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Thought experiment. Aristotle wakes
from the dead.
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Thought experiment. Aristotle wakes
from the dead.
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Thought experiment. Aristotle wakes
from the dead.
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The Aristotelian projectile

10:46 AM |



The Aristotelian projectile
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The Aristotelian projectile

e Does any real projectile near

the Earth's surface move like

Aristotle's cannonball?
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Maybe...Consider a fly in honey.
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Maybe...Consider a fly in honey.

e Reynoldsnumber Ao
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« What s he Reynolds number?
e What does it signify?

* Examples

e Application to Aristotle's cannon
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Definition of the Reynolds number

e Notation: R

.. , T
e Definition: R = ’"”

o \What do the parameters in the definition signifv? |8

p = density of the medium
v = characteristic speed
L = characteristic length scale

n = Huid viscosity
-
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What does the Reynolds number signify?

Viscous force

P 10:49 AM |
e I}:]:‘ [E'I" d{m [:\J‘)) SU 17-Anin-1?)

Pirsa: 12080041 Page 13/137



2 length scales, 2 worlds, no

quanfum mechanics
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2 length scales, 2 worlds, no

quanfum mechanics

e R<<1
e Laminar flow
* Equation of motion (Navier-Stokes) approximately
doesn't depend on time

. Tifne L_Eeversible — Ask for an example during Q&A!

s ¥ IO:S(TAM
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More facts about the
Reynolds number

on .M it _ o o X “7‘_}’,_ i RrEgg, (e jpeo ._: i ,_..,_ ,. G N __* i o er i+ .w i A , 1860 T .- A Jw CHEEE L‘. YR R A
e Applied 1n biop CS, TuIC - ANICS, and Leor CS

 Uses involve rough estimates
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e
(s :
y 8

p~1lkg -m™
v~ 10°m/s

L~ 107 1'm

n~ 107" Pa -

(1) netp //wwew mhtl uwaterioo calold/onlinetools/ arprop/airprop. htmi
(2) Seems reasonable. no?
re " . s “\“I“" .ﬂn‘.ﬂ huna shtm

Example #2: Reynolds number of a

cannonball in air

SR 10:52 AM
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Under what conditions could a

cannonball have R < 17
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Under what conditions could a

cannonball have R < 17

Fy = 61InRv ~ 611(10° Pa - s)(1071 m)(10* m/s) ~ 20,000 N

e Gravitational force. F¢ =mg~ (5kg)(10m-s7) =50 N
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Under what conditions could a

cannonball have R < 17
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Conclusions

e Characteristics associated with K. dominant force, flowtype -

time reversibility, how long momentum carries you
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[ think we're safe from the undead Aristotle.
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Surface Gravity Wave

Tian Lan

Perimeter Scholars International
Perimeter Institute for Theoretic Physics

August 16, 2012
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o Motivation
© Basic Assumptions

© Solution in a Special Case

o Application: Why Are Waves Parallel to the Shore

e Conclusion
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Motivation

The water wave is the most familiar and intuitive wave motion

@ Not so simple

@ Neither
longitudinal nor
transverse

@ Non-trivial
dispersion relation
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Motivation

The water wave is the most familiar and intuitive wave motion

@ Not so simple

@ Neither
longitudinal nor
transverse

@ Non-trivial
dispersion relation

@ Airy wave theory
or Linear wave

theor
e
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Motivation

The water wave is the most familiar and intuitive wave motion

@ Not so simple

@ Neither
longitudinal nor
tfransverse

@ Non-trivial
dispersion relation

@ Airy wave theory
or Linear wave

theor
e
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Basic Assumptions

@ Inviscid
The stress tensor is pJ;;

@ lrrotational
VxXu=0=u=Vo
¢ Is called the velocity potential

@ Incompressible
()IJ )
Ep— :():‘.-v-u = ) =% v-m:()

ot

P

perimeTer SCHoLars
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Basic Assumptions

