Title: Nonlocality, Entanglement Witnesses and Supra-Correlations
Date: Jun 25, 2012 04:00 PM
URL: http://pirsa.org/12060076
Abstract: While entanglement is believed to underlie the power of quantum computation
and communication, it is not generally well understood
for multipartite
systems. Recently, it has been appreciated that there exists proper
no-signaling probability distributions derivable from operators that do not
represent valid quantum states.\ Such systems exhibit supra-correlations
that are stronger than allowed by quantum mechanics, but less than the
algebraically allowed maximum in Bell-inequalities (in the bipartite case).

Some of these probability distributions are derivable from an entanglement
witness W, which is a non-positive Hermitian operator constructed such that
its expectation value with a separable quantum state (positive density
matrix) rho_sep is non-negative (so that $\operatorname{Tr}[\mathrm{W}$ rho $]<0$ indicates entanglement
in quantum state rho). In the bipartite case, it is known that by a
modification of the local no-signaling measurements by spacelike separated
parties A and B, the supra-correlations exhibited by any W can be modeled as
derivable from a physically realizable quantum state Ï• However, this result
does not generalize to the n -partite case for $\mathrm{n}>2$. Supra-correlations can
also be exhibited in 2- and 3-qubit systems by explicitly constructing
"states" O (not necessarily positive quantum states) that exhibit PR
correlations for a fixed, but arbitrary number, of measurements available to
each party. In this paper we examine the structure of "states" that exhibit
supra-correlations. In addition, we examine the affect upon the distribution
of the correlations amongst the parties involved when constraints of
positivity and purity are imposed. We investigate circumstances in which
such "states" do and do not represent valid
quantum states.

Outline

- Review Bell Inequalities (BI)
- No-Signaling (NS) and Popescu-Rohrlich (PR) supra-quantum correlations (i.e. stronger than quantum)
- "States" (operators 0) reproducing PR correlations
- The Bipartite case: $\mathbf{2}$-qubits, A and B perform m local measurements
- The form of O
- Some Linear Algebra: existence and uniqueness of solution
- Numerical investigations (eigenvalues of O, correlations, ...)
- The Tripartite case: 3 -qubits, A,B,C perform m local measurements
- Effect of Positivity and Purity constraints on distribution of correlations
- Summary and Conclusion

Bell Inequalities and Correlation Distances

Bell Inequalities can be viewed as a violation of a classical quadrilateral inequality
Schumacher, PRA 44, 7047 (1991)
Consider a bipartite system $\mathcal{A} \otimes \mathcal{B}$ with
measurement directions $\mathrm{A}, \mathrm{B} \in \mathcal{A}$ and $\mathrm{C}, \mathrm{D} \in \mathcal{B}$
taking values $\{ \pm 1\}$
Correlations (expectation values)
meas. value (output)
between $\mathrm{A} \in \mathcal{A}$ and $\mathrm{C} \in \mathcal{B}$ meas. setting (input)
$E(A C)=\langle A C\rangle=\sum_{a, c=(\pm 1)} a c P(a, c \mid A, C)$
$=P(+,+\mid A, C)+P(-,-\mid A, C)-P(+,-\mid A, C)-P(-,+\mid A, C)$
Define Correlation Distance: $\Delta(A C)$
$\Delta(A C)=1-E(A C)=P(+,-\mid A, C)+P(-,+\mid A, C) \geq 0$
(Using: $\sum_{a, c=\{ \pm 1\}} P(a, c \mid A, C)=1, \forall A, C$)
Then $\Delta(A C)+\Delta(B C)+\Delta(B D) \geq \Delta(A D)$

$$
\Rightarrow S=E(A C)+E(B C)+E(B D)-E(A D) \leq+2
$$

For a bipartite system \mathcal{A} B\&with measurement directions $A, B \in \mathcal{A}$ and $C, D \in \mathcal{B}$
Classically: $\Delta(A C)+\Delta(B C)+\Delta(B D) \geq \Delta(A D)$
Quantum Mechanically: this can be violated, e.g. $\Delta(A C)+\Delta(B C)+\Delta(B D)<\Delta(A D)$
with singlet state $(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}=(|01\rangle-|10\rangle) / \sqrt{2}$
Which the CHSH Bell inequality with bounds
Classical: $\left|S_{C}\right| \leq 2 ; \quad$ QM: $\left|S_{Q}\right| \leq 2 \sqrt{2} ;$ Algebraic Maximum: $\left|S_{A M}\right| \leq 4$

