Title: 12/13 PSI - Student Presentations 2A

Date: Aug 17, 2012 01:30 PM

URL: http://www.pirsa.org/12080039

Abstract:

Pirsa: 12080039 Page 1/121



Arthur Lee.'Physics in Nature'. 17th Aug.

Pirsa: 12080039 Page 2/121

## N<sub>2</sub> tyre filling - Brillant idea or scam?



Pirsa: 12080039 Page 3/121

### What happens.



psedealerequipment.com

Pirsa: 12080039

## Why fill your tires with $N_2$ ?



Pirsa: 12080039

### Why fill your tires with N<sub>2</sub>?

#### Benefits claimed:

- Slower loss of pressure due to diffusion through the tyre,
- decreased rate of corrosion of tyre frame, and
- retarding the chemical degradation of rubber.

Pirsa: 12080039 Page 6/121

#### Decrease rate of frame corrosion

- frame corrosion produces aluminum oxide powder
- which can get stuck in air valves

Pirsa: 12080039 Page 7/121



Pirsa: 12080039 Page 8/121

#### **Effusion**

The flux of particles on the wall

Flux, 
$$\Phi = \frac{1}{4} n \langle v \rangle$$

For a Maxwell - Boltzmann distribution,

SO,





Pirsa: 12080039 Page 10/121

#### **Effusion**

The flux of particles on the wall

Flux, 
$$\Phi = \frac{1}{4} n \langle v \rangle$$

For a Maxwell - Boltzmann distribution,

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}} \propto \frac{1}{\sqrt{m}}$$

SO,

$$\Phi \propto \langle v \rangle \propto \frac{1}{\sqrt{m}}$$



#### **Effusion**

Hence,

$$\frac{\Phi_{O_2}}{\Phi_{N_2}} = \sqrt{\frac{m_{N_2}}{m_{O_2}}} = 0.935$$



Pirsa: 12080039 Page 12/121



Pirsa: 12080039 Page 13/121

Flux of particles

Flux, 
$$\vec{\Phi} = -\frac{1}{3}\lambda \langle v \rangle \nabla n$$

For a Maxwell - Boltzmann distribution,

Also,

Pirsa: 12080039 Page 14/121

So,

$$\Phi \propto \frac{1}{d^2 \sqrt{m}}$$

Using the data

$$d_{O_2} = 0.358 \, nm, \quad d_{N_2} = 0.370 \, nm$$

Thus,

Pirsa: 12080039

So,

$$\Phi \propto \frac{1}{d^2 \sqrt{m}}$$

Using the data

$$d_{O_2} = 0.358 \, nm, \quad d_{N_2} = 0.370 \, nm$$

Thus,

$$\frac{\Phi_{O_2}}{\Phi_{N_2}} = \left(\frac{d_{N_2}}{d_{O_2}}\right)^2 \sqrt{\frac{m_{N_2}}{m_{O_2}}} = 0.9992$$

Pirsa: 12080039



Pirsa: 12080039 Page 17/121

# **Epilogue**

the happy ending



Pirsa: 12080039 Page 18/121

#### The end



Pirsa: 12080039



Pirsa: 12080039 Page 20/121

### Why fill your tires with N<sub>2</sub>?

#### Benefits claimed:

- Slower loss of pressure due to diffusion through the tyre,
- decreased rate of corrosion of tyre frame, and
- retarding the chemical degradation of rubber.