@ Inviscid
The stress tensor is po;;

@ lrrotational
Vxu=0=u=Vo
¢ is called the velocity potential

@ Incompressible
dp S
—=0=>V -u=0=Vo=0

ot
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Solution in a Special Case

@ The velocity potential ¢ satisfied the Laplacian equation
vzu = ()

@ We can solve ¢ for certain boundary conditions
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Solution in a Special Case
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Solution in a Special Case

The linearised boundary
conditions are

d-0=0m, =10

d-0 = 0, :=—H
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Solution in a Special Case

The linearised boundary
conditions are

d-0=0m, =10

(‘):f") — (), . = —H
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Neither longitudinal nor transverse

The corresponding solution is

g = oS+ H)) ke — wr)

k sinh(kH)

Take the derivative of ¢ we get the velocity field

. cosh(k(z+ H)) . .
Uy = @ = aw sin(Ax — wt)

sinh(kH)

inh(k(z + H)) .
U- = 0-¢ = —u,u\ ) COs(Ax — wrt)

sinh(AH )

and we see neither of u, and u- is zero, i.e. the Surface G
neither longitudinal nor transverse.
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Neither longitudinal nor transverse

The corresponding solution is

6 _aw cosh(k(z+H)) cos(kx — wr)

k sinh(kH)

Take the derivative of ¢ we get the velocity field

. cosh(k(z+ H)) .
Uy = OO = aw sin(Ax — wt)

sinh(kH)

. sinh(k(z+H)) _
U- = 0-0 = —aw Cos(Ax — wr)

sinh(AH )

and we see neither of u, and u. is zero, i.e. the Surface Gravity Wave S
neither longitudinal nor transverse.
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Non-trivial dispersion relation

The relation between w and k£ comes from the unsteady Bernoulli's
equation (linearised version)

o [ ()2!/ 0
— T8N =—F7=, =
ot ST p Ox-

where o Is the surface tension coefficient.

Plug the previous solution in we get

9 ] (T ?‘
w” = (¢gk + —k7) tanh(kH)
/J
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Application: Why Are Waves Parallel to the Shore

The waves on the beach always come parallel to the shore.

3 rr “
w” = (gk + —k7 ) tanh(kH )
/J

@ Near the shore Large wavelength and Shallow water= small k, H
Q

¢ >> ok?/pand kH << 1, the dispersion relation is simplified
..a.’z = .L’HA:

@ The wave velocity is ¢ = /gH, decreasing as the wave
approaching the shore.

11:10 AM |
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Application: Why Are Waves Parallel to the Shore

The waves on the beach always come parallel to the shore.

. T A
w* = (gk + —k7) tanh(kH )
/J

@ Near the shore Large wavelength and Shallow water= small k, H
9

¢ >> ok?/pand kH << 1, the dispersion relation is simplified
..a.’z - .L’H/\:

@ The wave velocity is ¢ = /gH, decreasing as the wave
approaching the shore.

1111 AM |
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Conclusion

@ Inviscid irrotational incompressible water
@ Solve Laplacian equation for certain boundary condition

@ Got the velocity field and the dispersion relation
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The Physics Model of Hanging Ropes

Hanging chain
Support: at the two ends
Gravity
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The Exact Shape of Hanging Ropes
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The Exact Shape of Hanging Ropes

The potential energy functional

[] :J‘[)g_l'\/l‘k(.\',):(/.\‘

should reach its minimum

dl =1+ 1" dx

11:18 AM |
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The Exact Shape of Hanging Ropes