Bell Inequalities and Correlation Distances

Bell Inequalities can be viewed as a violation of a classical quadrilateral inequality
Schumacher, PRA 44, 7047 (1991)
Consider a bipartite system $\mathcal{A} \otimes \mathcal{B}$ with
measurement directions $A, B \in \mathcal{A}$ and $C, D \in \mathcal{B}$
taking values $\{ \pm 1\}$
Correlations (expectation values)
meas. value (output)
between $\mathrm{A} \in \mathcal{A}$ and $\mathrm{C} \in \mathcal{B}$ meas. setting (input)
$E(A C)=\langle A C\rangle=\sum_{a, c=(\pm 1)} a c P(a, c \mid A, C)$
$=P(+,+\mid A, C)+P(-,-\mid A, C)-P(+,-\mid A, C)-P(-,+\mid A, C)$
Define Correlation Distance: $\Delta(A C)$
$\Delta(A C)=1-E(A C)=P(+,-\mid A, C)+P(-,+\mid A, C) \geq 0$
(Using: $\sum_{a, c-\{ \pm 1\}} P(a, c \mid A, C)=1, \forall A, C$)
Then $\Delta(A C)+\Delta(B C)+\Delta(B D) \geq \Delta(A D)$

$$
\Rightarrow S=E(A C)+E(B C)+E(B D)-E(A D) \leq+2
$$

For a bipartite system \mathcal{A} B\&with measurement directions $A, B \in \mathcal{A}$ and $C, D \in \mathcal{B}$
Classically: $\Delta(A C)+\Delta(B C)+\Delta(B D) \geq \Delta(A D)$
Quantum Mechanically: this can be violated, e.g. $\Delta(A C)+\Delta(B C)+\Delta(B D)<\Delta(A D)$
with singlet state $(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}=(|01\rangle-|10\rangle) / \sqrt{2}$
Which the CHSH Bell inequality with bounds
Classical: $\left|S_{C}\right| \leq 2 ; \quad$ QM: $\left|S_{Q}\right| \leq 2 \sqrt{2} ;$ Algebraic Maximum: $\left|S_{A M}\right| \leq 4$

No Signaling (NS) Theories

No Signaling Theories represent valid joint probability distributions (non-local) with valid marginal distributions

Linear constraints on any joint NS prob. distrib.
Normalization: $\sum_{a, b=(0,1)} P(a, b \mid x, y)=1, \forall x, y$

$$
\begin{aligned}
& \text { No Signaling: } P\left(a_{1}, a_{2}, \ldots, a_{k} \mid x_{1}, \ldots, x_{n}\right) \\
& =\sum_{a_{n+1}, a_{n} \in(0,1)} P\left(a_{1}, \ldots, a_{n} \mid x_{1}, \ldots, x_{n}\right) \\
& =P\left(a_{1}, a_{2}, \ldots, a_{k} \mid x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

PR Box:

$$
P(a, b \mid x, y)=\left\{\begin{array}{cl}
1 / 2 & \text { if } a \oplus b=x \cdot y \\
0 & \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{aligned}
& \sum_{i=1} P(a, b \mid x, y) \\
& -\underbrace{P(0,0 \mid x, y)+P(L, 1 \mid x, y)}_{a \oplus b=0} \underbrace{+P(0,1 \mid x, y)+P(1,0 \mid x, y)}_{a \oplus b=1} \\
& =(1 / 2+1 / 2) \delta_{0, x y}+(1 / 2+1 / 2) \delta_{1 x y} \\
& =\delta_{0 x y}+\delta_{1 x y} \\
& =1 \forall x, y
\end{aligned}
$$

No Signaling Principle:(two inputs/outputs)

$$
\begin{aligned}
& P(a \mid x, y)=\sum_{b=(0,1)} P(a, b \mid x, y)=P(a \mid x) \forall y \\
& P(b \mid x, y)=\sum_{a=(0,1)} P(a, b \mid x, y)=P(b \mid y) \forall x
\end{aligned}
$$

$$
\text { Then } P(a \mid x, y) \equiv \sum_{0-10,1)} P(a, b \mid x, y)
$$

$=\underbrace{P(a, 0 \mid x, y)}+\underbrace{P(a, 1 \mid x, y)}$
$a \oplus b=a \oplus 0=a \quad a \oplus b=a \oplus 1=\bar{a}$
$=1 / 2 \delta_{a, x y}+1 / 2 \delta_{a, x y}$
$=\{1 / 2+0($ (f $a=0 \& x \cdot y=0), 0+1 / 2($ (f $a=0 \& x \cdot y=1)$
$=\left\{\begin{array}{l}0+1 / 2(\text { if } a=1 \& x \cdot y=0), 1 / 2+0(\text { if } a=1 \& x \cdot y=1)\end{array}\right.$
$=1 / 2 \quad \forall a, x, y$
$=1 / 2$
$=P(a \mid x) \forall a, x$ (this is Isotropic, i.e. $P(a \mid x)=1 / 2$ indep of x)

No Signaling (NS) Theories

No Signaling Theories represent valid joint probability distributions (non-local) with valid marginal distributions
Linear constraints on any joint NS prob. distrib.

$$
\begin{aligned}
& \text { No Signaling: } P\left(a_{1}, a_{2}, \ldots, a_{k} \mid x_{1}, \ldots, x_{n}\right) \\
& =\sum_{a_{k+1}, \ldots, a_{n} \in\{0.1\}} P\left(a_{1}, \ldots, a_{n} \mid x_{1}, \ldots, x_{n}\right) \\
& =P\left(a_{1}, a_{2}, \ldots, a_{k} \mid x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

PR Box:

$$
P(a, b \mid x, y)=\left\{\begin{array}{cl}
1 / 2 & \text { if } a \oplus b=x \cdot y \\
0 & \text { otherwise }
\end{array}\right.
$$