Pirsa: 12080039 Page 21/121



Pirsa: 12080039 Page 22/121



Pirsa: 12080039



Pirsa: 12080039 Page 24/121



Pirsa: 12080039



Pirsa: 12080039 Page 26/121



Pirsa: 12080039 Page 27/121



Pirsa: 12080039 Page 28/121

### **Light From the Sun**



Picture source: http://serc.carleton.edu/usingdata/nasaimages/index4.html



Pirsa: 12080039 Page 29/121



Pirsa: 12080039 Page 30/121

### The Interaction of Light with Matter



Pirsa: 12080039 Page 31/121



Pirsa: 12080039 Page 32/121

Solar radiation is scattered by particles in the atmosphere



Pirsa: 12080039 Page 33/121

Solar radiation is scattered by particles in the atmosphere

- Two types:
  - Rayleigh scattering
  - Mie scattering



Pirsa: 12080039 Page 34/121

Solar radiation is scattered by particles in the atmosphere

- Two types:
  - Rayleigh scattering
  - Mie scattering

These are elastic processes



Pirsa: 12080039 Page 35/121



Pirsa: 12080039 Page 36/121



### Electron orbits are perturbed by EM wave

Perturbation has the frequency as the incident wave

Causes periodic separation of charge within the molecule



Pirsa: 12080039 Page 37/121



Pirsa: 12080039 Page 38/121

# **Scattering**

### **Electron orbits are perturbed by EM wave**

Perturbation has the frequency as the incident wave

Causes periodic separation of charge within the molecule



### Creates an oscillating dipole moment

Its magnitude is proportional to the field and to the particle's polarizability



### The dipole moment radiates light

Pirsa: 12080039 Page 39/121

# **Rayleigh Scattering**

 Particles much smaller than the wavelength of the light:

 $r \ll \lambda$ 

The particles can be individual atoms or molecules

•  $N_2$  molecule has  $r \approx 0.11$ nm visible light has  $\lambda \approx 500$  nm



## **Rayleigh Scattering**

 The Intensity of light scattered by a single molecule is given by

$$I = I_0 \frac{8\pi^4 \alpha^2}{\lambda^4 R^2} (1 + \cos^2 \theta)$$

 $I_0$  is the light's intensity  $\lambda$  is the wavelength  $\theta$  is the scattering angle

 $\alpha$  is the molecular polarizability R is the distance to the particle

Seinfeld and Pandis, Atmospheric Chemistry and Physics, 2nd Edition, John Wiley and Sons, New Jersey 2006, Chapter 15.1.1

Pirsa: 12080039 Page 41/121



400nm 700nm

Scattered the most

Scattered the least

~9.4 x more scattering

Pirsa: 12080039 Page 42/121



Pirsa: 12080039 Page 43/121



Pirsa: 12080039 Page 44/121



Pirsa: 12080039 Page 45/121

# **Colour Perception**

- There are 5 million cones in our retinas which are responsible for colour vision
  - Three types: long, medium and short-wavelength
- The ranges of the cone types overlap



Pirsa: 12080039 Page 46/121

## **Colour Perception**

- There are 5 million cones in our retinas which are responsible for colour vision
  - Three types: long, medium and short-wavelength
- The ranges of the cone types overlap
- Different spectral combinations can be detected as the same colour

Pirsa: 12080039 Page 47/121



Pirsa: 12080039 Page 48/121



Pirsa: 12080039 Page 49/121



Pirsa: 12080039 Page 50/121

# **Mie Scattering**

- size of the particle ≥ wavelength
- Not heavily wavelength dependent in the visible range
- Produces the white light from clouds, mist and fog
- Rayleigh scattering is just an approximation to Mie scattering in the limit of small particle size.



Pirsa: 12080039



Pirsa: 12080039 Page 52/121



Pirsa: 12080039 Page 53/121



What accounts for the colours in the sky?

The spectrum of radiation emitted by the sun

The interaction of light with particles in the atmosphere:
Rayleigh and Mie scattering

Human colour vision

Pirsa: 12080039 Page 54/121



Pirsa: 12080039 Page 55/121

### Physics in Nature: A Birdseye View

Perimeter Scholars International 2012/2013 Daniel Xavier Ogburn





"To see a world in a grain of sand, And a heaven in a wild flower. Hold infinity in the palm of your hand, And eternity in an hour."

- William Blake: Auguries of Innocence





















Pirsa: 12080039 Page 56/121



Pirsa: 12080039 Page 57/121

# Magnetic Navigation: Just Wing It

- Many bird species migrate
  - e.g. Ducks and Geese in Waterloo
  - Changing photoperiod
  - Weather, food, habitat
- ~ 50 known animal species use Earth's magnetic field to navigate.





- Earth's magnetic field:
  - Background dipole ~ 50μT (stable, long time scales).
  - Solar wind perturbation (dayside/nightside tail).
  - Plasma waves & resonances in magnetosphere and ionosphere: ~ short (s) nT pertbuation.























Pirsa: 12080039 Page 58/121

### The Avian Compass: Nature's Magnetometer

- Humans:
  - -Compass
  - -Aeromagnetic survey: Fluxgate magnetometer (~0.2nT)



Cesium vapor magnetometers (QM, Zeeman ~ 0.01nT)

- How do Migratory Birds navigate?
  - Klaus Schulten 1970s: geomagnetically sensitive biochemical reaction in eye
  - Cryptocrome protein molecule.
  - Photons → Cryptocrome energy boost → ...





















