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N, tyre filling - Brillant idea or scam?
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What happens.

psedealerequipment.com
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Why fill your tires with N,?
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Why fill your tires with N,?

Benefits claimed:

. Slower loss of pressure due to diffusion
through the tyre,

. decreased rate of corrosion of tyre frame,
and

. retarding the chemical degradation of
rubber.
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Decrease rate of frame corrosion

e frame corrosion produces aluminum oxide
powder
e which can get stuck in air valves
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Effusion
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Effusion

The flux of particles on the wall

1
Flux, ® = " (v)

For a Maxwell - Boltzmann distribution,

irsa: 12080039 Page 9/121



Pirsa: 12080039

Effusion

The flux of particles on the wall

|

| n

For a Maxwell - Boltzmann distribution,

Flux,
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Effusion

The flux of particles on the wall

|
Flux, & = ik (v)

For a Maxwell - Boltzmann distribution,
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Effusion

Hence,

m.
N2 — 0.935
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Diffusion

Flux of particles

— |
Fl]lx. (I) = —"E/\ <I‘> VN

For a Maxwell - Boltzmann distribution,

Also,
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Diffusion

So,

d x 1

d*\/m

Using the data

dp, = 0.358 nm, dy, = 0.370nm

Thus,
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Diffusion

So,

b x 1

d*\/m

Using the data

dop, = 0.358 nm, dy, = 0.370nm

Do), B ((/_\)3 my, 0.9992

Dy, do, mo,

Thus,
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Conclusion
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Epilogue

the happy ending
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Effusion
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Why fill your tires with N,?

Benefits claimed:

. Slower loss of pressure due to diffusion
through the tyre,

. decreased rate of corrosion of tyre frame,
and

. retarding the chemical degradation of
rubber.
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Why is the sky blue?

e
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Why is the sun white/yellow at midday,
but redder during sunset and sunrise?
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( Interaction

of light Rayleigh
with scattering
matter
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[ Interaction

of light Rayleigh Human
with scattering vision
matter
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[ Interaction

of light Rayleigh Human Mie
with scattering vision scattering
matter
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Light From the Sun

Visible light

. Ultra- Gamma
Infrared violet rays

- - - - -

Short-wave radiation

Picture source:
http://serc.carleton.edu/usingdata/nasaimages/index4.html
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The Interaction of Light with Matter

reflected

absorbed

transmitted %
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The Interaction of Light with Matter
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The Interaction of Solar Light with
the Atmosphere

— | =
e
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The Interaction of Solar Light with
the Atmosphere

* Solar radiation is scattered by particles in the
atmosphere

7 | .
ﬂ l .
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The Interaction of Solar Light with
the Atmosphere

» Solar radiation is scattered by particles in the
atmosphere

— Rayleigh scattering

e TWO types: L//l \\~}

— Mie scattering i l l
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The Interaction of Solar Light with
the Atmosphere

» Solar radiation is scattered by particles in the
atmosphere

« Two types: L//l \\.

— Rayleigh scattering

— Mie scattering i l i

* These are elastic processes
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Scattering

Electron orbits are perturbed by EM wave

Perturbation has the frequency as the
incident wave
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Scattering

Electron orbits are perturbed by EM wave

Perturbation has the frequency as the Causes periodic separation of charge
incident wave within the molecule

\ 4
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Scattering

Electron orbits are perturbed by EM wave

Perturbation has the frequency as the Causes periodic separation of charge
incident wave within the molecule

Creates an oscillating dipole moment
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Scattering

Electron orbits are perturbed by EM wave

Perturbation has the frequency as the Causes periodic separation of charge
incident wave within the molecule

Creates an oscillating dipole moment

Its magnitude is proportional to the field and to the particle’s polarizability

The dipole moment radiates light
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Rayleigh Scattering

* Particles much smaller than the wavelength of
the light:
r<A

* The particles can be individual atoms or
molecules

* N, molecule hasr = 0.11nm
visible light has A = 500 nm
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Rayleigh Scattering

* The Intensity of light scattered by a single
molecule is given by

mta?
(1 + cos?0)