Then
$\sum_{a, b=(0,1)} P(a, b \mid x, y)$
$=\underbrace{P(0,0 \mid x, y)+P(1,1 \mid x, y)}_{a \oplus b=0} \underbrace{+P(0,1 \mid x, y)+P(1,0 \mid x, y)}_{a \oplus b=1}$
$=(1 / 2+1 / 2) \mathcal{S}_{0, x y}+(1 / 2+1 / 2) \mathcal{S}_{1, x: y}$
$=\delta_{0, x: y}+\delta_{1, x: y}$
$=\quad 1 \quad \forall x, y$
Normalization: $\sum_{a, b=\{0,1\}} P(a, b \mid x, y)=1, \forall x, y$

No Signaling Principle: (two inputs/outputs)

$$
\begin{aligned}
& P(a \mid x, y)=\sum_{b=\{0,1\}} P(a, b \mid x, y)=P(a \mid x) \forall y \\
& P(b \mid x, y)=\sum_{a=\{0,1\}} P(a, b \mid x, y)=P(b \mid y) \forall x
\end{aligned}
$$

Then $P(a \mid x, y) \equiv \sum_{b-(0,1)} P(a, b \mid x, y)$
$=\underbrace{P(a, 0 \mid x, y)}+\underbrace{P(a, 1 \mid x, y)}$
$a \oplus b=a \oplus 0=a \quad a \oplus b=a \oplus 1=\bar{a}$
$=1 / 2 \mathcal{S}_{a, x, y}+1 / 2 \mathcal{S}_{a, x, y}$
$=\left\{\begin{array}{l}1 / 2+0(\text { if } a=0 \& x \cdot y=0), 0+1 / 2(\text { if } a=0 \& x \cdot y=1)\end{array}\right.$
$=\left\{\begin{array}{l}0+1 / 2(\text { if } a=1 \& x \cdot y=0), 1 / 2+0(\text { if } a=1 \& x \cdot y=1)\end{array}\right.$
$=1 / 2 \quad \forall a, x, y$
$=1 / 2$
$=P(a \mid x) \forall a, x$
(this is Isotropic, i.e. $P(a \mid x)=1 / 2$ indep of x)

Structure of NS probability distributions

Consider a set of n-spacelike separated measurements

(Acin et al., PRL 104, 140404 (2011)
No-Signaling
(local) measurements
Probability Distribution
from"Trace Rule" for fixed set
of measurements
$M_{\text {non-sig }}=M_{a_{1}}^{x_{1}} \otimes \ldots \otimes M_{a_{n}}^{x_{n}}$

Probability Distribution from

"Trace Rule" for all measurements

Entanglement Witness

$$
\begin{array}{r}
P_{O} \equiv P_{O}\left(a_{1}, \ldots, a_{n} \mid x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left[O M_{a_{1}}^{x_{1}} \otimes \cdots \otimes M_{a_{n}}^{x_{n}}\right] \geq 0 \\
\text { projectors: } M_{a}^{x}=\Pi_{a}^{x}=|a\rangle_{x}\langle a|
\end{array}
$$

- A quantum state ρ is positive semidefinite $(\rho \geq 0)$ Hermitian matrix with $\operatorname{Tr}[\rho]=1$
- A separable state (classical correlations) has the form $\rho^{s e p}=\sum_{1} p_{1} \rho_{1}^{A_{1}} \otimes \rho_{1}^{A_{2}} \otimes \cdots \otimes \rho_{1}^{A_{N}}$
- An entangled state is a state that cannot be written as separable: $\rho \neq \rho^{\text {sep }}$
- An entanglement witness \mathbf{W} is constructed to be positive on all separable states $\left\langle a_{1}, a_{2}, \ldots\right| W\left|a_{1}, a_{2} \ldots\right\rangle \geq 0$ i.e. $\operatorname{Tr}\left[\rho^{\text {sep }} \mathbf{W}\right] \geq \mathbf{0}$ (follows from using $\rho_{i}^{*}=\sum_{j} p_{v}^{k}\left|\psi_{v}^{k}\right\rangle\left\langle\psi_{v}^{k}\right|$)
- Hence, if $\operatorname{Tr}[\rho \mathrm{W}] \leq 0$, then the quantum state ρ is entangled
- W is generally not a quantum state $\rho \geq 0$, since \mathbf{W} can have negative eigenvalues

