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Abstract: We discuss the shortcomings of Einstein gravity at both the classical and quantum levels. We discuss the motivation for replacing Einstein
gravity by conformal gravity. We show how the conformal gravity theory is able to naturally solve the quantum gravity problem, the vacuum
zero-point energy problem, the vacuum zero-point pressure problem, the cosmologica constant problem, and the dark matter problem. Central to its
viability as aquantum theory is that the conformal theory is both renormalizable and unitary, with unitarity being obtained because the theory is a
PTsymmetric rather than a Hermitian theory. We show that in the conformal theory there can be no a priori classical curvature, with all curvature
having to result from quantization. In the conformal theory gravity requires no independent quantization of its own, with it being quantized solely by
virtue of its being coupled to a quantized matter source. In the absence of quantum mechanics then there would thus be no gravity, with it being the
desire to start with a classical gravity theory and then quantize it<br>that has prevented the construction of a sensible quantum gravity theory. We
show that the macroscopic classical theory that results from the quantum conformal theory incorporates global physics effects coming from the
material outside of galaxies (viz. the rest of theuniverse), global physics effects that are found to provide for a detailed accounting of a
comprehensive set of 138<br>galactic rotation curves with no adjustable parameters other than galactic massto light ratios, and with the need for no
dark matter whatsoever. With these globa effects eliminating the need for dark matter, we see that invoking dark matter in galaxies could
potentially be nothing more than an attempt to describe global physics effectsin purely local galactic terms.<br><br>
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I The Einstein Equations: what kind of equations are they?

in white dwarf stars and energy density p and pressure p = p/3 of blackbody radiation in cosmology. So try

Where does this equation come from? As vet not derived from a fundamental theory. Also it violates the

—

f gravity (c.f. Higgs double-well potential, which indu

solve a problem it did not cause. Answer: put both sides on same footing and expand as power series in h rather

LIALl A 1 DOWEDI SOT1eS 111 ¢ [.\‘-.H‘:"_-"__..: 1H'1]]][f_' constant [“:Hup: "u[-.‘}nw}]_' Ol 1nattoer f:|'||;_ I ZOTO=-DOI
of eravitational field. But then need a renormalizable theory of eravit imd ther 11 WIit witationa
equation of motion in which quantum equals quantum. Hence conformal gra
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I  The Einstein Equations: what kind of equations are they?

Classical equals classical? Quantum equals quantum?” But sources include quantum-mechanical Pauli pressure

3 of blackbody radiation in cosmology. So try

Where does this equation come from? As vet not derived from a fundamental theory. Also it violates the

—

bsence of gravity (e.f. Higgs double-well potential, which indu
solve a problem it did not cause. Answer: put both sides on same footing and expand as power series in h rather
than as a power series in gravitational coupling constan

of eravitational field. But then need a renormalizable theory of eravity, and then can write a eravitational
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2 Einstein gravity: what must be kept

" ) {!‘ ‘_‘ ,[_ ! ff,,r ‘.il.ri‘

d*a dxr” da
[ - {] (

.‘f\ r[\ ;!\
(‘[ \ Y H[ " - -
R —— + 17 —_—] .

! dr' ‘ dr ' !

ds B(r)dt \(r)dr® + r°d6* + r*sin” 6d Q

n lar distance s Ol 11 o sun have ]’]’ ) (
B(r)= A"y | —23/r, 3 = MG/, 0
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3 Einstein I'_"I'.'l\'i[.\': what could be t‘|1:|||f_;{'tl

Tosiv = Tgn + Iy = ———= [ d'z(—g)' "R, + I\. 10

LLanczos f,g q 1/ H‘.\J CR Ur'r. .,H" (R .'7‘ total divergence 13

is dimensionless, so conformal lh('ul'.\' is renormalizable

Y,

W - g"'(R",) R e R 2R'R

Einstein sufficient to give Schwarzschild and Newton, but not necessary.

W, =0if R, =0
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| Conformal I‘_"l'.‘i\‘lll\': an ab initio :|])]|t‘n.’|:‘h

y e wix), V! v e IV HE (g A, (x) = A, Get local conformal mvariance for free. (17

1.1 Global invariances of the flat spacetime light cone  ds® =y, de?ds” =0

Symmetry of gauge/fermion sector of Yang-Mills since fermions and gauge bosons have no kinematical mass. 15 invariances

I translations R (0
A\ 6 rotations \I/ i(a"e 'y,
\a 1 dilatation b r*d,
I conformal L’ oo, reo) (18

r.r 0, [C,.C 0. [C.P 2i(M D

D.P 1P D.C, i (10
Close on SO(4,2). However equivalent to SU(2,2) invariance since 44-6+1+4=15 Dirac matrices: ~,, i[7,." . Yus close
on same algebra. 4-component fermions reducible under Lorentz. but irreducible under conformal group. Thus all fermions

l-component, and right-handed neutrinos must exist, Hence both strong and weak interactions are chiral
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime
I a, + b1 b by, d. K, + d, K, =0, I + 6 0 (20

K, \r, + o —=2r,e-x, 0K, + 00K, 20A = 2¢ 1), 1 4 ; (21

1.3  Nlake all transformations local

YN e "k, So [dPa not invariant unless stretch geometry as in [ d”z(—qg)"/ =0, In matter sector have locally gauge
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [dix(—g)' 20 (x)v* (x)[i0,
iUy (x) + Au(x)|U(a But what is gravity sector action? “'*"ll-]hd]l integral [ D[] D[y ]e et 't Hooft (2011)).
" D 1 |
lir IT I ¥, | 1, (a [ d'x(—q)" = '—!. I =(R =F,, I
0 ) 3
C | /87=(4 - D (22
Iy a, [dir(—g)/=Cy,,, O action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'z(=g)"*F, F". Hence unification of gauge theories with gravity.