Euler-Lagrange Equation

U = [11(.\'. (x), V' (x) Jdx = ‘lpg\'\/l +(}‘,):(/.\‘

1120 AM |
= *
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The Exact Shape of Hanging Ropes

Euler-Lagrange Equation

U= [11(.\'. (x), V' (x) Jdx = “pg1'\/1+()"):c/.\'

y(x) = y(x)+&(x), oU =0

1120 AM |
V= =

irsa: 12080041 Page 47/137



The Exact Shape of Hanging Ropes

Euler-Lagrange Equation

U = [11(.\'. (x). V' (x))dx = “pg1*\/l+(}"):c/.\'

y(x) = y(x)+€(x), oU =0

d ou oJu
— =()

dx 0y" oy
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The Exact Shape of Hanging Ropes

Result: hyperbolic cosine function
v(x)=acosh(x/a), a=1,/(pg)
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The Exact Shape of Hanging Ropes

Result: hyperbolic cosine function
v(x)=acosh(x/a), a=1,/(pg)

11:22 AM
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The Application of Hanging Ropes
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The Application of Hanging Ropes

MR
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Reference

Classical Mechanics, Herbert Goldstein,
Charles P. Poole, John L. Safko
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Slipstreaming:
Nature's Fast Lane

Marie Rider

17th August 2012
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Overview

@ Why do we need to talk about slipstreaming?

@ What is the physics behind slipstreaming?

- |,[" Ej"r'i ({!{H ‘.3_] “ 11:29 AM
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Motivation
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Motivation
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Applications in Sport

N [F_t< [E;' al “.I ” 11:36 AM
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Applications in Sport
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@ The Physics of Slipstreaming:

- |J' [ll_‘.;,'”rl‘ all ‘-3_] ® 11:38 AM
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@ The Physics of Slipstreaming:

e Travelling objects give the medium behind them a net velocity

A R R 11:38 AM

17-Aun-17

Pirsa: 12080041 Page 67/137



@ The Physics of Slipstreaming:

e [ravelling objects give the medium behind them a net velocity
o Pressure differences in front and behind of a travelling object
cause a net force on the object

DG %

17-Ann-17
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@ The Physics of Slipstreaming:

e [ravelling objects give the medium behind them a net velocity
e Pressure differences in front and behind of a travelling object
cause a net force on the object

@ Slipstreaming in Nature:

e Allows animals to extend less energy by travelling in groups
e This means longer distances can be traversed

@ Applications in Sport:

o Knowledge of aerodynamics: Better equipment and techniques
in sports such as cycling

B « o

17-Ann-17
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@ The Physics of Slipstreaming:

e Travelling objects give the medium behind them a net velocity
e Pressure differences in front and behind of a travelling object
cause a net force on the object

@ Slipstreaming in Nature:

e Allows animals to extend less energy by travelling in groups
e This means longer distances can be traversed

@ Applications in Sport:

e Knowledge of aerodynamics: Better equipment and techniques
in sports such as cycling

e Knowledge of slipstreaming: Better cycling techniques and
strategies

11:39 AM
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Physics in Nature

T

perirmeTer scHoLars
I I [ rTnnA

The nature of movement and the movement of

nature
(Newton’s Laws)

Natacha Altamirano
Perimeter Institute

[ 7th of July 2012 |
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Structure of talk

B INTRODUCTION

? 11:45AM |
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Structure of talk

B INTRODUCTION

B THE MOVEMENT OF NATURE

B THE NATURE OF MOVEMEN'
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Structure of talk

B INTRODUCTION

B THE MOVEMENT OF NATURE

E THE NATURE OF MOVEMENT

B0 CONCLUSIONS
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1 e nature of movement and e movement of natumne
L INTRODUCTION
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1 e nature of movement and the movement of natumne
L INTRODUCTION
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L INTRODUCTION

Pirsa: 12080041 Page 78/137



1w nature of movement and the movement of natumne
L INTRODUCTION
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1he nature of movement and e movement of natumne
L INTRODUCTION
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1 e nature of movement and the movement of natumne
L INTRODUCTION
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L INTRODUCTION

The objective of this talk 1s to

introduce the three Newton Laws
analysing the nature that surrounds

irsa: 12080041 Page 82/137



I'he nature of MOVeImMent and tne movement of namme
L THE MOVEMENT OF NATURE

The movement of Nature

There are two important fields of physics that studies movement

m KINEMATICS is the study of the movement of bodies and once the

equation is established it is possible to determine the body’s position
and velocity at any time.

m DYNAMICS is the study of the causes for a body to change position
and velocity.
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I'he nature of MOVement and tne movement of nammne
. THE MOVEMENT OF NATURE

The movement of nature

A BODY CHANGES ITS VELOCITY IF A

FORCE ACTS ON IT.