Pirsa: 12080039 Page 59/121



### Fancy some entanglement?



"iMagnetometer"

Photons  $\rightarrow$  Eye  $\rightarrow$ Cryptocrome energy boost →

Free Radical Pair →

Entangled Electrons (separated, but spins linked) →

Hypersensitivity to Magnetic Fields →

Chemical Reactions →

Magneto-reception and the Avian Compass.

- Nature: QM entanglement in warm, noisy environment! ٧S
- Humans: QM entanglement in isolated, cryogenic setting without noise.





















Pirsa: 12080039 Page 60/121

### Fancy more entanglement?



- Sense variations < 0.3% of Earth's magnetic field strength</li> ~ 150 nT! (Conservative model used by Gauger et al).
- Experiments of Ritz et al. sensitivity as low as ~ 15nT (European robin).
- Bird "sees" the magnetic field.
- Requires electrons to be entangled for  $\sim 100 \ \mu s$ .
- No cryogenics, outperforms NaC0<sup>60</sup> by at least 20µs!
- Robust sensor (training, protected by noise).





















Pirsa: 12080039 Page 61/121

### A Radical Notion: The RP Mechanism

- Quantum Evolution of spatially separated pair of e spins after energized by photon.
- Two e spins and one nuclear spin.
- Spheroid directionality



- Spatial separation: Nucleus interacts with one spin
  - Asymmetry for singlet-triplet oscillations.
  - RP formation at t=0, Hamiltonian for system after separation.
  - one e<sup>-</sup> coupled to nucleus, one e<sup>-</sup> ~'free (Gauger et al.)

$$H = \hat{I} \cdot \mathbf{A} \cdot \hat{S}_1 + \gamma \mathbf{B} \cdot (\hat{S}_1 + \hat{S}_2)$$



















# Radical Pair Mechanism (2)

- Gauger et al. also Investigated more detailed models: -e.g. add 2<sup>nd</sup> nuclear spin, replace nuclear asymmetry with anisotropic g-factor for e.
- All models give rise to same qualitative behavior and decoherence timescales as the simple RP model.
- **Underlying principle**: e<sup>-</sup> spins of RP must be protected from decoherence to be susceptible to the experimentally applied RF magnetic field.
- External magnetic field:  $\mathbf{B} = \mathbf{B}_0 + \cos(\omega t)\mathbf{B}_{rf}$
- At Frankfurt:  $B_0 \sim 47 \mu T$ . Experiment and Simulation:  $B_{rf} = 150 nT$ .





















# Radical Pair Mechanism (2)

- Gauger et al. also Investigated more detailed models:

   e.g. add 2<sup>nd</sup> nuclear spin, replace nuclear asymmetry with anisotropic g-factor for e<sup>-</sup>.
- All models give rise to same qualitative behavior and decoherence timescales as the simple RP model.
- Underlying principle: e<sup>-</sup> spins of RP must be protected from decoherence to be susceptible to the experimentally applied RF magnetic field.
- External magnetic field: B = B<sub>0</sub> + cos(ωt)B<sub>rf</sub>
- At Frankfurt: B<sub>0</sub> ~ 47μT.
   Experiment and Simulation: B<sub>rf</sub> =150nT.























# Time Evolution: Master Equation

- Resonant excitation with uncoupled e<sup>-</sup> spin: B<sub>rf</sub> frequency 1.316MHz.
- 8-dimensional Hilbert space of 3 spins (entangled electrons + nucleus)
  - 2 singlet projectors and 3 triplet projectors P<sub>i</sub>
- Model dynamics with Linblad Master Equation (density matrix):

$$\dot{\rho} = -\frac{i}{\hbar}[H,\rho] + k\sum_{i=1}^{8} P_i \rho P_i^{\dagger} - \frac{1}{2}(P_i^{\dagger} P_i \rho + \rho P_i^{\dagger} P_i).$$

- Decay rate k for projectors.
- Solve for density matrix ρ.



















### Entanglement + Background Noise = Good Times

- Choosing constants:
  - Resonance frequency of the 'free' electron = 1.316MHz.
  - Experiments show a 1.316MHz perturbing magnetic field can disorient the bird.
  - No disruption if B<sub>rf</sub> is parallel to B<sub>0</sub>.
- Resulting bound on decay rate: k ≤ 10<sup>4</sup> s<sup>-1</sup>.
- Consistent with long RP lifetimes for cryptochrome molecules in migratory birds.
- Q: How robust is this mechanism against environmental noise?
   A: Random noise actually protects against decohorence!
- Anti-intuitive: Human experiments achieve entanglement by using cryogenic temperatures and minimizing noise.



