Now add spacetime ‘i"]l"!lli"]ll fermion mass term and do ]ul]l integral again to generate additional /"‘13

I\ [ diz(=g) " (x)y(2)[i0, + il (x) + Au(x) + M(a 1 (23

[y , . | R .
i [ dx(—g)" M (x) + =M= (x)R° G O M (1) M (2 (24

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

. | SN
I [ d'z(—g)'*C VP (x) + =M*(r)R* Qo (P 1A () ) M (x)(O 1“(x) )M (2 (25
)

Obtain Standard Model, Either induced M (2 cye(r), Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'x(—¢)""F, ", Hence unification of gauge theories with gravity.

Now add spacetime ‘ii‘]h ndent fermion mass term and do i‘.l’]l integral again to generate additional ,{-‘1:
I [ d*z(=g)"*U(z)y"(2)[i0, + 1T, () + Au(x) + M(x)]U(a (23
. , . 1., _
Inp = [d'x(—g) ' MY )+ =M (2)R* — g M{x) M(a (24

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

l

In [ d'x(—g)"/C Mi(x)+ =M*(z)R" Qoo (¥ + 1A ()M (x)( \"(x))M(a (25

4]
Obtain Standard Model. Either induced Mz e)(r). Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing /7°, when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime
I a, + b1 b by, K, + d, K, =0, I + 0 0 (20

K, \r, + cpr” = 2r,e-x, O,K, + 00K, 2(A = 2¢ - ), | 4 : (21

1.3  Nlake all transformations local

un { U So [d’a not invariant unless stretch eecometry as i [ d”z ( “Un In matter sector have locally gaug
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [diz(—q)'/ (2 xr)|io,
.‘|‘ t h r)ula But what 1s gravity sector action? "‘"'l"]'~l1]l integral [ Dy D(v]e'™ el "t Hooft (2011)).
y | P, 1 |
| 1 | .1 ( I\ { we— 1 i - | -
ler IT 1 J | | { C|= i ! F I
() ) 3
( 1/87<(4 - D (22
Iy, a, [dir(—g)/=Cy,,., C¥% action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'z(=g)"*F, F". Hence unification of gauge theories with gravity.

Now add spacetime ‘i"ll"tlli"lll fermion mass term and do i\.ll]l integral again to generate additional ,{-‘1:
I [ d'z(=g)'*0(2)y*(2)[i0, + 1T (x) + Au(x) + M(2)|¥(2 (23
I [ d'r(—g) “( V() + =M (x)R" Qo M (x)F M2 (24
0

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

l

Ini [ d'z(—g)'/*C Mi(x) + =M*(z)R" Guo (O + 1A (2)) M (2)( () )M (2 (25

4]
Obtain Standard Model. Either induced Mz r)u(r). Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime

I a, + b1 b by, d.K,+ d, K, =0, I + 06 0 (20

[\. \".. r CpI° __‘“1-_5_ a"]\ -r'_}'\l __'-\, __,'r-.‘ e | ' 5 |__‘1

1.3 Nlake all transformations local

U e b, So [dva not invariant unless stretch geometry as in [ d’z(—¢)" =0, In matter sector have locally gange
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [dix(—q)'/ (2 x)|ro,
iUy (x) + Au(x)|u(a But what is gravity sector action? So do path mtegral [ DDy e™ et 't Hooft (2011)).
" | R 1 1
/ I IT I 8 | 1,(a [d'xr(—q ( '_Jrl IE =(R -/ I
(0 ) 3
C | /87=(4 D (22
Iy a, [dir(—g)=Cy,,, O action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'x(—g¢)"F, ", Hence unification of gauge theories with gravity.

Now add spacetime ‘ii‘ll"tl-i"lll fermion mass term and do i‘.l’]l integral again to generate additional ,{-‘1:
,{" ‘JI d'a Q] ! 1 o kel ) ], l 1 + A ] } ‘lf 1 I (23
;o , : 1., _
I [ d'x q ( V[ (x)+ =M (x)R" Qo M (x)F M2 (24

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

/ S X .
j',H f." [ ( e MY )+ =M<(z\R® G (O + | [ V()7 (WY Mia (25
4]
Obtain Standard Model. Either induced Mz cyv(r), Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime
I a, + b1 b by, d.K,+d, K, =0, I + 6 0 (20

i\, \r, + - = 2r,c-x, O,K, + 0K, 200 = 2¢ - ). 1 4 ; (21

1.3  Nlake all transformations local

U { ", So [dia not invariant unless stretch gceometry as in [ d g)'*vY. In matter sector have locally eange
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [dlx (=)' 20 (x)v* (x)[i0,
i)+ Au(o)|w(x). But what is gravity sector action? So do path integral [ D[] D[y]e' el 't Hooft (2011)).
1 | I 1 1
- It I 8, +il 4, (2 [ da(-g)"*C | = (R R,, — =(F ~F, ]
0 ) 3
' 1/87<(4 - D (22
Iw a, [d'a g)''=C (PR aetion 1s unavoidable must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'z(=g)"*F, F". Hence unification of gauge theories with gravity.

