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Abstract: <span>Much effort has been devoted to the study of systems with
topological order, motivated by practical issues aswell as more field

theoretical and mathematical concerns. Thistalk will give an overview of some
of the field, describing abelian systems relevant to the search for spin

liquids, and non-abelian systems relevant to topological quantum computation. |
will focusin particular on problems not reducible to free-fermion ones;
examples include the RV B state of electrons as well as models of quantum loops
and nets.</span>
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What 1s topological order?

My favorite definition: the number of ground states
depends on the topology (e.g. genus) of the surface.

A topological order parameter 1s non-local, and so 1s
effectively intermediate between order and disorder.

Wen introduced this idea to characterize the order 1n
the fractional quantum Hall effect.
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Models with loops as degrees of freedom

—

are conducive to topological order

if the loops are deconfined.
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Why do we care?

Systems with topological order typically have fractionalization.

Pirsa: 12080002 Page 6/66



Why do we care?

Systems with topological order typically have fractionalization.

For example, in the v =1/3 fractional quantum Hall effect,
the (experimentally observed) excitations have charge ¢/3 and
have anyonic statistics.
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Why do we care?

Systems with topological order typically have fractionalization.

For example, in the v =1/3 fractional quantum Hall effect,
the (experimentally observed) excitations have charge ¢/3 and
have anyonic statistics.

[f that’s not motivation enough:

In 2+1 dimensions, non-abelian anyons can change state
under exchange. Thus one could flip the state of a qubit by
exchanging distant anyons. This would provide quantum
computing hardware robust against local decoherence.
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How do we make progress 1in such
strongly coupled problems?

[n many interesting cases, there are strong connections
between 2d quantum (1.e. 2+1d) problems and 2d classical
(1.e. 2+0d) problems.

This can be exploited qualitatively and quantitatively by
using both field theory and integrability.
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Physical systems: Some relevant theory:

fractional quantum Hall effect Chern-Simons
non-abelian FQHE knot theory/TQFT
spin liquids RVB model

topological insulators band structure from K theory;
group cohomology

toric codes/ Dijkgraaf-Witten TQFT
discrete gauge theory

BCS superconductor BF theory
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The RVB wave function

Consider one electron pinned to each site of some lattice.
Antiferromagnetic interactions encourage valence bonds:

| ]

*—o

._i I I —e = TL)-NT)
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The RVB wave function

Consider one electron pinned to each site of some lattice.
Antiferromagnetic interactions encourage valence bonds:

—e = TL)-UT

The (short-range) “resonating valence bond” state is a

linear superposition of all such “dimer” configurations.
Anderson
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If instead you remove two electrons

DD (PN S

*—o *—0 *—o *—0 I

I *— *— *— *—o

e oo e 1 1]

the resulting state has spin 0 and charge 2e. With
deconfinement, each “holon” has spin zero and charge -¢.
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If instead you remove two electrons

PEDED (PN S
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the resulting state has spin 0 and charge 2e. With
deconfinement, each “holon” has spin zero and charge -¢.

The electron has “separated” into a spinon and holon.
This sounds exotic, but in an ordinary BCS
superconductor, the excitations are essentially spinons!

Pirsa: 12080002 Page 15/66



Pirsa: 12080002

Spin-charge separation 1s familiar in 1+1 dimensional
conformal field theory from non-abelian bosonization.
Polyakov-Wiegmann; Witten

Restrict an electron to live in one spatial dimension. The
two components of spin result in two Dirac fermions:

Yo'y = (wa,tﬁTw)

spin charge

U2) =8U2), xU(1)

Spin and charge are described by distinct conformal field theories.
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How do we make this concrete 1n

2+1 dimensions?

Rokhsar and Kivelson had a clever 1dea:

« Study the much-simpler model of quantum dimers
Instead of spins, 1.e. treat the dimers as the degrees of
freedom. Distinct dimer configurations are orthogonal.

Construct a Hamiltonian that has the RVB dimer state
as its exact ground state.
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Quantum dimers
= 2+1d lattice gauge theory

Rewrite the dimers in terms of loops:

reference configuration:
*—o

*"—e
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Quantum dimers
= 2+1d lattice gauge theory

Rewrite the dimers in terms of loops:

reference configuration:
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Each dimer configuration 1s equivalently a loop configuration:

[~ (
~) )
K,
| /

o /] / ( +
) /

/

{ —

These can be treated as Ising domain walls/Z, Wilson loops.