I'he nature of MOVemMent and tne movement of natgmne
L-TH!MW}MP.NT OF NATURE

The movement of nature

FORCE HAS A DIRECTION AND A

MAGNITUDE.




1he nature of MOYement and (e Mmovement of natumn
L THE MOVEMENT OF NATURE
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 THE MOVEMENT OF NATURE

The movement of nature

Ik THE FORCE IS PERPENDICULAR TO
THE DIRECTION OF MOTION, THIS
FORCE WONT CHANGE THE
VELOCITY.

(Circular motion.)




1 e nature of movement and e movement of natumne
 THE MOVEMENT OF NATURE

..-ulili'H“H
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 THE MOVEMENT OF NATURE

The movement of nature

THE SAME FORCE HAS DIFFERENT

EFFECTS ON BODIES WHICH HAVE
DIFFERENT MASSES.




 THE MOVEMENT OF NATURE
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 THE MOVEMENT OF NATURE

The movement of nature

THE STAT
APPEARS WH

C FRICTION FORCE
N A FORCE ACTS ON A

BODY WH|

CH IS NOT SLIDING.

THE DYNAMIC FRICTION FORCE

APPEARS |

N A BODY WHICH IS

SLIDING ON A SURFACE.




I'ne nature of MOVement and tne movement of namme
. THE MOVEMENT OF NATURE
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I'ne nature of MOVement and tne movement of namme
. THE NATURE OF MOVEMENT

B THE NATURE OF MOVEMEN]
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I'he nature of MOVement and tNe movement of namme
. THE NATURE OF MOVEMENT

The nature of movement

In 1687 Newton published his three laws of motion:

m LAW OF INERTIA

= FUNDAMENTAL LAW OF DYNAMICS

m LAW OF ACTION AND REACTION
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I'he nature of MOVeImMent and tNe movement of natumn
L THE NATURE OF MOVEMENT

The nature of movement-1%¢ Law

[f there are no forces acting on a body (or all
the forces cancels), then the velocity of this

body will not change.
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I'he nature of MOVeIment and tne movement of nammne
LTHI'I NATURE OF MOVEMENT

11:51 AM
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L THE NATURE OF MOVEMENT

The nature of movement-2"¢ Law

[f a force acts on a body its velocity will

change (the body will be accelerated)

Ay x 11:51 AM
Ll R 17 Asrs-17
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L THE NATURE OF MOVEMENT

The nature of movement-3"¢ Law

[t a body applies a force to another body,

this one would ‘react’ to this action applying
a force with the same magnitude and
opposite direction on the first one.

. 11:52 AM |
[ et | DR 4

17-Ann-17
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I'he nature of MOVement and tne movement of natmne
L—TIIIZ NATURE OF MOVEMENT

Pirsa: 12080041 Page 99/137



L CONCLUSIONS

Conclusions

During the talk we've
m seen pictures that could have been taken in a normal day walk
m related them with the notion that we have of motion

m introduced Newton’s laws of motion and explained them with normal

|"|l“lﬂ\
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L CONCLUSIONS

Conclusions

We are not just surrounded by nature but also by

Physics!
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L CONCLUSIONS

THANK YOU!
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| he Scale of Nature

The Scale of Nature

or: How Dangerous are Giant Mutated Ants?