Now add spacetime ‘i"]l"!l'i"]ll fermion mass term and do ]ul]l integral again to generate additional /1
I [ d'r(—g V23hi(a) v (2)[id, + 1T, (x) + A, (x) + M(a 1 (23
;) , . 1., _
I [ da q ( V() + =M ()R Qoo M) M2 (24

Now gauge M(2) and do 1'.I|}l inteeral acain (Eeuchi and Suegawara 1974, Mannheim 1976

r 1., " "
Ini [ d'x(—g)"/=C M x)+ =M*(x)R" Qo (¥ 1A () ) M () (7 1" ()Y M2 (25
i)
Obtain Standard Model. Either induced Mz r)v(r). Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime

I a, + b1 b by, d. K, + d, K, =0, I + 6 0 (20

/\. \".. r CpI”° __‘“1-_5_ f"jr\ -r'_}'\l __'l\, __,'f-.‘ M | r 5 I__‘l

1.3 Nlake all transformations local

U e My, So [d’a not invariant unless streteh eeometry as in [ d*z(=qg)'/*. In matter sector have locally eaunge
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [d'x(—=g) 20 (x)v* (x)[id),
iUy (x) + Au(x)|v(x). But what is gravity sector action? So do path integral [ D[v]D[v]e™ el 't Hooft (2011)).
" | S 1 1
lir IT Ih il | 1, (a [d'x(—g)""C |==[R"R =( R =F,, I
(0 ) 3
C’ 1 /87=(4 D (22
Iy a, [dir(—g)/=Cy,,, C¥ % action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather., Iy is on same
footing as [d'z(—g)"-F,, F". Hence unification of gauge theories with gravity.

Now add spacetime ‘ii‘]h'!ul"lll fermion mass term and do i‘.l’]l integral again to generate additional f-‘ﬂ
I [ d*z(—g)"/ 2 (2)v*(2)[i8, + iTu(x) + Au(x) + M(a ‘ (23
' , . 1., _
I [ d'a q ( MV (x)+ =M ()R Qoo M) Mz (24

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

. | S . .
Ini [ diz(—g)'/*C M)+ =M (z2)R" Quo (¥ + 1A ()M ()0 1" () M (2 (25
4]
Obtain Standard Model, Either induced Mz cyv(r), Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime
I a, + b1 b by, d. K, + d, K, =0, I + 6 0 (20

i\, \r, + cpr” = 2r,e-x, 0K, + 00K, 2(A = 2¢ 1), 1 4 ; (21

1.3  Nlake all transformations local

U { ", So [dia not invariant unless stretch geometry as in [ d”z(—g)" =0, In matter sector have locally gauge
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [dix(—q)"/ (2 x)|rg,
iy (x) + Ay(o)(x). But what is gravity sector action? So do path integral [ D[¢|D[v]e'™ el 't Hooft (2011)).
y | P, 1 |
/ I IT I 8 | 1, (a [ d'xr(—q ( '_Jrl I =(R -/ I
() ) 3
C 1/87°(4—D (22
Iy a, [dir(—g)=Cy,,, O action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as (d'z(—=¢)"=F, , F". Hence unification of gauge theories with gravity.

Now add spacetime-dependent fermion mass term and do path integral again to generate additional Ty
1{" ‘|’I d'a Q ! 1 ol la il ) il } ‘-l‘ 1 ' 1 1 I '“f I 1 (23
[, , \ | - -
I [ d'z(—g)" = M)+ =M*(2)R° G P M) M (2 (924
0

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

In [ dix(—g)"/*C Mix) + =M*(x)R" Qo (¥ + 1A ()M (x)( \"(x))YM(x) (25

4]
Obtain Standard Model. Either induced Mz r)u(r). Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7°_ when conformal symmetry spontancously broken.
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1.2 10 Killing vectors and 5 conformal Killing vectors in flat spacetime
I a, + b1 b Dy . K, + d, K, =0, I + 6 0 (20

K, \r, +cpo” = 2r,e-xr, d,K,+ K 2(A = 2¢ 1), 1 4 ; (21

1.3 Nlake all transformations local

un { U So [d’a not mvariant unless stretch eeometry as in d’a ( "\ l IZL matter sectol Em'u"m‘l]]'\ Fauge
invariant and locally conformal invariant massless fermion kinetic energy action, viz. Iy [dlx(—g)' 20 (x)v* (x)[i0,
() 4 \ r)wla But what 1s gravity sector action? “‘Hlll-]uﬂ]t integral [ Dy D(v]e' el "t Hooft (2011)).
y | P 1 . |-
/ | IT I (0 | 1,(a y | d7x(—q ( '_Jrl [ =(R -/ I
0 ) 3
C 1/87=(4-D (22
Iy a, [dir(—g)/=Cy,,, C¥% action is unavoidable — must appear in any theory of gravity, and despite its

supposed ghosts, we have to be able to live with it. According to Bender and Mannheim (2008) we can.
with ghosts actually being non-existent. Do not generate Einstein-Hilbert action. Rather, Iy is on same
footing as [d'z(—=g)"*F, F". Hence unification of gauge theories with gravity.