Fradkin, Kivelson: Moessner, Sondhi, Fradkin
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Each dimer configuration 1s equivalently a loop configuration:
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These can be treated as Ising domain walls/Z, Wilson loops.

Fradkin, Kivelson: Moessner, Sondhi, Fradkin
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Each dimer configuration 1s equivalently a loop configuration:

{0\ ¢

These can be treated as Ising domain walls/Z, Wilson loops.

By Gauss’ Law, a loop can only end 1n a charge. Thus a
monomer/holon is an Ising disorder operator/ 7, charge.

O O

Fradkin, Kivelson: Moessner, Sondhi, Fradkin
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The dual of a loop with ends 1s a string with weight

( l )dimcr.\' crossed

In Ising language, the dual loop end 1s simply the spin
operator.

In gauge language, this is a Z,, flux insertion, or “vison”.
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The dual of a loop with ends is a string with weight

( l)dimcrs crossed

In Ising language, the dual loop end 1s simply the spin
operator.

In gauge language, this is a 7, flux insertion, or “vison”.
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The dual of a loop with ends 1s a string with weight

( l )dimcrs crossed

In Ising language, the dual loop end 1s simply the spin
operator.

In gauge language, this is a /Z,, flux insertion, or “vison”.

In all languages, when you take this around a monomer/
holon, you pick up a minus sign!
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Freak Hamiltonians

An RK Hamiltonian is the sum of local projectors:

H=)PF. B «<P

Fach term annihilates the ground state.
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Freak Hamiltonians

An RK Hamiltonian is the sum of local projectors:

H=)PF. FB«<P

Fach term annihilates the ground state.

Quantum information people call such Hamiltonians
“frustration free”. This can be confusing, since such
Hamiltonians can arise as a result of frustration!
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Freak Hamiltonians

An RK Hamiltonian is the sum of local projectors:

H=)PF. P «<P

Fach term annihilates the ground state.

Quantum information people call such Hamiltonians
“frustration free”. This can be confusing, since such
Hamiltonians can arise as a result of frustration!

FFRK?
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For quantum dimers, the projectors annihilate everything
save the “flippable” plaquettes containing two dimers:
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For quantum dimers, the projectors annihilate everything
save the “flippable” plaquettes containing two dimers:

This annihilates the linear combination

o9

o9
so the exact ground state 1s the equal amplitude sum over
all dimer configurations!
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Equal-time zero-temperature correlators in the ground state
of freak Hamiltonians are those of classical models.

The ground state is | W) = 2 | D), the sum over all dimer
configurations.

For a diagonal operator O,
(PI01Y)
(PP

< O>c|assicul

< O >quunlum —
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Equal-time zero-temperature correlators in the ground state
of freak Hamiltonians are those of classical models.

The ground state is | W) = 2 | D), the sum over all dimer
configurations. D

For a diagonal operator O,

Y (D101D)

YI0oIY 5 |
< O >quunlum :< > — :< O>c|assicali

(PIY) Y (DI D)

D

Classical dimer correlators can be found from free fermions!
Kasteleyn, Temperley and Fisher, Fisher and Stephenson
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Major complication:
the classical dimer model on the square lattice 1s critical!

Correlators of local objects decay algebraically, so a theorem
of Hastings requires that the quantum Hamiltonian be gapless.

Thus the quantum dimer model on the square lattice 1s
quantum critical, so the interesting topological behavior 1s
unprotected. There is algebraic confinement.
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Major complication:
the classical dimer model on the square lattice 1s critical!

Correlators of local objects decay algebraically, so a theorem
of Hastings requires that the quantum Hamiltonian be gapless.

Thus the quantum dimer model on the square lattice 1s
quantum critical, so the interesting topological behavior 1s
unprotected. There is algebraic confinement.

Major insight:
the quantum dimer model with RK Hamiltonian on the
triangular lattice has topological order with a gap!
Moessner and Sondhi
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With topological order, the holons and spinons are deconfined:

their two-point functions must fall off to constant values.

We computed the monomer two-point function in the
classical dimer model on the triangular lattice to check.

This 1s complicated, because this 1s non-local in terms of the
free fermions (like the spin correlators in Ising)
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1S correlator 1s ¢ Tible mess, given as a determinant of ¢
This correlator 1s a horrible mess, given as a determinant of a
Toeplitz+Hankel matrix, whose long-distance asymptotic 1s

0.14942924536134225401731517482693...

