an ’indicator’ 0/1 variable :

Bernoulli trial with probability p of ’success’

Density: f
X

(0|p) = 1� p; f
X

(1|p) = p

Expectation (mean): E
X

[X |p] = (1� p)⇥ 0 + p ⇥ 1 = p

Variance:
V
X

[Xp] = E
X

[X 2]�E
X

[X ]2 = (1� p)⇥ 02 + p ⇥ 12 � p2 = p(1� p)

Standard deviation =
p
p(1� p)

September 19, 2012 3 (1–14)



Binomial distribution

The distribution of the sum of n Bernoulli trials

How many successes out of n trials, each with probability p of success?

Probability of a particular sequence of x successes and n � x failures is
px(1� p)n�x

But there are n!
x!(n�x)! =

✓
n
x

◆
such sequences

Denoted: Binomial(n, p)

Density: f
X

(x |p) =
✓

n
x

◆
px(1� p)n�x ; x = 0, 1, 2, 3, .., n

Expectation (mean): E
X

[X |p] = np

Variance: V
X

[X |p] = np(1� p)

Standard deviation =
p
np(1� p)

[will see how to get this mean and variance later]
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Binomial distribution

Binomial distribution for n = 20; p = 0.1 (blue), p = 0.5 (green) and
p = 0.8 (red)
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Approximation to the Binomial distribution

Suppose each ticket in a lottery has a tiny probability p of winning

n tickets are sold: the total number of winning tickets is Binomial(n, p)
with mean np, denoted µ, so that p = µ/n

Then, as n ! 1, the probability density function tends to

P(X = x) =

✓
n
x

◆
px(1� p)n�x

=
µx

x!

n!

nx(n � r)!

⇣
1� µ

n

⌘
n

⇣
1� µ

n

⌘�x

! µx

x!
⇥ 1⇥ e�µ ⇥ 1

! µx

x!
e�µ; x = 0, 1, 2, 3, ...

This is known as the Poisson distribution
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Poisson distribution

The distribution of the number of events X , when each has a very low
chance of occurring, but there are many opportunities for an event to
occur

Density: f
X

(x |p) = e�µµx/x!; x = 0, 1, 2, 3, ..,1
Expectation (mean): E

X

[X |µ] = µ

Variance: V
X

[X |µ] = µ

Standard deviation =
p
µ

The Poisson is very widely used for count data, e.g.

Annual cases of disease in a particular area

Goals in a football match

Crimes per day
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Can we predict Premier 
League football results 
using a Poisson model? 



‘Attack 
strength’ = 
goals for / 

average goals 
for 
 

 ‘Defence 
weakness’ = 

goals 
against / 

average goals 
against 



Hull City vs Manchester United: expected goals 
 
Hull:      = home-average x attack strength x    
                        defence weakness of opposition 
 
             = 1.36 x 0.85 x 0.52 = 0.60  
  
Man U:   = 1.06 x 1.46 x 1.37 = 2.12 

Assessing expected goals 

Assume independent Poisson distributions to 
give probability of any result 

Add to give win/draw/lose probabilities 





Statistics:               9/10 win/draw/lose, 2 exact scores 
BBC expert Mark Lawrenson:  7/10 win/draw/lose, 1 

exact 

Home Away Predict  
Arsenal Stoke 2-0  
Aston Villa Newcastle 1-0  
Blackburn West Brom 1-1 
Fulham Everton 0-0 
Hull Man United 0-2 
Liverpool Tottenham 1-0 
Man City Bolton 2-1 
Sunderland Chelsea 0-1 
West Ham Middlesbro 1-0 
Wigan Portsmouth 1-0 

actual 
  4-1 
  1-0 
  0-0 
  0-2 
  0-1 
  3-1 
 1-0 
 2-3 
  2-1 
 1-0 



Was something special  
about 10th July? 