Pirsa: 12080039 Page 66/121

### Entanglement + Background Noise = Good Times

- Choosing constants:
  - Resonance frequency of the 'free' electron = 1.316MHz.
  - Experiments show a 1.316MHz perturbing magnetic field can disorient the bird.
  - No disruption if B<sub>rf</sub> is parallel to B<sub>0</sub>.
- Resulting bound on decay rate: k ≤ 10<sup>4</sup> s<sup>-1</sup>.
- Consistent with long RP lifetimes for cryptochrome molecules in migratory birds.
- Q: How robust is this mechanism against environmental noise?
   A: Random noise actually protects against decohorence!
- Anti-intuitive: Human experiments achieve entanglement by using cryogenic temperatures and minimizing noise.



















Pirsa: 12080039 Page 67/121

## Modeling Noise

Add Linblad dissipator to Linblad Master Equation:

$$\dot{\rho} = -\frac{i}{\hbar}[H,\rho] + k\sum_{i=1}^{8}P_{i}\rho P_{i}^{\dagger} - \frac{1}{2}(P_{i}^{\dagger}P_{i}\rho + \rho P_{i}^{\dagger}P_{i}) + \text{Noise}$$

Noise = 
$$\sum_{i} \Gamma_{i} \left( L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} (L_{i}^{\dagger} L_{i} \rho + \rho L_{i}^{\dagger} L_{i}) \right)$$

- Noise Operators L<sub>i</sub> and their decoherence rate Γ<sub>i</sub>.
- Conservative estimate: when  $\Gamma \ge k$  angular sensitivity degrades.
- Implies that the decoherence time for the two-electron avian compass is of the order of 100μS or more.



















### Bird vs Scientists

- Avian compass decoherence time (at room temp.)  $\geq \sim 100 \mu S$ .
- Best decoherence time achieved in a laboratory at room temp for preservation of a molecular electron spin state: 80μS for NaC<sup>60</sup>.







- Compass mechanism is almost immune to phase noise.
- If strong phase is present t the level of Gamma ~ >= 10k it would actually render the bird immune to weak RF magnetic perburations!



















Pirsa: 12080039 Page 69/121



- Imitate nature:
  - Entangled states with long lifetimes at room temp.

Intel Pentium X





















Pirsa: 12080039 Page 70/121

# Quantum Biology: More Examples

- Photosynthesis:
  - Classically invalid pathways
  - Photoelectric effect
  - Photoelectron entanglement, Hamiltonian least path calculation in Chlorophyll to reach target molecule.
- Sunlight: Fusion, QM tunneling through Coulomb barrier.
- Sense of Smell: entanglement (debated).
- Cats in boxes.



























Pirsa: 12080039 Page 71/121



Pirsa: 12080039 Page 72/121

#### References

- Ball, P. Nature 431, 396-397(2004).
- Ball, P. Nature 474, 272-274 (2010).
- Gauger, E.M., Rieper, E., Morton, J. J. L, Benjamin, S. C. & Verdal, V. *Phys. Rev. Lett.* **106**, 040503 (2011).
- Ritz, T. et al, Biophysical Journal. 96: (2009).





Pirsa: 12080039 Page 73/121

# Physics in nature: Phase transitions

Presentation by Dominique Soutière

























Pirsa: 12080039 Page 74/121



Pirsa: 12080039 Page 75/121

#### **Outline**

- Introduction
- Definitions
- Some examples
- Revision of thermodynamic quantities
- 2 types of transitions
- · Transitions for water
- Ising model
- Conclusion













Pirsa: 12080039 Page 76/121

#### **Definitions**

- Phase: An homogeneous system.
- A phase transition usually occurs by varying external conditions.
- Characteristic by a discontinuity in one of the derivatives of a thermodynamic property.
- Order parameter: A quantity that varies from 0 to a non-zero value during the transition.



