Fendley, Moessner and Sondhi
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This correlator 1s a horrible mess, given as a determinant of a
Toeplitz+Hankel matrix, whose long-distance asymptotic 1s
0.14942924536134225401731517482693. ..

= sin(7/12)/V3

Fendley, Moessner and Sondhi

When interpolating between square and triangular lattices, the
gap appears immediately. Analysis of the asymptotics gives

] t
2\ 262+ t2) + (1 +2t2)V/2+ 12

where =0 1s the square lattice and =1 1s the triangular.
Basor and Ehrhardt

Page 38/66



[s there a spin liquid on the square
lattice 1n the RVB wave function?

Let’s treat go back to treating the dimers as spin singlets.

Different “dimer” configurations are not orthogonal: their
inner product 1s now given by overlapping the two and
counting the number of loops:

<D, | D> o 2# loops Sutherland

This inner product 1s thus not only not orthogonal but non-
local in the dimer basis, making life tricky.
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“Dimer” correlators in the RVB state algebraically decay,
as 1n the quantum dimer model. Hastings’ theorem says
any local Hamiltonian with the RVB state as a ground
state must be gapless.

However, the spin-spin correlator exponentially decays.
Liang, Doucot and Anderson

Moreover, recent numerical work clearly shows there 1s no
evidence of spin order.
Albuquerque and Alet; Tang, Sandvik and Henley
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“Dimer” correlators in the RVB state algebraically decay,
as 1n the quantum dimer model. Hastings’ theorem says
any local Hamiltonian with the RVB state as a ground
state must be gapless.

However, the spin-spin correlator exponentially decays.
[Liang, Doucot and Anderson

Moreover, recent numerical work clearly shows there 1s no
evidence of spin order.
Albuquerque and Alet; Tang, Sandvik and Henley

[s there a spin gap? Does the RVB state describe a spin liquid?
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There are two kinds of terms, all written in terms of spin-S projectors P ’

H=)K +)F,
"
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: : : : . (S
There are two kinds of terms, all written in terms of spin-S projectors P ’

H = ZK+Z

The first 1s called a Klein term, and 1s Gauss Law at site s. It annihilates
dimer configurations, while giving an energy to others.

K, =P"?({s})

The second is the plaquette flip term, which forces zero flux. It
annihilates the desired linear combination of dimer configurations:

 p(32)p(0) p(3/2)
F;)_R! })c/ [)/
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So far there remains only indirect evidence for the
square-lattice RV B state being a gapped spin liquid.

However, we have found good evidence that its gapless
sector 1s 1n the same universality class as a (generalized)

quantum dimer model.
Stephan, Ju, Fendley and Melko

Since the square-lattice QDM turns into a liquid by
perturbing to a triangular lattice, maybe it can turn into
a spin liquid by allowing dimers to break into spins?
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Equal-time correlators in the RVB state are those of a classical
2d model, as with dimers.

There 1s strong evidence that they are described by a Coulomb

gas, whose field theory description is a free boson.
Tang, Sandvik and Henley; Albuquerque and Alet

We provided further evidence for universality, by:

* Interpolating between dimers and RVB

* Measuring and computing the entanglement entropy
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Interpolating between dimers
and RVB

* Use SU(N) 1nstead of SU(2) spin singlets to make
“dimers”.

« The inner product changes, making the weight per
loop go up. As N increases, more and shorter loops
are favored. Thus as N — o | only dimers are left!
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L T

Measuring the “dimer”-“dimer” correlator:

1 —
at long distances
C (- )~

l
= = |«
7 =7

0.1

0.001

Stephan, Ju, Fendley and Melko

The long-distance decay is algebraic for all N, with
exponent increasing with N toward the dimer value o =2.
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One can develop an expansion around the dimer case.