•  “Last year the Metropolitan Police recorded 160 homicides - about three every 
week. To have four fatal stabbings in one day could be a statistical freak, said 

BBC correspondent Andy Tighe” 



Homicides: Metropolitan Police,  
April 2004 – March 2007  

• 483 homicides in 3 years 
• Removed 13 (7/7/05), 12 (unknown 

date) 
• On average: 160 per year, 13 per 

month, 3 per week, 0.44 per day 
•  Just knowing this overall rate means 

we can predict how often ‘rare 
events’ will happen 





Predict 702 days with no homicides (64%),  
10 days with 3 and 1 day with 4 



Observe 713 days with no homicides (65%), 
16 days with 3 and 1 day with 4 



Poisson method applied by government to national homicide figures in UK- 
average 1.78 incidents per day 



Predict 18 periods in which there are no 
homicides over 7 consecutive days 



Observe 19 periods in which there are no 
homicides over 7 consecutive days 



Mean of a discrete RV X with infinite support

Exists provided that
P1

i=1 |xi |fX (xi ) < 1
Counterexample: St Petersburg paradox

Suppose I flip a coin until I get a head for the first time, say on flip X , so
P(X = x) = 1

2x .

Then I give you Y = 2X Rand, so Y can be y1 = 2, y2 = 4, ..., y
i

= 2i .

What is my expected loss E
Y

[Y ]?

E
Y

[Y ] =
1X

i=1

y
i

P(Y = y
i

) =
1X

i=1

2iP(X = i) =
1X

i=1

2i2�i = 1+1+1... = 1

So the expected amount I have to pay you is infinite. How much will you
pay me to play this game?
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Mean of a Poisson distribution

E
X

[X |µ] =
1X

x=0

x
µx

x!
⇥ e�µ

= µ
1X

x=1

µx�1

(x � 1)!
⇥ e�µ

= µ
1X

i=0

µi

i !
⇥ e�µ

= µ
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Geometric distribution

The waiting time until the first success in a series of Bernoulli trials

Density: f
X

(x |p) = (1� p)x�1p; x = 1, 2, 3, ..,1
Expectation (mean): E

X

[X |p] = 1/p

Variance: V
X

[X |p] = (1� p)/p2

Standard deviation =
p
1� p/p
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Simple transformations of random variables

Scalar addition:

E[c + X ] =
P

x

(c + x)f
X

(x) = c + E[X ].

V[c + X ] = E[(c + X � E[c + X ])2] = V[X ].

Scalar multiplication:

E[cX ] =
P

x

(cx)f
X

(x) = cE[X ].

V[cX ] = E[((cX )� E[cX ])2] = c2V[X ].
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Expectation of a function of a discrete random variable

[Best to put subscript for densities back in]

Other 1-1 functions Y = g(X )? Two ways to calculate:

1 Directly: E
X

[g(X )] =
P

x

g(x)f
X

(x)

2 By finding distribution of Y ; i.e.
f (y) = P(Y = y) = P(X = g�1(y)), and then calculating
E
Y

[y ] =
P

y

y f (y)
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Two discrete random variables

Let X ,Y be a pair of discrete random variables.

(Drop subscript for densities when obvious)

The joint density for X ,Y is given by

f (x , y) = P(X = x ,Y = y).

The conditional distribution for X |Y is given by

f (x |y) = f (x , y)/f (y) if f (y) exists, 0 elsewhere.

We obtain the marginal distribution for X by summing over the Y :

f (x) =
X

y

f (x , y) =
X

y

f (x |y)f (y)

’Extending the conversation’

They are said to be mutually independent if their joint density function is
given by

f (x , y) = f (x) f (y).
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Covariance and correlation

Two random variables X and Y (not necessarily independent)

V[X + Y ] = E
h
(X + Y � E[X + Y ])2

i
=

E
h
((X � E[X ]) + (Y � E[Y ]))2

i

= V[X ] + V[Y ] + 2E [(X � E[X ])(Y � E[Y ])] (cross-multiply)

= V[X ] + V[Y ] + 2COV[X ,Y ]

Covariance can also be written COV[X ,Y ] = E[XY ]� E[X ]E[Y ]

Note that if X and Y are independent, then COV[X ,Y ] = 0 and
E[XY ] = E[X ]E[Y ]

The converse is NOT true: COV[X ,Y ] can be zero even if X ,Y
dependent.

Correlation: ⇢(X ,Y ) = COV[X ,Y ]p
V[X ]V[Y ]
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