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Abstract: <span>A simple physical redlization of an integer quantum Hall
state of interacting two dimensional bosonsis provided. Thisis an example of
a"symmetry-protected topological" (SPT) phase whichisa

generalization of the concept of topological insulatorsto systems of
interacting bosons or fermions. Universal physical properties of the boson
integer quantum Hall state are described and shown to correspond to those
expected from general classifications of SPT phases.</span>
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Integer quantum Hall effect for bosons: A physical
realization

T. Senthil (MIT) and Michael Levin (UMCP)

(arXiv:1206.1604)

Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.
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An obsession in modern condensed matter physics

""Exotic” Phases of Matter

- Gapped phases with " topological quantum order”, fractional quantum numbers
(eg, fractional quantum Hall state, gapped quantum spin liquids)

- phases with gapless excitations not required by symmetry alone

(eg, fermi and non-fermi liquid metals, gapless quantum spin liquids)
Emergent non-local structure in ground state wavefunction:

Characterize as 'long range quantum entanglement”
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How " ‘simple” can "‘interesting” be!?

Long range entangled phases have many interesting
properties.

Some of these interesting things may not actually require
the long range entanglement.
A sub-obsession: how exotic can a phase with short

ranged entanglement be!?

Dramatic progress in the context of topological band
structures of free fermion models in recent years.
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Modern topological insulators

Key characterization: Non-trivial surface states with gapless
excitations protected by some symmetry

Quantum Spin Hall
Effect
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Interactions!

Current frontier: interaction dominated generalizations of the concept
of topological insulators!?

Move away from the crutch of free fermion Hamiltonians.
Useful first step: study possibility of topological insulators of bosons

Necessitates thinking more generally about these phases without the

aid of a free fermion model.
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Integer Quantum Hall Effect (IQHE) for bosons?

Integer quantum Hall effect of fermions:
Often understand in terms of filling a full Landau level.

For bosons this obviously fails (no Pauli).

Can bosons be in an IQHE state with

(1) a quantized integer Hall conductivity

(2) no fractionalized excitations or topological order (unique ground state on closed
manifolds)

(3) a bulk gap

Yes! (according to recent progress in general classification of short ranged

entangled phases)

I. Cohomology classification (Chen, Liu, Gu,Wen, 201 1)
2. 77 (Kitaev, unpublished)

3. Chern-Simons classification (Lu,Vishwanath, 2012)
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This talk

A physical realization of an integer quantum Hall state of bosons

Simple, possibly experimentally relevant, example of the kind of state
the formal classification shows is allowed to exist.
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Two component bosons in a strong magnetic field

Two boson species by each at filling factor v = |

> Hjp+ Hipy
|
(6 — :T) i

2m

— | by

/ dPad®x pr(x)Vig(x —a)py(a')

.

External magnetic field B=V xA.
pr(xz) =by(x)b;(x) = density of species 1
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Symmetries and picture

Number of bosons Nj, N, of each species separately conserved: two separate
global U(l) symmetries.

* Total charge = N|+Ng3

A

Call Ny - N2 = total " "pseudospin”

SpCCiCS 2
o=i
Chal ge cur rent

/ | PSS

Species |

Pseudospin current

_i:o.—_

B-field

Later relax to just conservation of total boson number
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Flux attachment mean field theory

[1. i(zi = wj): particle of each species sees particle of the other species as a

vortex.

Flux attachment theory:

Attach one flux quantum of one species to each boson of other species.

“Mutual composite bosons”

oft o

v =1 => on average attached flux cancels external magnetic flux.
Mutual composite bosons move in zero average field.
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Chern-Simons Landau Ginzburg theory

Reformulate in terms of mutual composite bosons.
Implement flux attachment through Chern-Simons gauge fields.

L = > Li+Lim+Les
/

‘v‘i” - Ib(.'ili[ — {'\ﬂ"r)i)]‘z

L = iif(fl)n ~ iAo+ "‘”'f“)i” - 2

+ l’|{"!|3
= —Vis[br|*|bs|?

_l_( pL A (

O |;J(‘)V“2,\ + ”211(‘)11“ I,\)
4m
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Chern-Simons Landau Ginzburg theory

Reformulate in terms of mutual composite bosons.
Implement flux attachment through Chern-Simons gauge fields.

‘C = Zﬁl Jf_L".rn! Jf‘L"(".'-{
!