Current Understanding

1. It is known that for $\mathrm{N}=2$ qubits, one can always write a probability distribution derived from a witness W , from one derived from a valid quantum state using modified measurements. (Barnum, et al. PRL 104, 1040401 (2011))
2. However, this does not generalize to the case of N>2 (Acin, et al., PRL 104, 140404 (2011))
3. Proof: By the Choi-Jamiolkowski isomorphism (CII), any 2-party witness W can be written as $\mathrm{CJ} \Rightarrow W=\left(I_{A} \otimes \Lambda_{B}\right)\left(\rho_{\Phi_{\text {mp }}}\right)$, where Λ_{B} is positive, trace preserving map,
and $\rho_{\Phi_{A P}}=\left|\Phi_{B P}\right\rangle\left\langle\Phi_{B P}\right|$ is the density matrix for a maximally entangled pure bipartite state.
acts to right
Then: $P_{W}(a, b \mid x, y)=\operatorname{Tr}\left[W M_{a}^{x} \otimes M_{b}^{y}\right]=\operatorname{Tr}\left[(I \otimes \widehat{\Lambda})\left(\rho_{\phi_{\text {mp }}}\right) M_{a}^{x} \otimes M_{b}^{y}\right]$
$\left.=\operatorname{Tr}\left[M_{a}^{x} \otimes M_{b}^{y}(I \otimes \Lambda)\left(\rho_{\oplus_{m p}}\right)\right]=\operatorname{Tr}\left[M_{a}^{x} \otimes \Lambda^{*}\left(M_{b}^{y}\right) \rho_{\left.\Phi_{\Delta z p}\right\rangle}\right]=\operatorname{Tr}\left[\rho_{\left|\Phi_{z p}\right\rangle} M_{a}^{x} \otimes M_{b}^{\prime y}\right)\right]$,
where $M_{b}^{\prime y}=\Lambda^{*}\left(M_{b}^{y}\right)$, and Λ^{*} is the dual map to Λ, i.e $\operatorname{Tr}[\mathrm{A} \Lambda(B)]=\operatorname{Tr}\left[\Lambda^{*}(A) B\right]$.
4. The above made explicit use of the CII , in particular $W=\left(I_{A} \otimes \Lambda_{B}\right)\left(\rho_{\Phi_{A P}}\right)$,
which does not extend in general to the multipartite case ($\mathrm{N}>2$).
5. The extension of the CI holds in the N -party case only for those W with the form
$W=\sum_{k} p_{k} \Lambda_{\Lambda_{1}}^{x} \otimes \ldots \otimes \Lambda_{\lambda_{v}}^{y}\left(\rho_{k}\right)$ where ρ_{k} are N-party quantum states, p_{k} probs., $\Lambda_{\alpha_{1}}^{x}$ pos. maps
$\Rightarrow P_{W}\left(a_{1}, \ldots, a_{N} \mid x_{1}, \ldots, x_{N}\right)=\operatorname{Tr}\left[W M_{a_{1}}^{x_{1}} \otimes \ldots \otimes M_{a_{N}}^{x_{N}}\right]=\sum_{k} p_{k} \operatorname{Tr}\left[\rho_{k} \Lambda_{A_{1}}^{x}\left(M_{a_{1}}^{x_{1}}\right) \otimes \ldots \otimes \Lambda_{A_{N}}^{y}\left(M_{a_{N}}^{x_{N}}\right)\right]$

Structure of NS probability distributions

Consider a set of n-spacelike separated measurements

$$
\begin{aligned}
& \text { (Acin et al., PRL 104, } 140404 \text { (2011) } \\
& \text { No-Signaling } \\
& \text { (local) measurements } \\
& \text { Probability Distribution } \\
& \text { from"Trace Rule" for fixed set } \\
& \text { of measurements } \\
& M_{\mathrm{non-sig}}=M_{a_{1}}^{\lambda_{1}} \otimes \\
& \otimes M_{\text {measurement value (output) }}^{\text {measurement setting (input) }} \\
& P_{o} \equiv P_{o}\left(a_{1}, \ldots, a_{n} \mid x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left[O M_{a_{1}}^{x_{1}} \otimes \cdots \otimes M_{a_{n}}^{x_{n}}\right] \geq 0 \\
& \text { projectors: } M_{a}^{x}=\Pi_{a}^{x}=|a\rangle_{x}\langle a| \\
& \text { Probability Distribution from } \\
& \text { "Trace Rule" for all measurements } \\
& \frac{P_{W} \equiv P\left(a_{1}, \ldots, a_{N} \mid x_{1}, \ldots, x_{n}\right)=\operatorname{Tr}\left[W M_{a_{1}}^{x_{1}} \otimes \cdots \otimes M_{a_{n}}^{x_{n}}\right] \geq 0}{(\text { Gleason correlations }) \quad(W \text { is an Entanglement Witness) }} \\
& \left.n=2 \text { only: } P_{\pi}(a, b \mid x, y)=\operatorname{Tr}\left[W M_{a}^{x} \otimes M_{b}^{y}\right]=\operatorname{Tr}\left[q_{\left.\phi_{m p}\right)} M_{a}^{x} \otimes \bar{M}_{b}^{y}\right)\right], \\
& \text { (Barnum et al., PRL. 104, 140401 (2011) } \\
& \text { - A quantum state } \rho \text { is positive semidefinite }(\rho \geq 0) \text { Hermitian matrix with } \operatorname{Tr}[\rho]=1 \\
& \text { - A separable state (classical correlations) has the form } p^{5 p}=\sum_{1} p_{1} p_{1}^{4} \otimes p_{1}^{4} \otimes \ldots \otimes p_{1}^{4_{1}} \\
& \text { - An entangled state is a state that cannot be written as separable: } \rho \neq \rho^{\text {sep }} \\
& \text { - An entanglement witness } \mathbf{W} \text { is constructed to be positive on all separable states }\left\langle a_{1}, a_{2}, \ldots\right| W\left|a_{1}, a_{2} \ldots\right\rangle \geq 0 \\
& \text { i.e. } \operatorname{Tr}\left[\rho^{\text {seep }} \mathrm{W}\right] \geq 0 \text { (follows from using } \rho_{i}^{4}=\sum_{j} p_{0}^{k}\left|\psi_{v}^{t}\right\rangle\left\langle\psi_{v}^{k}\right| \text {) } \\
& \text { - Hence, if } \operatorname{Tr}[\rho \mathrm{W}] \leq 0 \text {, then the quantum state } \rho \text { is entangled } \\
& \text { - W is generally not a quantum state } p \geq 0 \text {, since } W \text { can have negative eigenvalues }
\end{aligned}
$$