Ruben Verresen

August 16, 2012

per_ImETE'l‘ SCHOLars
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| he Scale of Nature

[
—
-
s’
=

The P

Page 104/137
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| he Scale of Nature

Poll of Intuition: Scale Invariance of Nature

Is the physics of the ant unchanged?
Is nature scale invariant in this example?
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| he Scale of Nature

Poll of Intuition: Scale Invariance of Nature

Is the physics of the ant unchanged?
Is nature scale invariant in this example?

INTUITION SAYS YES
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| he Scale of Nature

Poll of Intuition: Scale Invariance of Nature

Is the physics of the ant unchanged?
Is nature scale invariant in this example?

INTUITION SAYS YES

INTUITION SAYS NO
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| he Scale of Nature

Poll of Intuition: Scale Invariance of Nature

Is the physics of the ant unchanged?
Is nature scale invariant in this example?

INTUITION SAYS YES

INTUITION SAYS NO

NO INTUITION
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| he Scale of Nature

Overview

m Problem with intuition?
m A first solution
m Intermezzo: dimensionless constants

m Definite solution

L R oA ® 11:59 AM

17-Auin-17
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I he Scale of Nature

Intuition
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| he Scale of Nature

Intuition

Pirsa: 12080041 Page 111/137



| he Scale of Nature

First Solution

length of an atom

length of the ant
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| he Scale of Nature

First Solution

length of an atom

length of the ant
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| he Scale of Nature

Dimensionful vs. dimensionless changes

Only a change in a dimensionless quantity is measurable.

Gamov, “Mr Tompkins in Wonderland”
= ill-defined

“Change ¢ and keep other fundamental constants fixed"
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| he Scale of Nature

Dimensionful vs. dimensionless changes

Only a change in a dimensionless quantity is measurable.

Gamov, “Mr Tompkins in Wonderland”
= ill-defined

“Change ¢ and keep other fundamental constants fixed"
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| he Scale of Nature

Dimensionful vs. dimensionless changes

Only a change in a dimensionless quantity is measurable.

Gamov, “Mr Tompkins in Wonderland”
= ill-defined

“Change ¢ and keep other fundamental constants fixed"
= impossible

Changing «, always measurable!
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| he Scale of Nature

Final Solution

Dimensionless quantity that
m changes for the larger ant

m characterizes instability

MACROSCOPIC

MICROSCOPIC

5:11 [l'j;“( d’ﬂﬂ ‘-n 8 12:03 PM
- ¢ )

17-Auin-17
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| he Scale of Nature

Final Solution

Dimensionless quantity that
m changes for the larger ant

m characterizes instability

MACROSCOPIC MICROSCOPIC

dimensionless instability = —
a0
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| he Scale of Nature

Final Solution

® e
o ®0e o dislocation €
e . o
o e *
° ®
e O
.

MACROSCOPIC MICROSCOPIC

M, g ag cosv
. L
ke €<
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| he Scale of Nature

Summarizing

Change is detectable if and only if dimensionless
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| he Scale of Nature

Summarizing

Change is detectable if and only if dimensionless

Zooming in has dimensionful changes
but not dimensionless changes
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| he Scale of Nature

Summarizing

Change is detectable if and only if dimensionless

Zooming in has dimensionful changes
but not dimensionless changes
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The Waterloo Park’s waterfowl plumage
and surviving winter in Canada

Physics In Nature presentation

PHAM QUOC TRUNG

Perimeter Scholars International 2012/13

August 17, 2012

P TR 12:12 PM

17-Ann-17
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o Motivation

0 Waterfow! plumage and themal conductivity

o Conclusions & outlook
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Motivation

Motivaion

@ | have never experienced a winter in Canada before = have to

get myself prepared to "survive” in Canada’s severe winter

weather.
e Hopefully, | can do this by asking ducks and geese at the
Waterloo Park?
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vwateriowl plumage and themal conguctuvity

The cold weather and the ducks and geese's feather

@ How come the duck
and geese at the
Waterloo Park can
survive in such
extreme cold weather
of Canada?
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vwateriow! plumage and themal conguctuvity

The cold weather and the ducks and geese's feather

@ How come the duck
and geese at the
Waterloo Park can
survive in such
extreme cold weather
of Canada?