’ b (¢ : ; ; Vhr —i(A; — )by |2
Ly {J;(()“ - "'11!(; + ft'\'m)h! _ ‘ ! ( [ I) j‘

20
2

l"|{"f|

207 Chern-Simons gauge
~Vi1bi1]

fields
ITT( HEA (@ 1Oy + a0y ) (1)
X/

Probe gauge fields
Mutual Chern-Simons implements flux
attachment

Mutual composite fermions see zero average field: condense them.
Internal Chern-Simons gauge fields lock to probe gauge fields.
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Physical properties: Hall transport

Effective probe Lagrangian

|

LA : y
-I?T(I ("lllr.'(‘)f/"12.\ { “l'_’;r()rw'll,\}

Leps

New probe gauge fields that couple to charge and pseudospin currents -

Ai+Az 4 A —Ag

LN ; ,
5 ¢ (;l,,,(),,;lh\ .'L,,,(),,.‘L,\)
LT

Lepy

Electrical Hall conductivity o, = 2

Pseudospin Hall conductivity o, = —2.

“Integer quantum Hall effect”
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Effective probe Lagrangian

|

- LA : ‘
L',-,l‘_;‘ -I?T(I ("lllr.'(‘)fﬂ'h_’.\ i “1‘3;r")11"l|,\}

New probe gauge fields that couple to charge and pseudospin currents
A+A; g AL —Ag
D) 1418 9

> 1‘\ / i [
f_., ff .)r("” (:l,j,(),,:lh\ .'L,,,(),,.“l,,,\)

Electrical Hall conductivity o, = 2

Pseudospin Hall conductivity o, = —2.

“Integer quantum Hall effect”
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Edge states

/

Charge current

Pseudospin current

Comments:
|. Counterpropagating edge states but only one branch transports charge.

2. Thermal Hall conductivity = 0
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Symmetry protection of edge states

Include interspecies tunneling:
Pseudospin not conserved,

only total particle number conserved.
Species 2

Counterpropagating edge modes cannot

3\
g backscatter due to charge conservation.

Edge modes are preserved so long as total

B-field

v

‘ charge is conserved.
Species |

“"Symmetry Protected Topological Phase” of bosons
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Effective topological field theory

Two component Chern-Simons theory

|
(ayday + asday) 4 (day + das) A

"
.
| 27

M

“IK-matrix” o

Unique ground state on closed manifolds as |Det K| = |

Connect to general discussion of Lu,Vishwanath (Ashvin talk)
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Ground state wavefunction
(ignore interspecies tunneling)

Naive guess W ({2 wib) =[] (i = wy) e 200
)

Problem: Unstable to phase separation (see using Laughlin plasma analogy)

Fix, for example, using ideas initiated by Jain (1993) for some fermionic quantum Hall states

i'.’.f.f.H|:" 1;|2‘H w; — w;|*
1<}

<]

2 2
L ll KLU
1

Pr e projection to lowest Landan level
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Ground state wavefunction
(ignore interspecies tunneling)

Nalve guess ‘IJ{{'-"”}“ l[f-, w;) - ¥, Ll
i

Problem: Unstable to phase separation (see using Laughlin plasma analogy)

Fix, for example, using ideas initiated by Jain (1993) for some fermionic quantum Hall states

Py projection to lowest Landau level
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Pseudospin properties

The edge theory for this state is identical to the SU(2); WZW conformal
ficld theory.

Edge theory has (emergent) pseudospin SU(2) rotation symimetry.
Suggests state itself can be stabilized for a pseudospin SU(2) invariant

Hamiltonian,

Can show wavefunction of previous slide is actually a pseudospin singlet
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Microscopics: a simple Hamiltonian

> Hp+ Hipg
I
(v f.f)'”

H, jo| by

2m

Hi / .rfz.rf/z.!'f,u;{,r')'t',r_;(.r .r"),;_;(.i")

Simple and realistic interaction:

Vi(Z)
Via(7)

gs = gq: Pseudospin SU(2) invariance
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Possible Phase diagram

00

L.
>

gdlgs

Decoupled: Phase separated: Possibly
Pfaffian + Pfafﬂan non-abelian k= 4 Read-Rezayi
(non-abelian) SU(2) symmetric point: state

Near SU(2) symmetric point, recent exact diagonalization work show an
incompressible, spin singlet state (Grass etal, 2012uXiv1204.5423G, Furukawa, Ueda

201 2arXivI205.2169F)

Candidates: |. Boson IQHE

2.A non-abelian spin singlet state (Ardonne, Schoutens 1999)
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Prospects - experiments

Obvious place to look is in ultracold atoms in strong artificial magnetic
fields.

The delta function repulsion is realistic and controllable.

Challenge: get fields high enough to be in the quantum Hall regime
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