'=loZie

I, is the light’s intensity  « is the molecular polarizability
A is the wavelength R is the distance to the particle

@ is the scattering angle

Seinfeld and Pandis, Atmospheric Chemistry and Physics, 2nd Edition, John Wiley and Sons, New Jersey 2006, Chapter 15.1.1
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Rayleigh Scattering

Scattered the most Scattered the least

~9.4 x more scattering
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Rayleigh Scattering
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Rayleigh Scattering
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Why isn’t the sky purple?
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Colour Perception

* There are 5 million cones in our retinas which
are responsible for colour vision

— Three types: long, medium and short-wavelength

* The ranges of the cone types overlap
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Colour Perception

* There are 5 million cones in our retinas which
are responsible for colour vision

— Three types: long, medium and short-wavelength

* The ranges of the cone types overlap

* Different spectral combinations can be
detected as the same colour
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Colour Matching Experiment

yellow yellow

/ly = 580 nm
A.q = 540 nm

A, = 640 nm

\ Lamps with /

filter

Smith, Glenn S. "Human Color Vision and the Unsaturated Blue Color of the Daytime Sky." American Journal of Physics 73.7 (2005): 590.
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Colour Matching Experiment

sky blue
sky blue

white
(from the sun) blueish-purple

\ Lamps with /

filter

Smith, Glenn S. "Human Color Vision and the Unsaturated Blue Color of the Daytime Sky." American Journal of Physics 73.7 (2005): 590.
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Why are sunsets red?

Ray from sun at sunset

A Ray from sun during
midday

(
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Mie Scattering

size of the particle = wavelength
Not heavily wavelength dependent in the visible range

Produces the white light from clouds, mist and fog

Rayleigh scattering is just an approximation to Mie scattering in the

limit of small particle size.
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Conclusion

What accounts for the colours in the sky?

\

The spectrum
of radiation
emitted by the
sun
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Conclusion

What accounts for the colours in the sky?

The interaction

The spectrum of light with
of radiation particles in the
emitted by the atmosphere:
sun Rayleigh and
Mie scattering
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Conclusion

What accounts for the colours in the sky?

\

Human colour
vision

The interaction
The spectrum of light with

of radiation particles in the
emitted by the atmosphere:
sun Rayleigh and

Mie scattering
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Physics in Nature: A Birdseye View

Perimeter Scholars International 2012/2013
Daniel Xavier Ogburn
-Fa - ¥ ’

“To see a world in a grain of sand,
And a heaven in a wild flower,

Hold infinity in the palm of your hand,
And eternity in an hour.”

perImeTer scHOLa'S - William Blake: Auguries of Innocence
TS | rd AN

1:56 PM
al e B

17-Aun-17
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Or what are the y lookmg at

|‘%}iﬂ% - Y

17-Aun-17
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' Magnetic Navigation: Just Wing It

Many bird species migrate

- €.9. Ducks and Geese in Waterloo
- Changing photoperiod

- Weather, food, habitat

~ 50 known animal species use Earth's
magnetic field to navigate.

Earth's magnetic field:

magnetosheatn - Background dipole ~ 50uT
magnotopauso (stable- |Ong tlme ScaIES)

- Solar wind perturbation
(dayside/nightside tail).

- Plasma waves & resonances in
magnetosphere and ionosphere: ~
short (s) nT pertbuation.

. -

1:58 PM
17-Aun-17

al o ¥
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» Humans:

-Compass

-Aeromagnetic survey: &
Fluxgate magnetometer (~0.2nT) . // S

Cesium vapor magnetometers (QM, Zeeman ~ 0.01nT)

- How do Migratory Birds navigate?
- Klaus Schulten 1970s: geomagnetically sensitive
biochemical reaction in eye
- Cryptocrome protein molecule.
- Photons > Cryptocrome energy boost —» ...

17-Aun-17
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» “iMagnetometer”

Photons — Eye —

Cryptocrome energy boost —

Free Radical Pair —

Entangled Electrons (separated, but spins linked) —
Hypersensitivity to Magnetic Fields —

Chemical Reactions —

Magneto-reception and the Avian Compass.