Now add spacetime ‘i"ll"!lli"]ll fermion mass term and do i‘.l’]l integral again to generate additional ,{-‘1:
I\ [ dx(=g)' 2 0(x)v*(2)[i0, +iTu(x) + Au(x) + M(z)|¢(a (23
;o . . | R .
I [ d'z(—g)" = Mix)+ =M*(2)R° G P M) M (2 (24
0

Now gauge M(x) and do path integral again (Eguchi and Sugawara 1974, Mannheim 1976

. |
I [ d'x(—g)'*C M x)+ =M*(x)R" Guo (O + 1A () ) M () (O 1" () M (2 (25
4]
Obtain Standard Model, Either induced Mz e)u(r). Or conformally coupled fundamental scalar field
! \(r), with no input tachyonic mass, but with mass scale and double-well potential coming from

non-vanishing 7° when conformal symmetry spontancously broken.
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1.4 Connecting Conformal Gravity and Einstein Gravity

[ ]Llll'! , ] -‘I r)g,
| Fo 1 )
/ — [ d'z(—0)\ 2" [d'e(-q 2R — 6O, wd (26
16 / 1676 Y
't Hooft (2011): Do path integral over conformal factor «
I ' . 1 ‘ -
JFEH II ][I 14 T T t —.HI‘ 4 m / aa /] - !-"' {\}‘ —_ /44 )7 (27
O 2 ! )
't Hooft (2011 oo from Einstein to conformal. Maldacena (2011 oo from conformal to Einstein

1.5 Particle physics motivation for conformal invariance

conformal invariance at energies much greater than particle masses. Violated by radiative
red at a renormalization group fixed point where we get scaling with anomalous dimensions
1964, 1967): if QED at Gell-Mann-Low fixed point then

P p U s : d 3 4 : mi \ n- v (IR

zero, and all mass 1s dynamical, with physical mass obeying a homogeneous equation. However,
it be zero too, since zero is a solution to a homogeneous equation. So could non-zero solution
cakdown. So need to adapt Nambu-Jona-Lasinio to theories with a fixed point
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5  Quantization of gravity through coupling

5.1  Canonical gquantization of matter fields
0. We introduce creation and

For fermion fields with 1" .|f‘a iht d v, stationary fields obey ‘f'[ ) ih L
mnihilation operators according to
{ N blk. sYulk. 8¢ k.S b os)e
S ‘_I—I‘
ak "
f N bk, s k. 8¢ d Yo' k. @) (34
- 27)3
Quantizing the fermion field according to {v,(x.t), vi(x'. 1)) ' (x —x'")d, 5 then requires that its creation and annihilation
operators obey
(b(k, <), b1 (K, &) Yk ISR d(k, s). d' (K, ")) 531 1S
For the energyv-momentum tensor we obtain
.‘/" s & !IF‘ 1]
Ql 12¢g — | [} OITM O QlurihAy, O () ;f_' (26
Sq o [
1 !‘f‘. 1 '} i F A\
oY |lj () k_jln? Dt 1,/..(, ;’_;‘ ._,Jr1|, Y (37
M o 1l 3 ‘ y
QT and the total matter vacuum momentum [ fd?x(QTQ) are both zero, with (Q|T7Y [0 QM0
QT35 1) being a vacuum pressure, Thus have two zero-point infinities to deal with, viz. py and pyy, and neither behaves

like a cosmological constant since pyy and pyy have same sign

['he fact that (QTMQ oM+ ) UM pvd” 1s non-zero is not of concern in flat space field theory, and one can ignore
it. But, what happens if gravity is present, and does this same canonical prescription work for gravity?
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5  Quantization of gravity through coupling

5.1  Canonical gquantization of matter fields

For fermion fields with [y fd'rihyy#d, 0, stationary fields obey 81y /0 ihy" 0. We introduce creation and
mnihilation operators according to
( > b(k.s)u(k, s)e k. g\vu(k. s)e
= | om
ff‘."-
f NT blik. s Yu'(k. 8) dlk. s o'k { (34
— __‘I B
Quantizing the fermion field according to { t) } ¥ (x —x")d, 5 then requires that its ereation and annihilation
operators obey
(b(k.s),b'(K'.s")} = 8°(k = k) d(k, ). d' (K. s} = 8 (k= k)6
For the energy-momentum tensor we obtain
YT . ' 1}
O) _Mf s | [€) (J[ () () ! ) () ;!_, I (26
o il R J
ap )} 139 1
2N Y & f A -
o = (QITHO — [ d*kuy py = (QTNQ — [ —k? = =(QTY ) = =py
N (2m : Al a3/ ] ¥
[ e (QTMIQY are both zero, with (QTMN|Q QITMIO

vacuum momentum 2

I'hus have two zero pomt mnnities to deal with, viz and neither behaves

QITMOY and the total matter

QT Q) being a vacuum pressur
like a cosmological constant since pyy and pyy have same sign
['he fact that (QTMQ oM+ v ) UM ] non-zero is not of concern in flat space field theory, and one can ignore
' ravity is present, and does this same canonical prescription work for gravity?

o 18

it. But, what happens if ¢
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5  Quantization of gravity through coupling

5.1  Canonical quantization of matter fields

For fermion fields with /Jy [dirihvy 0 stationary fields obey &1y /4 ihy*a 0. We introduce creation and
mnihilation operators according to
f N bik. Yulk. 8¢ k.8 ko &)
e ‘_I—I‘
. ’f A
f 5 ." O'( A § U A S I A S P‘ { |',]
- 27)3
Quantizing the fermion field according to { t) ' ' (x —x")d, 5 then requires that its creation and annihilation
operators obey
(b(k.s).bI(K'.s")} = 8k — K)o (d(k,s).d'(K.s')} =85k — k)6
For the energy-momentum tensor we obtain
ST o ' J
Ql 12qg / () QIO Olwrih~. ) () ~ ! ke k (26
oo )T I !
I )} 3] 1 1
1 Zi! . M FAL fa A Al | Py
p = QT4 = [ &’} py = (QIT | —_— QT Q) = =py
QIT571€) and the total matter vacuum momentum f2 [ d3x(QTMQ) are both zero, with (QTN|Q Q70
and neither behaves

r a vacuum pressure, Thus have two zero-point infinities to deal with, viz.