Damle, Dhar, and Ramola

_ Leading term, with coefficient
Numerics: fixed by SU(2) case

1.21(7)

1.43(7)
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To understand this better (e.g. the upturn at shorter distances), |
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To understand this better (e.g. the upturn at shorter distances), |

and to derive the entanglement entropy for quantum dimers,
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To understand this better (e.g. the upturn at shorter distances), |

and to derive the entanglement entropy for quantum dimers,

study the nicest of all field theories....
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Classical dimers as a free boson

On the square lattice, the classical dimer model can be
rewritten in terms of heights, integer-valued variables on the
dual lattice:
0 |
—

3

In the continuum limit, the suitably-averaged height turns
Into a scalar field ¢ with action

K > p)
=— [d*x (Vo)’
S 47[-[(!}(( ?)
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The critical exponents vary with the “stiffness’” K .
The basic two-point functions are of the form

C(r—nr)~

— = 1/
I 2 |

. . I
The dimer creation operator has ¢ = —=2

K

So Kk =1/2 for dimers, and 1s natural to assume that all
singlet correlators are described by the same theory, with
K depending on N.
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Classical dimers as a free boson

On the square lattice, the classical dimer model can be
rewritten in terms of heights, integer-valued variables on the
dual lattice:
0 |
—

3

In the continuum limit, the suitably-averaged height turns
Into a scalar field ¢ with action

K 7 p)
=— [d*x (Vo)*
S der( ?)
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The critical exponents vary with the “stiffness’” K .
The basic two-point functions are of the form

|

= l/x
lr=rl

C(F~ 7))~

. . |
The dimer creation operator has ¢ = —=2

K

So Kk =1/2 for dimers, and 1s natural to assume that all
singlet correlators are described by the same theory, with
K depending on N.
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[f this assumption of universality is true, all equal-time
correlators of spin singlets in the RVB states are known
exactly.
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[f this assumption of universality is true, all equal-time
correlators of spin singlets in the RVB states are known
exactly.

One check is that the finite-size effects of the correlators
are also known exactly, in agreement with the numerics.

1

0.001
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So let’s move on another interesting quantity....

By means of a clever trick, the Reny1 entanglement entropy
for some freak 2d quantum Hamiltonians, including
quantum dimers (but not RVB), can be reduced to a 2d

classical computation of the Shannon entropy.
Stephan, Misguich, and Pasquier

In the square-lattice quantum dimer and RVB states,
we find some fascinating features. ..
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A very useful geometry for probing gapless behavior is
the entanglement from cutting a torus into two cylinders.

The length of the boundary between the two cylinders 1s
independent of the area of the cylinders. Varying the size
of the cylinder directly probes the gapless physics!
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For SU(N) RVB, we find a very pronounced even-odd effect!

L= 16, SU(2) e
l‘. 16 ,\'I'.I.';‘ ——
L 1G, ST () r—a—

Ju, Kallin, Fendley, Hastings and Melko; Stephan, Ju, Fendley and Melko

A violation of strong subadditivity (only a theorem for
von Neumann, this 1s S,).
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For quantum dimers, we computed it using the Shannon trick!

Y(L‘\L‘I])('\,‘l_) —

“n

n ( n(r)’ Xeg(z,\'r)e,(z(l—_v)r)]
0. (

l—n 27)0,(t/2) n2ytn2(-y)r)

n

n(t)’ 9 64(2_\*r)94(2(l—,\')r)]

sy, 1) = In
| —n 0.(27)0,(t/2) n2yt)n2(1-y)r)

y 1s the ratio of the length of the cylinder to the length of the torus
t 1s the aspect ratio of the torus

©,,0, are the Jacobi theta functions

n1is the Dedekind eta function

The odd curve 1s different because in the mapping to heights,
the boundary conditions across the cylinder are twisted.

Stephan, Ju, Fendley and Melko
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Finite-size effects are large; for a 20 by 20 torus:

— . . . . —
]

. .\ /c

3

' 5, . P

e T e
. .
»

The agreement is perfect for large enough systems.
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There 1s a phase transition 1n the Reny1 parameter #:

|
S = InTr(p,)"

" 1=n

...00.00001»0.‘

10

[

The critical value of 7 1s not universal; for dimers on the
square lattice 1t 1s 1; on the honeycomb it 1s 9.
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This result can be generalized to all k', and the universality
assumption means it should apply then to SU(N) RVB.

The strong finite size effects make only qualitative comparison
possible. For SU(2), |
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Free-boson theory applies beyond the RVB ground state.
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We found a lattice model that describes not just the critical
line, but also the neighboring phase with topological order.

Phase diagram of the quantum eight-vertex model

Z, order quantum Ashkin-Teller/orbifold
confining . ,
- critical line

Z_ gauge
defects deconfined ~ critical ling
spin liquid

Topological order

quantum Lifshitz line Kitacv Z . order

\ confining

("Ising_z”)2
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