- Nature: QM entanglement in warm, noisy environment!
VS

- Humans: QM entanglement in isolated, cryogenic
settlng without noise.

17-Ann-17
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Fancy more entanglement?

- Sense variations < 0.3% of Earth's magnetic field strength
~ 150 nT! (Conservative model used by Gauger et al).

Experiments of Ritz et al. sensitivity as low as ~ 15n
(European robin). '

- Bird “sees” the magnetic field. . ‘ -

2
» Requires electrons to be entangled for ~ 100 ps.

- No cryogenics, outperforms NaC0® by at least 20us !

« Robust sensor (training, protected by noise).

17-Aun-17
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A Radlcal Notlon The RP Mechanism

Quantum Evolution A\

\ \ 9 \ NN\
of spatially separated N\ \ Zeeman interagtior 1\‘
pair of e spins after ‘ 25 R

energized by photon. yd 4;1 ,
s~ _ A\ _a
| anisotropic hyperf
Twoe SpInNs and oy E |lnrlc':‘|;u:r1|nll‘l y
one nuclear spin. I\ UV @

Spheroid - directionality \ _

bud’s eve retina

£

Spatial separation: Nucleus interacts with one spin

- Asymmetry for singlet-triplet oscillations.

- RP formation at t=0, Hamiltonian for system after separation.
- one e coupled to nucleus, one e ~'free (Gauger et al.)

H=1"A- Sl+yB (S, +S,)

17-Ann-17
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Radical Pair Mechanism (2)

« Gauger et al. also Investigated more detailed models:
-e.9. add 2™ nuclear spin, replace nuclear asymmetry with
anisotropic g-factor for e .

N\

« All models give rise to same qualitative behavior and
decoherence timescales as the simple RP model.

« Underlying principle: e spins of RP must be protected
from decoherence to be susceptible to the experimentally
applied RF magnetic field.

- External magnetic field: B = B, + cos(wt)B;

At Frankfurt: B, ~ 47uT.
Experiment and Simulation: B =150nT.

17-Aun-17
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._\

N
3

dicaIPair'i{/lechanism (2)

« Gauger et al. also Investigated more detailed models:
-e.9. add 2™ nuclear spin, replace nuclear asymmetry with
anisotropic g-factor for e .

+ All models give rise to same qualitative behavior and
decoherence timescales as the simple RP model.

« Underlying principle: e spins of RP must be protected
from decoherence to be susceptible to the experimentally
applied RF magnetic field.

- External magnetic field: B = B, + cos(wt)B

At Frankfurt: B, ~ 47uT.
Experiment and Simulation: B =150nT.

17-Ann-17
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Time Evolution: Master Equation

. Resonant excitation with uncoupled e spin: B ; frequency
1.316MHz.
- 8-dimensional Hilbert space of 3 spins (entangled electrons +

nucleus)
- 2 singlet projectors and 3 triplet projectors P,

- Model dynamics with Linblad Master Equation (density
matrix):

i 8 |
o , b _—
P = nl H, p|+ AEP,;;P! 2(P_, P,p+ pP!P)).

- Decay rate k for projectors.

» Solve for density matrix p.

an. ” m Jg_ \.:' e ‘ p 7 I.\ 4 |
y T y - ™ - B S g ¢ g 203V

17-Aun-17
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\-

Entanglement + Background Noise = Good Times

» Choosing constants:
- Resonance frequency of the 'free' electron = 1.316MHz.

- Experiments show a 1.316MHz perturbing magnetic field can
disorient the bird.

- No disruption if B is parallel to B,

Resulting bound on decay rate: k < 10° s™.

Consistent with long RP lifetimes for cryptochrome molecules in
migratory birds.

Q: How robust is this mechanism against environmental noise?
A: Random noise actually protects against decohorence!

Anti-intuitive: Human experiments achieve entanglement by using
cryogenic temperatures and minimizing noise.

2:03 PM
17-Aun-17
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Entanglement + Background Noise = Good Times

™
» Choosing constants: '
- Resonance frequency of the 'free' electron = 1.316MHz.