Current Understanding

1. It is known that for $\mathrm{N}=2$ qubits, one can always write a probability distribution derived from a witness W, from one derived from a valid quantum state using modified measurements. (Barnum, et al. PRL 104, 1040401 (2011))
2. However, this does not generalize to the case of N>2 (Acin, et al., PRL 104, 140404 (2011))
3. Proof: By the Choi-Jamiolkowski isomorphism (CII), any 2-party witness W can be written as $\mathrm{CJ} \Rightarrow W=\left(I_{A} \otimes \Lambda_{B}\right)\left(\rho_{\Phi_{\text {mp }}}\right)$, where Λ_{B} is positive, trace preserving map,
and $\rho_{\Phi_{m P}}=\left|\Phi_{B P}\right\rangle\left\langle\Phi_{B P}\right|$ is the density matrix for a maximally entangled pure bipartite state.
acts to right
Then: $P_{W}(a, b \mid x, y)=\operatorname{Tr}\left[W M_{a}^{x} \otimes M_{b}^{y}\right]=\operatorname{Tr}\left[(I \otimes \Lambda)\left(\rho_{\phi_{M P}}\right) M_{a}^{x} \otimes M_{b}^{y}\right]$
$\left.=\operatorname{Tr}\left[M_{a}^{x} \otimes M_{b}^{y}(I \otimes \Lambda)\left(\rho_{\left.\Phi_{\text {mup }}\right)}\right)\right]=\operatorname{Tr}\left[M_{a}^{x} \otimes \Lambda^{*}\left(M_{b}^{y}\right) \rho_{\left.\Phi_{I z p}\right\rangle}\right]=\operatorname{Tr}\left[\rho_{\left.\Phi_{\text {Izp }}\right\rangle} M_{a}^{x} \otimes M_{b}^{\prime y}\right)\right]$,
where $M_{b}^{\prime y}=\Lambda^{*}\left(M_{b}^{y}\right)$, and Λ^{*} is the dual map to Λ, i.e $\operatorname{Tr}[\mathrm{A} \Lambda(B)]=\operatorname{Tr}\left[\Lambda^{*}(A) B\right]$.
4. The above made explicit use of the CII , in particular $W=\left(I_{A} \otimes \Lambda_{B}\right)\left(\rho_{\phi_{\text {mup }}}\right)$,
which does not extend in general to the multipartite case ($\mathrm{N}>2$).
5. The extension of the $\mathrm{C} I$ holds in the N -party case only for those W with the form
$W=\sum_{k} p_{k} \Lambda_{A_{1}}^{x} \otimes \ldots \otimes \Lambda_{A_{k}}^{y}\left(\rho_{k}\right)$ where ρ_{k} are N-party quantum states, p_{k} probs., $\Lambda_{\Lambda_{1}}^{x}$ pos. maps
$\Rightarrow P_{W}\left(a_{1}, \ldots, a_{N} \mid x_{1}, \ldots, x_{N}\right)=\operatorname{Tr}\left[W M_{a_{1}}^{x_{1}} \otimes \ldots \otimes M_{a_{N}}^{x_{N}}\right]=\sum_{k} p_{k} \operatorname{Tr}\left[p_{k} \Lambda_{d_{1}}^{x}\left(M_{a_{1}}^{x_{1}}\right) \otimes \ldots \otimes \Lambda_{A_{N}}^{y}\left(M_{a_{N}}^{x_{N}}\right)\right]$

Bipartite (2-qubits) case: m-inputs (x, y), $\mathrm{r}=2$ outputs (a, b)

Let us specialize to the bipartite (Alice-A and Bob-B), 2 -qubit case (i.e. $a, b=\{0,1\}$). We let A, B each have m possible measurements (i.e. $x, y=\{0,1, \ldots, m-1\}$)

Viewpoint: (i) restrict measurements to NS-type $M_{a}^{x} \otimes M_{b}^{y}$, (ii) fix probability distribution to $P(a, b \mid x, y)$, (iii) find W.