Pirsa: 12080039 Page 77/121

# Some examples

- Solid, liquid, gas and plasma
- Ferromagnetic and paramagnetic solids
- Superconductivity and superfluidity
- Breaking of symmetries (cosmology)















17-Aug-17

Pirsa: 12080039 Page 78/121

# Quick revision

• Gibbs free energy G = E - TS + PV

$$dG = -SdT + VdP$$

- Specific volume  $V/N = [1/N] \partial G/\partial P$
- Specific Heat  $C_p = T \partial S / \partial T = -T \partial^2 G / \partial T^2$



Pirsa: 12080039 Page 79/121

# Quick revision

• Gibbs free energy G = E - TS + PV

$$dG = -SdT + VdP$$

- Specific volume  $V/N = [1/N] \partial G/\partial P$
- Specific Heat  $C_p = T \partial S / \partial T = -T \partial^2 G / \partial T^2$





- A first derivative of the Energy is discontinuous.
- Latent heat: Fixed amount of energy absorbed or released.
- In liquid-gas transition below the critical point, the specific volume is discontinuous.



Page 81/121

Pirsa: 12080039



- A second derivative of the Energy is discontinuous.
- In liquid-gas transition beyond the critical point, the specific volume is continuous but the heat capacity is discontinuous



Pirsa: 12080039 Page 82/121



Pirsa: 12080039 Page 83/121



Pirsa: 12080039 Page 84/121



Pirsa: 12080039 Page 85/121

# Ising model

- Model of interacting particles in 2D placed on a square lattice.
- Short range spin interaction, 2 possible alignment.
- Energetic advantage to have nearby spins aligned

$$H = -J \sum s_i s_j$$
,  $s_i = \pm 1$ 





- Above critical temperature: Short length correlation.
- Below the critical temperature: Spins align on large scale.
- At the critical temperature: Infinite correlation length.



Pirsa: 12080039 Page 87/121

#### Conclusion

- 2 types of transitions depending on discontinuities.
- We use the order parameters to differentiate between phases.
- Is used in a variety of situations and scales, from condensed matter to renormalization groups.





Pirsa: 12080039 Page 89/121



Pirsa: 12080039 Page 90/121

# The Hydraulic Mechanism in Spiders' Legs

By Jin-Mann (Jenny) Wong

Pirsa: 12080039 Page 91/121

#### Contents

- Introduction
- Anatomy of a Spider
- Hydraulics
- A Simple Model
- Experimental Results
- Industrial Applications
- Summary



Pirsa: 12080039 Page 92/121

# Introduction

Hydraulic and muscular mechanisms

 No leg extension muscles



Pirsa: 12080039 Page 93/121

# Anatomy of a Spider



Open circulatory system

Seven joints

Cephalothorax muscles

Image from <a href="http://www.explorit.org/science/spider.html">http://www.explorit.org/science/spider.html</a>

Pirsa: 12080039 Page 94/121

# Hydraulics

- Pascal's principle
- Pressure = Force/Area
- $V_{in} = V_{out}$

# Hydraulics

- Pascal's principle
- Pressure = Force/Area
- $V_{in} = V_{out}$

# A Simple Model ∆x \$\_\_\_\_

Pirsa: 12080039

# A Simple Model

$$\Delta V = \frac{4\pi}{3} \left( r^3 - \left(\frac{r}{2}\right)^3 \right)$$

$$\Delta V = 8\pi x^2 \Delta x$$





- Resting pressure: 6.6 kilopascals
- Transient pressure: 60 kilopascals
- Contraction due to Cephalothorax

Pirsa: 12080039 Page 99/121

# **Robotic Spider**



 $\frac{\text{Image from } \underline{\text{http://www.engineeringontheedge.com/2011/11/3d-printing-spawns-robotic-spiders/}}{\underline{\text{spiders/}}}$ 

Pirsa: 12080039 Page 100/121

# **Smart Stick**



Image from C. Menon and C. Lira. "Spider-inspired embedded actuator for space applications."

Pirsa: 12080039 Page 101/121

# Summary

• Hydraulic mechanism

Cephalothorax muscles

• Simple model

Applications

Pirsa: 12080039 Page 102/121

#### References

L. Zentner, S. Petkun and R. Blickham. (2000) "From the Spider Leg to a Hydraulic Device."

http://www.findaspider.org.au/info/Mobility.htm

- D. Parry and R. Brown. (1959) "The Hydraulic Mechanism of the Spider Leg."
- J. Anderson and K. Prestwich. (1975) "The Pressure Fluid Pumps of Spiders."

http://www.explorit.org/science/spider.html

C. Menon and C. Lira. "Spider-inspired embedded actuator for space applications."

Fraunhofer-Gesellschaf Research News. (2011) "High-tech spider for hazardous missions."