- Experiments show a 1.316MHz perturbing magnetic field can T
disorient the bird. “

- No disruption if B is parallel to B, y,

Resulting bound on decay rate: k < 10° s™.

Consistent with long RP lifetimes for cryptochrome molecules in
migratory birds.

Q: How robust is this mechanism against environmental noise?
A: Random noise actually protects against decohorence!

Anti-intuitive: Human experiments achieve entanglement by using
cryogenic temperatures and minimizing noise.

/‘ < ;l : M }m - - il : “n 2:04 PM

17-Aun-17
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Modeling Noise

Add Linblad dissipator to Linblad Master Equation:

3

. | 4
p = %[/I.p] | /xzf’,/f/’.t —,'/’T/’,V pP; Pi) +Noise

1=

. - '
Nuibe=2|,(/,,;/_‘ —(L]L;p A ,,/_I,'/.,))

Noise Operators L, and their decoherence rate I .

Conservative estimate: when I' > k anqular sensitivity degrades.

Implies that the decoherence time for the two-electron avian compass
is of the order of 100uS or more.

17-Aun-17
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Bird vs Scientists

Avian compass decoherence time (at room temp.) > ~ 100uS.

Best decoherence time achieved in a laboratory at room temp for
preservation of a molecular electron spin state: 80uS for NaC®.

Compass mechanism is almost immune to phase noise.

If strong phase is present t the level of Gamma ~ >= 10k it would
actually render the bird immune to weak RF magnetic perburations!

17-Aun-17
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| Applications: Quantum Computing ;

| « |Imitate nature:

- Entangled states with long lifetimes at room temp.

Intel Pentium X

17-Ann-17
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Quantum Biology: More Examples

2 - Photosynthesis:
‘ - Classically invalid pathways

- Photoelectric effect
- Photoelectron entanglement, Hamiltonian least path
calculation in Chlorophyll to reach target molecule.

» Sunlight: Fusion, QM tunneling through ans'cs_ c“_
Coulomb barrier. prefers.. _f

- Sense of Smell: entanglement (debated).

= T A

« Cats in boxes. /-' ) f "
- - snmetnlng Soft.

b | ﬁ;:x‘:" D \ ' e . .
;] ' A M WY - .. R ,’ LR (g 205PM

17-Ann-17
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perimerter sCHOLArs
IrnrernariondL”

1No birds were harmed in this presentation.
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Physics in nature: Phase transitions

Presentation by Dominique Soutiere

I3

perimeTer scHoLars
Intrernarliaongdgl
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Introduction. .

in everyday life.

T\ &

2 £ a3l B . B adw
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Outline

Introduction
Definitions
« Some examples
* Revision of thermodynamic quantities
e 2 types of transitions
* Transitions for water
* |[sing model
e Conclusion
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Definitions

* Phase: An homogeneous system.

* A phase transition usually occurs by varying
external conditions.

* Characteristic by a discontinuity in one of the
derivatives of a thermodynamic property.

* Order parameter: A quantity that varies from O
to a non-zero value during the transition.
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Some examples

» Solid, liquid, gas and plasma

* Ferromagnetic and paramagnetic solids
» Superconductivity and superfluidity

* Breaking of symmetries (cosmology)
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Quick revision

* Gibbs free energy G=£-715+PV
AdG=—S8dT + VdP

e Specific volume V/IN=[l/IN]éGIeP

« Specific Heat ¢, ,=rés/ier=-ré’cler’
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Quick revision

* Gibbs free energy G=f£-715+PV
AdG=—S8dT + VdP

e Specific volume V/IN=[l/IN]éGIeP
« Specific Heat ¢ ,=résier=-ré*cier’
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1%t order transitions

» A first derivative of the Energy is
discontinuous.

e Latent heat: Fixed amount of energy absorbed
or released.

* |n liquid-gas transition below the critical point,
the specific volume is discontinuous.
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2" order transitions

* A second derivative of the Energy is
discontinuous.