QITM0) being

like a cosmological constant since pyy and pyy have same sign

['he fact that (€ f“l (! PIM + PM Ul pPMgT 1S non-zero 1s not of concern 1n flat space field theory, and one can ignore
' wd does this same canonical prescription work for gravity

it. But, what happens if gravity i1s present,
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5.2 Quantization of gravitational field cannot be canonical

Introduce Igpav and define 2¢~"/%6Igrav /0¢™ = Tin . Typical examples of Tk are G and W*. Then gravitational

equation ol motion 1s

For conformal gravity

TE (1 o, WH (1 21, (0,0 ) K™ K" = h" — Zif nash a,K" =0. (39

Iy 0 has generie solution

I et 4 (n v eth 1 1.0.0.0). (40

wd full solution

f\‘ 1 - \ | - 1 . - A ﬂ‘-l". ke w8 k €, (n - x)e"
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5  Quantization of gravity through coupling

5.1  Canonical quantization of matter fields

[lll lermon e ]'[H with f' .lf‘a thi~* 0 stationary ]1.‘|.]\ obey ‘Jr-[ ) h ""- 0. We l]ll!w-iH‘-' creation -L]J'L

mnihilation operators according to

f N b S u(k, s I'(k. s k. s)e
2 |" 5] [ I
f‘f‘."
f N bUk & u'(k. &) dik sYol(lk ( (34
- 27
Quantizing the fermion field according to {v,(x.t), (2" 1)} ' (x —x'")d, 5 then requires that its creation and annihilation
operators obey
(k. )b (K, ")) (A kYo Ll k. os).d (K. s } o (} ko (35

For the energy-momentum tensor we obtain

() ,_“f _ () (_)[ '-l_r i__l‘-;‘f,' 000 — f o f K (26
0P ’ ' ’ ) o= / ] !
) )} Ad ' d’ Al
oy Q72 — [ d’} Y, 'Jfl'l'r —_ / ) ‘lljrl:lll - ) (3%
| & - A W) »
QIT5'€) and the total matter vacuum momentum P fdz(QTM|Q) are both zero, with (TN QT
QT341€) being a vacuum pressure. Thus have two zero-point infinities to deal with, viz. py and pyy, and neither behaves

like a cosmological constant since pyy and pyy have same sign
['he fact that (Q f“l Q oM+ o) UM pvg”" 18 non-zero is not of concern in flat space field theory, and one can ignore

it. But, what happens if gravity is present, and does this same canonical prescription work for gravity
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5  Quantization of gravity through coupling

5.1  Canonical quantization of matter fields

For fermion fields with /Jy fdirihyy*d, 0, stationary fields obey a1y /6 ihy*a, 0. We introduce creation and
inihilation operators according to
t b3 [ b(k. s ulk. s)e k.8 ko g)e
2 o)
d’}
f 5 [ bU k. s u'(k. 8)¢ Ik Yol(k ( (34
- 27)3
Quantizing the fermion field according to { t) } ' (x —x'")d, 5 then requires that its creation and annihilation
operators obey
:f‘, <) W} ¢ : AN ] 5 :r[ﬂ‘. aY dA(1 < : Nk I 3 (25
For the energy-momentum tensor we obtain
YT . ' a’l
Q| [2¢g | [} (.[ () () ] ) ] ;f_: I (26
oq 270 f
’ 2h \ 2h d’k 1 \l |
a7 ‘ y o
i 0Ol7 () R N ¢ DA U[”u _f_" ||JPI”|J - (37
I‘)'v :,. 1 \I :
O and the total matter vacuum momentum [ [ (QT:"€) are both zero, with (Q[7T7 [ QM0
and neither behaves

QT35 1) being a vacuum pressure, Thus have two zero-point infinities to deal with, viz
like a cosmological constant since pyy and pyy have same sign

['he fact that (Q7 - {2 PM T+ DM (| PMG 18 NON=Zero 1S not of concern 1n flat space field theory, and one can 1enore
it. But, what happens if gravity is present, and does this same canonical prescription work for gravity?
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Unless Z(k 0, then violate Ty 4 0. In pure gravity sector gravitational zero-point fluctuations are not

compatible with gravitational equations of motion. Gravity cannot be consistently quantized on its own.