In general: for each value of $x=\{0, \ldots, m-1\}$, define a complete set of projection measurements $\left\{M_{a}^{x}\right\}$

$$
M_{a}^{x}=\Pi_{a}^{x}=|a\rangle_{x}\langle a| \quad \sum_{a=0}^{r-1} M_{a}^{x} \equiv I_{r \times r} \quad M_{a=r-1}^{x} \equiv I_{r \times r}-\sum_{a=0}^{r-2} M_{a}^{x}
$$

Bipartite (2-qubits) case:

 m-inputs (x, y), $\mathrm{r}=2$ outputs (a, b)For qubits: $M_{a=0}^{x}=|0\rangle_{x}\langle 0|=1 / 2\left(I+\vec{m}_{x} \cdot \vec{\sigma}\right), \vec{m}_{x}=m_{x}\left(\sin \theta_{x} \cos \phi_{x}, \sin \theta_{x} \cos \phi_{x}, \cos \theta_{x}\right)$

$$
M_{a-1}^{x}=|1\rangle_{x}\langle 1|=1 / 2\left(I-\vec{m}_{x} \cdot \vec{\sigma}\right), \quad\left(I=I_{2 \times 2} \text { identity matrix }\right)
$$

Solve for dual matrices \tilde{M}_{a}^{x} that satisfy $\operatorname{Tr}\left[M_{a}^{x} \tilde{M}_{a^{x}}^{x}\right]=\delta_{x, x^{x}} \delta_{a, a^{\prime}}$

$$
\text { 으: } \begin{aligned}
O & =\sum_{a, b=0}^{r-1-0} \sum_{x, y=0}^{m-1} P(a, b \mid x, y) \tilde{M}_{a}^{x} \otimes \tilde{M}_{b}^{y}+\sum_{a=0}^{r-1-0} \sum_{x=0}^{m-1} P(a \mid x) \tilde{M}_{a}^{x} \otimes \tilde{I}+\sum_{b=0}^{r-1-0} \sum_{y}^{m-1} P(b \mid y) \tilde{I} \otimes \tilde{M}_{b}^{y}+\tilde{I} \otimes \tilde{I}, \\
& =\sum_{x, y=0}^{m-1} P(a=0, b=0 \mid x, y) \tilde{M}_{0}^{x} \otimes \tilde{M}_{0}^{y}+\sum_{x=0}^{m-1} P(a=0 \mid x) \tilde{M}_{0}^{x} \otimes \tilde{I}+\sum_{y=0}^{m-1} P(b=0 \mid y) \tilde{I} \otimes \tilde{M}_{0}^{y}++\tilde{I} \otimes \tilde{I}
\end{aligned}
$$

Simplify let $\left\{I, M_{a}^{x} ; a=0, \ldots, r-2 ; x=0, \cdots, m-1\right\} \equiv\left\{M_{0} \equiv I,\left\{M_{i 21}\right\}=\left\{M_{1}, M_{2}, \ldots\right\}\right\}=\left\{M_{\alpha-(0,21)}\right\}$

$$
O=\sum_{i, j=0}^{m-1} P_{i, j}^{0,0} \tilde{M}_{i} \otimes \tilde{N}_{j}+\sum_{i=0}^{m-1} P_{i}^{0, \cdot} \tilde{M}_{i} \otimes \tilde{I}+\sum_{j=0}^{m-1} P_{j}^{\cdot 0} \tilde{I} \otimes \tilde{N}_{j}+\tilde{I} \otimes \tilde{I}
$$

Bipartite (2-qubits) case: m-inputs (x, y), $r=2$ outputs (a, b)

Solution for qubits: (for A; with $M, m \rightarrow N, n$ for B)
$M_{0}=I \equiv I_{2 \times 2}$

$M_{i}=1 / 2\left(I+\vec{m}_{i} \cdot \vec{\sigma}\right),\left|\vec{m}_{i}\right| \leq 1$$\quad$| $\bar{M}_{0}=\tilde{I}=1 / 2\left(I+\sum_{i} \vec{m}_{i} \cdot \vec{\sigma}\right)=1 / 2(I+\vec{m} \cdot \vec{\sigma}) ;$ | $\vec{m}_{i} \cdot \vec{m}_{j}=\delta_{i, J}$
 $\bar{M}_{i}=\vec{m}_{i} \cdot \vec{\sigma}$ |
| :--- | :--- |
| $\left\|\vec{m}_{i}\right\| \leq 1,\left\|\vec{m}_{i}\right\| \geq 1$ | |

In general

$$
\begin{aligned}
O=\frac{1}{4} & {\left[\sum_{i, j=0}^{m-1}\left(4 P_{i, j}^{0,0}-2\left(P_{i}^{0, \bullet}+P_{j}^{*, 0}\right)+1\right)\left(\vec{m}_{i} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{j} \cdot \vec{\sigma}\right)\right.} \\
& \left.+\sum_{i=0}^{m-1}\left(2 P_{i}^{0, \bullet}-1\right)\left(\vec{m}_{i} \cdot \vec{\sigma}\right) \otimes I+\sum_{j=0}^{m-1}\left(2 P_{j}^{\bullet 0}-1\right) I \otimes\left(\vec{n}_{j} \cdot \vec{\sigma}\right)+I \otimes I\right]
\end{aligned}
$$