* |n liquid-gas transition beyond the critical
point, the specific volume is continuous but
the heat capacity is discontinuous
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Transitions for water

nelling
P freezing
x
Critical Point

Liquid

Triple Point
evaporation

condensation

7

/
sublmaton
doposition

lan O'Neill, http://www.marspedia.org

S 2:15 PM
L [' I‘I‘ N'!“ ‘\‘ “

17-Ann-17
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Transitions for water

Donald L. Smith, Addison-Wesley Publishing Co, 1950,1953.

. L 216PM |
fie & - [, my W 17-Ann-17
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Transitions for water

Donald L. Smith, Addison-Wesley Publishing Co, 1950,1953.

: 5 217eM |
g0 . W 17-Aun-12

Pirsa: 12080039 Page 85/121



Ising model

* Model of interacting particles in 2D placed on
a square lattice.

 Short range spin interaction, 2 possible
alignment.

* Energetic advantage to have nearby spins
aligned
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Ising model

» Above critical temperature: Short length
correlation.

* Below the critical temperature: Spins align on
large scale.

* At the critical temperature: Infinite correlation
length.
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Conclusion

» 2 types of transitions depending on
discontinuities.

 We use the order parameters to differentiate
between phases.

* |s used in a variety of situations and scales,
from condensed matter to renormalization
groups.
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Transitions for water
. W motiea
/ Critical Point

o i

Liquid
Solid

Triple Point

N evaporation
Crars condensation

/ Tt,,,,c

/
sublmaton
doposition

lan O'Neill, http://www.marspedia.org
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The Hydraulic Mechanism
In Spiders’ Legs

By Jin-Mann (Jenny) Wong
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Contents

Introduction

Anatomy of a Spider
Hydraulics

A Simple Model
Experimental Results
Industrial Applications

Summary
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Introduction

* Hydraulic and
muscular
mechanisms

* No leg extension
muscles
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Anatomy of a Spider

Open circulatory system

Seven joints

— cephalothorax

Cephalothorax muscles

abdomen

Image from http://www.explorit.org/science/spider.html
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Hydraulics

* Pascal’s principle

* Pressure = Force/Area
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Hydraulics

* Pascal’s principle

* Pressure = Force/Area
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A Simple Model
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A Simple Model |

AV = 8mx*Ax
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Experimental Results

* Resting pressure: 6.6 kilopascals

* Transient pressure: 60 kilopascals

* Contraction due to Cephalothorax
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Robotic Spider

Image from http://www.engineeringontheedge.com/2011/11/3d-printing-spawns-robotic-

‘)[_1i|_i‘?‘f S/
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Smart Stick

Elastic joint Elastic joint

measured joint

rotation
Rigid spacer Rigid spacer

single joint-actuator
action

Inner pressure InCrease

Image from C. Menon and C. Lira. “Spider-inspired embedded actuator for space
applications.”
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Summary

Hydraulic mechanism

Cephalothorax muscles

Simple model

Applications
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Physics in Nature:
ounded by Waves!!

PerimeTer scHoLars
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Outline
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What is a wave and where do we see them
In Nature

h
§
|

Properties of Waves
Types of Waves

Study of ripples in pond water — waves in
action!

‘
p—

Conclusions
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e ——— - e ———

Waves are
g Tess=  everywhere!!

PR

---;‘: . Sound waves, visible light waves, radio waves, &

7:_-__ | microwaves, water waves, earthquake waves etc M

- . Wavelike phenomenon in nature —throwing a pebble
in a pond, earthquakes, a duck moving through
" water, motion of a child on a swing etc.
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What is a wave?

~g A disturbance that travels through a medium from
* one location to another.

—

" . Medium (matter) = collection of interacting
~ particles.

ﬂ"' . Adjacent particles of the medium interact

- disturbance is able to travel through the medium.

Example: Water wave: medium - the water; interacting particles - g
the individual molecules of water.
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—
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-

— What is a wave?

‘ﬁ A disturbance that travels through a medium from
* one location to another.

—

" . Medium (matter) =™ collection of interacting
particles.

ﬁ‘"‘ . Adjacent particles of the medium interact

disturbance is able to travel through the medium.

Example: Water wave: medium - the water; interacting particles -
the individual molecules of water.
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-

~ Waves transport energy, not matter |

—

=4 . Individual particles of medium

- temporarily displaced from their rest
~ position

. - restorative force brings them back to their
original position.