I'hus expand gravity as a power series in b and not as a power series in gravitational coupling constant.
Once quantum-mechanical matter source 71y is non-zero, gravity then quantized by its coupling to matter

source, since stationarity with respect to metric yields:

f

But if M massless gauge bosons and N massless two-component spinors

N - M)/2 AL 0 » N \l (48

For SU(3) < SU(2) = U(1) M=12, N=106 per generation. For SO(10) M=45, N=16, so need 3 generations. For all generations
n .u-m:uunnn;lli|w]v-i need SO(2n) where 2n > 16, (No solution for SU(N). so triangle-anomaly free grand-unifving groups
preferred.) For SO(16) M=120, N=128, so 8 generations. Have asymptotic freedom up to SO(20) if all fermions in same
multiplet (Wilezek and Zee (1982)). So just SO(16), SO(18) and SO(20

[]J geneln 1]

Tarav)oy + (Tyy )piv =0 Tepav vy + (T Jrin = 0 (49
So zero-point fluctuations of gravity and matter take care of each other, and conformal trace anomalies take care of each
other since g, TUNn 0 is not a conformal Ward identity, Ability to solve trace-anomaly problem is because we do not use
(—=1/87G)GH Iy ) and try to show that (Ty, ) is conformal-anomaly-free all on its own

If all mass and length scales come from symmetry breaking. then all scales come from quantum mechanics.

l.e. without length scales there cannot be any curvature.,

SPACETIME CURVATURE IS INTRINSICALLY QUANTUNM-NMECHANICAL.

4
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Unless Z(k 0, then violate T 0. In pure gravity sector gravitational zero-point fluctuations are not

compatible with gravitational equations of motion. Gravity cannot be consistently quantized on its own.

I'hus expand gravity as a power series in b and not as a power series in gravitational coupling constant.
Once quantum-mechanical matter source 71y is non-zero, gravity then quantized by its coupling to matter

source, since stationarity with respect to metric yields:

/\ | i I T f\ ) | ]

' 'k 2h s
I \ T__/_ | J %1_; j () (4
} I (47

But if M massless gauge bosons and N massless two-component spinors

N - M)/2 Z(k 0 - N \I (48

For SU(3) x SU(2) x U(1) M=12, N=16 per generation. For SO(10) M=45, N=16, so need 3 generations. For all generations

v
in a common multiplet need SO(2n) where 2n > 16, (No solution for SU(N), so triangle-anomaly-free grand-unifying groups

preferred.) For SO(16) M=120, N=128, so 8 generations. Have asymptotic freedom up to SO(20) if all fermions in same

multiplet (Wilezek and Zee (1982)). So just SO(16), SO(18) and SO(20

In general

{‘ DIV '!:"' DIV U /.J FIN f'-:.: FIN 0 (49
D0 ZeTo-polnt fluctuations of egravity and matter take care of each other, and conformal trace anomalies take care of each
"'}J": sice g, 1’ :":. () 1s not a conformal W \[11 ]I|-‘H1]-". \ln]]H‘\ to solve trace-anomaly ]II--[-]"H: 1S because we do not use
(=1/87G)GH "".I' ind try to show that 1’-'.1' is conformal-anomalv-free all on its own

If all mass and length scales come from symmetry breaking. then all scales come from quantum mechanics.

l.e. without length scales there cannot be any curvature.,

SPACETIME CURVATURE IS INTRINSICALLY QUANTUNM-NMECHANICAL.
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For conformal gravity

D.2 (_)Il.lllli/_.'llillll of eravitational field cannot be canonical

define 29~ "*6Igrav /dg IGrav- Typical

I | o, WH(1 200, (0,07 K™
LGy 0 has generie solution
% Pett Tt 4 (n B et
ind full solution
;‘\ . a3
f\‘- ) \_ l‘ - i ST
F4 | ] a4
1" / . BV () J

xamples of Tipa

I h*t

1.0.0.0).

['hen gravitational
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Unless Z(4 (), then violate f 0, In pure gray ity sector gr'.'l\il:niilll::nl /l‘]'ll-l\lli[l[ fluctuations are not
compatible with gravitational equations of motion. Gravity cannot be consistently quantized on its own,

I'hus expand gravity as a power series in b and not as a power series in gravitational coupling constant.,
Once quantum-mechanical matter source 71y is non-zero, gravity then quantized by its coupling to matter

source, since stationarity with respect to metric yields:

f

[Jilll 11 .‘nn' 111 |.“\i"."‘ gauge }"J"'WI“ ‘|]l‘| \ l[l.l."‘l"“- TWO-=( H]!l]ll\!A"]J] ."l)llt"[‘

N — M)/2 AL 0 - N \l (48

For SU(3) x SU(2) < U(1) M=12, N=16 per generation. For SO(10) M=45, N=16, so need 3 generations. For all generations

in a common multiplet need SO(2n) where 2n > 16. (No solution for SU(N), so triangle-anomaly-free grand-unifyving groups

1

preferred.) For SO(16) M=120, N=128, so 8 generations. Have asymptotic freedom up to SO(20) if all fermions in same
multiplet (Wilezek and Zee (1982)). So just SO(16), SO(18) and SO(20

[]J geneln 1]

Terav)oy + (Tyy Jpiv =0 Terav )iy + (T Jrin = 0 (49
So zero-point fluctuations of gravity and matter take care of each other, and conformal trace anomalies take care of each
other since O f~':":. 0 1s not a conformal Ward identitv. Ability to solve trace-anomaly ]Iti-l-]r'll: 18 because we do not use
(—=1/87GYG*™ Iy ) and try to show that (Ty, ) is conformal-anomaly-free all on its own

If all mass and length scales come from symmetry breaking. then all scales come from quantum mechanics.

l.e. without length scales there cannot be any curvature,

SPACETIME CURVATURE IS INTRINSICALLY QUANTUNM-NMNMECHANICAL.