Special plumage of
waterfowl should play
a very important role
in protecting them
from the elements.

IPRERY
17-Ann-12
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wateriowl plumage and themal conauctvity

Heat transfer through plumage

@ Heat loss of ducks and geese mostly through their plumage.

@ Heat transfer through plumage by several envanues!:

©Q conduction and free convection through air,

© conduction along solid elements of the feathers, and
© radiation.

A o ® 12:13 PM

17-Aun-17
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wateriowl plumage and themal conguctvity

Heat transfer through plumage

@ Feathers are composed of keratin, which has a considerably
. . 2
low conductivity“.
=

@ Only a small amount of heat lost is due to radiation (5
total heat flow?)

70 of

= Waterfowl must prevent heat loss mostly from conduction and

convection ?hrwllgh air.

°S Baxter 1946 Proc. Phys. Soc. 58 105 doi:10.1088/0959-5300/58/1/310
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Heat transfer through plumage

@ Feathers are composed of keratin, which has a considerably
. . 29
low conductivity~“.

@ Only a small amount of heat lost is due to radiation (5% of
total heat flow?)

= Waterfowl must prevent heat loss mostly from conduction and

convection through air.

’S Baxter 1946 Proc. Phys. Soc. 58 105 doi:10.1088/0959-5309/58
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wateriowl plumage and themal conauctvity

Feathers of the ducks

@ Ducks, geese (and other waterfowl) usually have three main
types of feathers: contour, down and flight
feathers(supporting bird during flight.).

e Contour feathers: outermost feathers, which overlap each
other to form a protective outer shell and impenetrable barrier
to wind and moisture.

aferfedther

\

holiow shaft, calamus

Figure: Contour feather : L
ol . " : - 12:14 PM
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Feathers of the ducks

@ Afterfeathers: attached to the
lower shaft of some contour
feathers.

@ Down feathers: no interlocking

barbules, light and fluffy apperance.

. has downy feather
look, and found between contour
Figure: Down feather feathers and down feathers.

= Plumages of waterlowl| are arranged into many layers of feathers
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Feathers of the ducks

@ Afterfeathers: attached to the
lower shaft of some contour
feathers.

@ Down feathers: no interlocking

barbules, light and fluffy apperance.

. has downy feather
look, and found between contour
Figure: Down feather feathers and down feathers.

= Plumages of waterlowl| are arranged into many layers of feathers
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wateriowl plumage and themal conguctvity

Waterfowl| feather and thermal conductivity

@ What does the feather pattern of waterfowl have anything to
do with thermal conductivity?
e [he contour feathers trap some air and keep water and snow
from penetrating into waterfowl's skin.
o The fluffy barbules of down feathers also trap numerous tiny
pockets of air in proximity to the skin.

I hese features provide a critical thermal buffer between

animal and its environment.

B ¢ 216°M
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concusions & outiook

Conclusions & outlook

@ answers my own question why Diana mentioned in the PSI's
Wellcome Guide that PSI students should dress in many layers.

AT

Get ready for the cold

Canada has 4 seasons: almaost winter, winter, sirll ninter and

$e)
onsiruciion sedson (s

Dressing in Layers
® Next to the skin

o Long or short sleeve t-shart

e Insulatng laver

o Wool, | leece, Mile
good jacket). If you're sull cold, just get a se

\ sweater should be

jacket) to wear under the outside jacket

12:18 PM
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concusions & outiook

Conclusions & outlook

e How many layers should | wear in oder to survive in winter
here?

Figure: "two-layers” in summer

B & 20"
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Conclusions & outlook

e How many layers should | wear in oder to survive in winter
here?

Figure: "two-layers” in summer
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