. ] . / .
AL

- Therefore, while waves move, the medium
(water) does not.
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" Waves transport energy, not matter

=1 . Individual particles of medium

| - temporarily displaced from their rest
~ position

_ - restorative force brings them back to their
original position.

] ! 7 "4 - ,
] [ | 1 Ol'
f \ e
! F ¢ i B .|

. Therefore, while waves move, the medium
(water) does not.

r—r— o

[
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“Like the waves made in a field of grain by
the wind, where we see the waves

— —

" running across the field while the grain q
" remains in place.”

——
—

- Leonardo da Vinci
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r.v.3 -

e

Y =
wdl YVAaV! _?'_
=

-

.Iransverse wave - the displacement of the particles of the -
= medium is perpendicular to the direction that the wave moves.

—

+

h
:

B TiEE

Wave equation: | .
k / I:\ \\
/ ‘ \\

L u(z, t) =) sin(kz - wt + ¢)

displacement -

= Where, x is position, tis time, k is wave- ~Trough
number, w is the angular frequency, ¢ is
= the phase distance ——»

5. = wavelength

e — V = amplitude
Figure 1: Diagram of transverse wave

Frequency, f: Period, T:
f=1 :
A ==

Where, v is the phase velocity of the wave
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.Iransverse wave - the displacement of the particles of the -
= medium is perpendicular to the direction that the wave moves.

—
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Wave equation:

: u(x, t) =y sin(kz — wt + 0)

displacement ——

_ Where, x is position, tis time, k is wave- ~Trough
number, w is the angular frequency, ¢ is

» the phase distance ——»
5. = wavelength

V = amplitude
Figure 1: Diagram of transverse wave

Frequency, f: Period, T:

f=< :
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Where, v is the phase velocity of the wave
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g e
leferent types of Mechanlcal

Waves

. Alongitudinal wave — the displacement of the
particles of the medium is parallel to the direction that
the wave moves. Example: sounds waves

compression rarefaction

Do mitomn

Figure 2: Longitudinal Wave (Edlin, 2012)
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Three main forces acting on each water molecule — force of
gravity, buoyant force and most importantly surface tension.

ftﬁ“_.

Longitudinal component of the surface tension.

I

0

Surface wave - Combination of both transverse and
longitudinal waves.

@ water molecules

Fg = force of gravity
FB = buoyancy force
FS = surface tension

PR

.These surface waves execute simple harmonic motion in
2-dimensions.
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Ripples on th; s—urfac f pond

- Surface wave (combination of transverse and longitudinal
waves)

v

Particles along the surface of the water move in a
circular motion

I
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1 = Progression of wave

2 2 = Crest

» /«\\—“:’/n\w}/ /,\\\ . 3 = Trough
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Figure 4: Diagram of surface wave showing circular motion of particles on surface of the medium (Zimbres, 2006)
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.Once the effects of the disturbance dissipate, the water will

__return to a stil'pond.
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Assumptions

.Originally a flat and still pond.

-

2 .Considered the pebble to be a point source when it comes
= in contact with the water.

~ = .0nly the three forces mentioned are involved.

. -Wind, under-currents, biological factors are all excluded.

.Boundaries of pond not included therefore no interference.

= NOTE: The parameter of depth has not been investigated.
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can be classified
into two
categories
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mechanical —
waves classified into

transfer energy
through

ongitudinal
or transverse
compression waves
waves

matter called a

nove move
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matter up
matter and down or
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solids,
liquids,
gasses

forward and
backward in
the same
direction of
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back and
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compared to
the direction
of wave
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Conclusions

ongitudinal
or . transverse
compression waves

surface
waves

Particles along surface of water move in circular motion
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Three main forces acting on each water molecule — force of
gravity, buoyant force and most importantly surface tension.

Longitudinal component of the surface tension.

Surface wave - Combination of both transverse and
longitudinal waves.

@ water molecules

Fg = force of gravity
FB = buoyancy force
FS = surface tension

.These surface waves execute simple harmonic motion in
2-dimensions.
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