Using PR-Box with $P(a, b \mid x=i, y=j)=1 / 2 \delta_{a \oplus b, i J \bmod 2} \Rightarrow P_{i}^{0, \cdot}=P_{j}^{\cdot 0}=1 / 2 \forall i, j ; P_{i, j}^{0,0}=1 / 2 \delta_{0, i J \bmod 2}$ 0: 2-qubits

$$
O=\frac{1}{4}\left[\left(\vec{m}_{e} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{e} \cdot \vec{\sigma}\right)+\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{o} \cdot \vec{\sigma}\right)+({\overrightarrow{\underset{\sim}{m}}} \cdot \vec{\sigma}) \otimes\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right)-\left({\overrightarrow{\underset{\sim}{\sim}}}_{0} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right)+I \otimes I\right]
$$

Bipartite (2-qubits) case: m-inputs (x, y), $\mathrm{r}=2$ outputs (a, b)

Solution for qubits: (for A; with $M, m \rightarrow N, n$ for B)

| $M_{0}=I \equiv I_{2 \times 2}$ |
| :--- | :--- |
| $M_{1}=1 / 2\left(I+\vec{m}_{i} \cdot \vec{\sigma}\right),\left\|\vec{m}_{i}\right\| \leq 1$ |$|$| $\vec{M}_{0}=\vec{I}=1 / 2\left(I+\sum_{i} \vec{m}_{i} \cdot \vec{\sigma}\right)=1 / 2(I+\vec{m} \cdot \vec{\sigma}) ;$ | $\vec{m}_{i} \cdot \vec{m}_{j}=\delta_{i, J}$
 $\tilde{M}_{1}=\vec{m}_{i} \cdot \vec{\sigma}$ |
| :--- | :--- |
| $\left\|\vec{m}_{i}\right\| \leq 1,\left\|\vec{m}_{i}\right\| \geq 1$ | |

In general

$$
\left.\left.\begin{array}{rl}
O=\frac{1}{4} & {\left[\sum _ { i , j = 0 } ^ { m - 1 } \left(4 P_{i, j}^{0,0}-2\left(P_{i}^{0 \cdot \bullet}+P_{j}^{* \cdot 0}\right)\right.\right.}
\end{array}+1\right)\left(\vec{m}_{i} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{\sim} \cdot \vec{\sigma}\right)\right] .
$$

Using PR-Box with $P(a, b \mid x=i, y=j)=1 / 2 \delta_{a \oplus b, l j \bmod 2} \Rightarrow P_{l}^{0, \cdot}=P_{j}^{\cdot 0}=1 / 2 \forall i, j ; P_{l, j}^{0,0}=1 / 2 \delta_{0, t / \bmod 2}$ 0: 2-qubits

Bipartite (2-qubits) case: m-inputs (x, y), $\mathrm{r}=2$ outputs (a, b)

For qubits: $M_{a-0}^{x}=|0\rangle_{x}\langle 0|=1 / 2\left(I+\vec{m}_{x} \cdot \vec{\sigma}\right), \vec{m}_{x}=m_{x}\left(\sin \theta_{x} \cos \phi_{x} \cdot \sin \theta_{x} \cos \phi_{x}, \cos \theta_{x}\right)$

$$
M_{a-1}^{x}=|1\rangle_{x}\langle 1|=1 / 2\left(I-\bar{m}_{x} \cdot \bar{\sigma}\right), \quad\left(I=I_{2 \times 2} \text { identity matrix }\right)
$$

Solve for dual matrices \tilde{M}_{a}^{x} that satisfy $\operatorname{Tr}\left[M_{a}^{x} \tilde{M}_{a^{x}}^{x}\right]=\delta_{x, x^{x}} \delta_{a, a^{\prime}}$

$$
\text { ㅇ: } \begin{aligned}
O & =\sum_{a, D=0}^{r-1-0} \sum_{x, y=0}^{m-1} P(a, b \mid x, y) \tilde{M}_{a}^{x} \otimes \tilde{M}_{b}^{y}+\sum_{a=0}^{r-1=0} \sum_{x=0}^{m-1} P(a \mid x) \tilde{M}_{a}^{x} \otimes \tilde{I}+\sum_{b=0}^{r-1=0} \sum_{y}^{m-1} P(b \mid y) \tilde{I} \otimes \tilde{M}_{b}^{y}+\tilde{I} \otimes \tilde{I}, \\
& =\sum_{x y=0}^{m-1} P(a=0, b=0 \mid x, y) \tilde{M}_{0}^{x} \otimes \tilde{M}_{0}^{y}+\sum_{x=0}^{m-1} P(a=0 \mid x) \tilde{M}_{0}^{x} \otimes \tilde{I}+\sum_{y=0}^{m-1} P(b=0 \mid y) \tilde{I} \otimes \tilde{M}_{0}^{y}++\tilde{I} \otimes \tilde{I}
\end{aligned}
$$

Simplify let $\left\{I, M_{a}^{x}: a=0, \ldots, r-2 ; x=0, \cdots, m-1\right\} \equiv\left\{M_{0} \equiv I,\left\{M_{i 21}\right\}=\left\{M_{1}, M_{2}, \ldots\right\}\right\}=\left\{M_{\alpha-(0,21)}\right\}$

$$
O=\sum_{i, j=0}^{m-1} P_{i, j}^{0,0} \tilde{M}_{i} \otimes \tilde{N}_{j}+\sum_{i=0}^{m-1} P_{i}^{0, \cdot} \tilde{M}_{i} \otimes \tilde{I}+\sum_{j=0}^{m-1} P_{j}^{\cdot 0} \tilde{I} \otimes \tilde{N}_{j}+\tilde{I} \otimes \tilde{I}
$$