4
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Unless Z(k 0. then violate T, . 0. In pure gravity sector gravitational zero-point fluctuations are not
compatible with gravitational equations of motion. Gravity cannot be consistently quantized on its own,

I'hus expand gravity as a power series in b and not as a power series in gravitational coupling constant.
Once quantum-mechanical matter source 71y is non-zero, gravity then quantized by its coupling to matter

source, since stationarity with respect to metric yields:

/‘ | Th L T} () (45

)} a 'h a’}
I ) .__/_ | k %I(_,t J () {4(
J I (47

But if M massless gauge bosons and N massless two-component spinors

N - M)/2 Z(k 0 » N \l (48

For SU(3) < SU(2) = U(1) M=12, N=10 per generation. For SO(10) M=45, N=16, so need 3 generations. For all generations
n .u-m:u-unnn;lli|w]v-l need SO(2n) where 2n > 16, (No solution for SU({N). so triangle-anomaly free grand-unifving groups
preferred.) For SO(16) M=120, N=128, so 8 generations. Have asymptotic freedom up to SO(20) if all fermions in same
multiplet (Wilezek and Zee (1982)). So just SO(16), SO(18) and SO(20

[]J geneln 1]

Tarav)oy + (Tyy )piv =0 Terav vy + (T Jrin = 0 (49
DO Zero-polint fluctuations of eravity and matter take care of each other. and conformal trace anomalies take care of each
"'}J"! SINee g, f~':":. (0 1s not a conformal W \[11 ]I|-‘H1]-". \l-l]ll‘\ to solve trace-anomaly ]II--[-]"H: 18 because we \i.. not use
(—1/87G)GH Iy ) and try to show that (Ty ) is conformal-anomaly-free all on its own

If all mass and length scales come from symmetry breaking. then all scales come from quantum mechanics.

l.e. without length scales there cannot be any curvature.,

SPACETIME CURVATURE IS INTRINSICALLY QUANTUNM-NMECHANICAL.

4
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Unless Z(k 0. then violate Ty, . 0. In pure gravity sector gravitational zero-point fluctuations are not
compatible with gravitational equations of motion. Gravity cannot be consistently quantized on its own.
I'hus expand gravity as a power series in b and not as a power series in gravitational coupling constant.,
Once quantum-mechanical matter source 71y is non-zero, gravity then quantized by its coupling to matter
source, since stationarity with respect to metric yields:

N = M)/2 0 - N \l (48

For SU(3) x SU(2) x U(1) M=12, N=16 per generation. For SO(10) M=45, N=16, so need 3 generations. For all generations

1 nt--m!ll-nll1|11;||i|\]"l need SO(2n) where 2n > 16, (No solution for SU(N). so triangle-anomaly free grand-unifving groups

preferred.) For SO(16) M=120, N=128, so 8 generations. Have asymptotic freedom up to SO(20) if all fermions in same

multiplet (Wilezek and Zee (1982)). So just SO(16), SO(18) and SO(20
In general

IGrav)oy + (Tyy Joiv =0 Tarav)iN + (Ty Jen =0 (40
D0 ZeTO-pPolnt fluctuations of eravity and matter take care of each other mnd conformal trace anomalies take care of each
other since g, TUnn

(=1/87G)GH Iy ) and try to show that (Ty, ) is conformal-anomaly-free all on its own

If all mass and length scales come from symmetry breaking. then all scales come from quantum mechanics.

l.e. without length scales there cannot be any curvature.,

SPACETIME CURVATURE IS INTRINSICALLY QUANTUM-NMECHANICAL.

4

0 1s not a conformal W \[11 ]I|-‘H1]-". \lil]ll‘\ to solve trace-anomaly ]II--[-]WH: 18 because we do not use
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QUANTUNMN MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORNATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THA'T Hp

ARE NOT HERMITIAN v % |
Hp: '{'j' p-a —) AR X -

2 '; > ” |

r.p 1 P f?. p ? p ,T ‘

The states of negative norm are states of INFINITE norm since fdrdzuy

Sz 2 )olz ) and
thus () are divergent, and when acting on such states, one CANNOT set p -1} /)2
P .’ ) P -
€ 2, —=———|Yle Z e z), : = 1z, ) p — [

ez ! oz

p. and z not Hermitian — they are anti-Hermitian.

(/] 47 ( // q e" P e ! Lp T‘
H - qr + - (W) +wh ) 7 + SwWiwhy # H', p=7p -
Hermitian  [r,p| =i,  Hermitian |y.q| = 1. non — Hermitian H R0
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...I'HE NORM IS NOT THE DIRAC NORM

Q217 Q2 P q 2 2 2 2 2 ‘
H=c “"He™ = o~ + o= + Jwir™ + Jwiway (34)
Z Z -4.'1_ Z Z
\ R . ) /9 .
H|n) = En|n). H|n) = En|n). In) = ¢%/%|R) (85)
s . ) /9 / - 1 ) (2
nlH = E.,. (nl. (n| = (n e%/< nle"YH = (nle”YE (80)
\ n\ \ \ \ n

) . . . .
¢ is not the Dirac conjugate of the

The energy eigenbra (ne
energy eigenket |n), since (n|H'" = (n|£),, is not an eigenvalue
equation for /.