Pirsa: 12080039 Page 103/121



Pirsa: 12080039 Page 104/121

### **Outline**

- What is a wave and where do we see them in Nature
- Properties of Waves
- Types of Waves
- Study of ripples in pond water waves in action!
- Conclusions

Pirsa: 12080039 Page 105/121



Pirsa: 12080039 Page 106/121

#### What is a wave?

- A disturbance that travels through a medium from one location to another.
- Medium (matter) 

  collection of interacting particles.
- Adjacent particles of the medium interact disturbance is able to travel through the medium.
- Example: Water wave: medium the water; interacting particles the individual molecules of water.

Pirsa: 12080039 Page 107/121

#### What is a wave?

- A disturbance that travels through a medium from one location to another.
- Medium (matter) 

  collection of interacting particles.
- Adjacent particles of the medium interact disturbance is able to travel through the medium.
- Example: Water wave: medium the water; interacting particles the individual molecules of water.

Pirsa: 12080039 Page 108/121

## Waves transport energy, <u>not</u> matter

- Individual particles of medium
- **temporarily** displaced from their rest position
- restorative force brings them back to their original position.

 Therefore, while waves move, the medium (water) does not.

Pirsa: 12080039 Page 109/121

## Waves transport energy, <u>not</u> matter

- Individual particles of medium
- **temporarily** displaced from their rest position
- restorative force brings them back to their original position.

 Therefore, while waves move, the medium (water) does not.

Pirsa: 12080039 Page 110/121



Pirsa: 12080039 Page 111/121

## **Different types of Mechanical Waves**

•Transverse wave - the displacement of the particles of the medium is perpendicular to the direction that the wave moves.

#### Wave equation:

$$u(x, t) = y \sin(kx - \omega t + \phi)$$

Where, x is position, t is time, k is wavenumber,  $\omega$  is the angular frequency,  $\phi$  is the phase



 $\lambda = wavelength$ 

y = amplitude

Figure 1: Diagram of transverse wave

#### Frequency, f:

$$f = \frac{v}{\lambda}$$

Where, v is the phase velocity of the wave

#### Period, T:

$$T = \frac{1}{f}$$

## **Different types of Mechanical Waves**

•Transverse wave - the displacement of the particles of the medium is perpendicular to the direction that the wave moves.

#### Wave equation:

$$u(x, t) = y \sin(kx - \omega t + \phi)$$

Where, x is position, t is time, k is wavenumber,  $\omega$  is the angular frequency,  $\phi$  is the phase



 $\lambda = wavelength$ 

y = amplitude

Figure 1: Diagram of transverse wave

#### Frequency, f:

$$f = \frac{v}{\lambda}$$

Where, v is the phase velocity of the wave

#### Period, T:

$$T = \frac{1}{f}$$

# Different types of Mechanical Waves

 A longitudinal wave – the displacement of the particles of the medium is parallel to the direction that the wave moves. Example: sounds waves



Figure 2: Longitudinal Wave (Edlin, 2012)

Pirsa: 12080039 Page 114/121

- Three main forces acting on each water molecule force of gravity, buoyant force and most importantly surface tension.
- Longitudinal component of the surface tension.
- Surface wave Combination of both transverse and longitudinal waves.



•These surface waves execute simple harmonic motion in 2-dimensions.

Pirsa: 12080039 Page 115/121

### Ripples on the surface of a pond

Surface wave (combination of transverse and longitudinal waves)

Particles along the surface of the water move in a circular motion



Figure 4: Diagram of surface wave showing circular motion of particles on surface of the medium (Zimbres, 2006)

Once the effects of the disturbance dissipate, the water will return to a still pond.

Pirsa: 12080039 Page 116/121

## **Assumptions**

- ·Originally a flat and still pond.
- •Considered the pebble to be a point source when it comes in contact with the water.
- •Only the three forces mentioned are involved.
- •Wind, under-currents, biological factors are all excluded.
- •Boundaries of pond not included therefore no interference.
- •NOTE: The parameter of depth has not been investigated.

Pirsa: 12080039 Page 117/121



Pirsa: 12080039 Page 118/121



Pirsa: 12080039 Page 119/121



Pirsa: 12080039 Page 120/121

- Three main forces acting on each water molecule force of gravity, buoyant force and most importantly surface tension.
- Longitudinal component of the surface tension.
- Surface wave Combination of both transverse and longitudinal waves.



•These surface waves execute simple harmonic motion in 2-dimensions.

Pirsa: 12080039 Page 121/121