<“ ’“> = Om.n-

(n| ””('}|m> : Omns 2

.

n)(n| = 1. H = X|n)E,(n| (87)
n)(n| @ -1, H = X|n)Ep{n|e @ (88)

The ¢~% norm is positive and so theory is unitary. Since ¢~ =

f ') . . . .
PC" where (' = [, the relative plus and minus signs in the
fourth-order propagator are due to the fact that the two sets
of poles have opposite-signed eigenvalues (£1) of (.
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2 ['he general situation

H' = VHV !, H| R E|R). (R|H' R|E,
R\VH RIVE, L RV, LIH L|E, 89

R(t)|V|R(t L(t)|R(t Lt =0)|e"e " R(t =0
Lit=0)|R(t=0 R(t = 0)|V|R(t = 0)). 90

[ d'ke % D(k2) = (Q|T(6(x)d(0)|) = (|VT(6(x)0(0)|2) # (| T((x)d

|

e Lehmann representation

Set fdike ** D(k? QplT(o(x)o(0)|Q2e), ¥ |n)(n| /
/!-rf'“ 27)° s, 0 (K q. )| {(2ploU f 6 q0).

D(k?) = [ dg*—d 99
Get contradiction at large k% if p(g°) is positive and D(k*) = 1/k'. Hence need a cancellation, and obtain
by identifving D(k- d' ke QplVT (6(x)0(0)|Q2p). Problem is ne
fourth-order conformal gravity is first time problem is encountered. Sa

Yane-Mills second-order (and thus renormalizabli

never met n ril(l[‘l.: \|]1i|f 'EL»\lf]l ()

7.4  The pure fourth-order limit is singular

In limit wo = w; we find that e %= becomes singular. And likewise if M= = 0. In the limit the Ha

becomes non-diagonalizable Jordan-block Hamiltonian. Thus do not have two o

Pirsa: 12070015 Page 55/67



Pirsa: 12070015

tuge

An
-

apparent ma

i
the

IT

recishift

The ¢ .37 conformal gravity fit (upper curve) and the Qy({,

supernovac Hubble plot data.

7 standard model fit (lower curve) to
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ent magnitude
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FFigure 1: The ¢ .37 conformal gravity fit (upper curve) and the Qy({, 3, (1 0.7 standard model fit (lower curve) to
the supernovac Hubble plot data.
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| dtR(1 115

I7 ) | F] 17 |'w|' 5 It )
] — (a\) “aT e e { (1) | i) 1,
L+ % SRy \1=0p/4) | (1= ~3p?/16]2 1 '
L 117
R R 2
12 > 107" em - 3,06 x 10" "em 115

‘..: _'”I. v . .. ‘..- "_. ) - ‘ - . g .- o ~* ; : Ke*RR. :l'g
R I? 5 — kel R [ > ¢

054 %« 100 em - (100 Mp« 120

Fit 138 galaxies with VISIBLE N* of each galaxy as only variable, 37, ~*, 70 and & are all universal, and
with NO DARK MATTER. and with 276 fewer free parameters than in dark matter calculations. Works
since (v=/c= ) 10-"em~! for every galaxy.
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8 The dark matter ])l'nlnlt'ln

B(r)dt* + == + r2dQ. 0
/

Bir . h LAy 108

1 T 1 ¢ro ., ‘
953 — [ drr . = [ dr'r” f(r) 100
1‘ _f ‘_‘I 10)

I, |

el ——" (5) &

—

-
—
—
-

l{'J
2R

1

- Ii'l d '_‘I'.a‘,‘l"l f . dr'y ‘r‘l _r' . — —(‘ i}‘.‘.;".; r’ 112

[ d { f dr l I,' i hir / / / |
) G Ji 2J 8]

(7 | S 1 s tdy e s - , o
—— = = [(dr ) = [T ) = = [ ho 14

( L= J

(‘n]]l‘l)]'ll]ill Carav i|\ i‘~ (1[()[’) \] S0 cannot iL[lI"]"‘ [ll" rest ||1I [ll" |||Ii\"|‘“‘"‘ H"\I “I‘ ||||i\|‘[\l‘ |I-'|.“ ll“ll]"_!_'"-
necons Hubble flow and inhomogencous clusters of galaxies.
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8 The dark matter problem

B(r)dt* + = + r2ds. (106

B(r =1 — + A7 108

23 == dr'ir" f(r' . [ dr'r”™= f(r 109

' - /.fLi:’\.(—"u I ([ =—] K (
/44 .._)fl' ‘._,Hrlu \ 0/ ) [1p / \

1

— I"I A '_"'a‘,‘l"l f' A -.‘r" .‘.- ‘ ':— ;{l u'..".—'—.; o :l‘l

— = | drr-hlr 4 — f drr hlr —fl dr'r’l 114

( or= 3V

Conformal Gravity is GLOBAL. So cannot ignore the rest of the universe. Rest of universe has homogoe-

necons Hubble flow and inhomogencous clusters of galaxies.
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IHINGS 1R galaxy sample
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9 Summary

I'o conclude, we note that at the beginning of the 20th century studies of black-body radiation on microscopic
scales led to a paradigm shift in physics. Thus it could that at the beginning of the 21st century studies of
black-body radiation, this time on macroscopic cosmological scales, might be presaging a paradigm shift all

over again.

Pirsa: 12070015 Page 65/67



Pirsa: 12070015 Page 66/67




Pirsa: 12070015 Page 67/67