Bipartite (2-qubits) case:

 m-inputs (x, y), $\mathrm{r}=2$ outputs (a, b)For qubits: $M_{a-0}^{x}=|0\rangle_{x}\langle 0|=1 / 2\left(I+\vec{m}_{x} \cdot \vec{\sigma}\right), \vec{m}_{x}=m_{x}\left(\sin \theta_{x} \cos \phi_{x} \cdot \sin \theta_{x} \cos \phi_{x} \cdot \cos \theta_{x}\right)$

$$
M_{a-1}^{x}=|1\rangle_{x}\langle 1|=1 / 2\left(I-\vec{m}_{x} \cdot \bar{\sigma}\right), \quad\left(I=I_{2 \times 2} \text { identity matrix }\right)
$$

Solve for dual matrices \tilde{M}_{a}^{x} that satisfy $\operatorname{Tr}\left[M_{a}^{x} \tilde{M}_{a^{\prime}}^{x}\right]=\delta_{x, x} \delta_{a, a^{\prime}}$

$$
\text { 으: } \begin{aligned}
O & =\sum_{a, b=0}^{r-1-0} \sum_{x, y=0}^{m-1} P(a, b \mid x, y) \tilde{M}_{a}^{x} \otimes \tilde{M}_{b}^{y}+\sum_{a=0}^{r-1-0} \sum_{x=0}^{m-1} P(a \mid x) \tilde{M}_{a}^{x} \otimes \tilde{I}+\sum_{b=0}^{r-1-0} \sum_{y}^{m-1} P(b \mid y) \tilde{I} \otimes \tilde{M}_{b}^{y}+\tilde{I} \otimes \tilde{I}, \\
& =\sum_{x, y=0}^{m-1} P(a=0, b=0 \mid x, y) \tilde{M}_{0}^{x} \otimes \tilde{M}_{0}^{y}+\sum_{x=0}^{m-1} P(a=0 \mid x) \tilde{M}_{0}^{x} \otimes \tilde{I}+\sum_{y=0}^{m-1} P(b=0 \mid y) \tilde{I} \otimes \tilde{M}_{0}^{y}++\tilde{I} \otimes \tilde{I}
\end{aligned}
$$

Simplify let $\left\{I, M_{a}^{x}: a=0, \ldots, r-2 ; x=0, \cdots, m-1\right\} \equiv\left\{M_{0} \equiv I,\left\{M_{i=1}\right\}=\left\{M_{1}, M_{2}, \ldots\right\}\right\}=\left\{M_{a-0,0,21)}\right\}$

$$
O=\sum_{i, j=0}^{m-1} P_{i, j}^{0,0} \tilde{M}_{i} \otimes \tilde{N}_{j}+\sum_{i=0}^{m-1} P_{i}^{0,} \tilde{M}_{i} \otimes \tilde{I}+\sum_{j=0}^{m-1} P_{j}^{\bullet 0} \tilde{I} \otimes \tilde{N}_{j}+\tilde{I} \otimes \tilde{I}
$$

Bipartite (2-qubits) case: Properties m-inputs (x, y), $r=2$ outputs (a, b)

$$
\begin{aligned}
& O=\frac{1}{4}\left[\left(\vec{m}_{e} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{2} \cdot \vec{\sigma}\right)+\left(\vec{m}_{w_{e}} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{0} \cdot \vec{\sigma}\right)+\left(\vec{m}_{w_{0}} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{e} \cdot \vec{\sigma}\right)-\left(\overrightarrow{\underline{m}}_{\underline{o}} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{0} \cdot \vec{\sigma}\right)+I \otimes I\right]
\end{aligned}
$$

Bipartite (2-qubits) case: Properties \boldsymbol{m}-inputs (x, y), $r=2$ outputs (a, b)

$$
\begin{aligned}
& O=\frac{1}{4}\left[\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{e} \cdot \vec{\sigma}\right)+\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{o} \cdot \vec{\sigma}\right)+\left(\vec{\sim}_{\sim} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{e} \cdot \vec{\sigma}\right)-\left(\vec{\sim}_{o} \cdot \vec{\sigma}\right) \otimes\left(\vec{\sim}_{o} \cdot \vec{\sigma}\right)+I \otimes I\right]
\end{aligned}
$$

Bipartite (2-qubits) case: Properties

m-inputs (x, y), r=2 outputs (a, b)

$$
\begin{aligned}
& O=\frac{1}{4}\left[\left(\bar{m}_{e} \cdot \bar{\sigma}\right) \otimes\left(\bar{n}_{0} \cdot \bar{\sigma}\right)+\left(\bar{m}_{e} \cdot \bar{\sigma}\right) \otimes\left(\bar{n}_{0} \cdot \bar{\sigma}\right)+\left(\bar{m}_{0} \cdot \bar{\sigma}\right) \otimes\left(\bar{n}_{0} \cdot \bar{\sigma}\right)-\left(\bar{m}_{m} \cdot \bar{\sigma}\right) \otimes\left(\bar{n}_{\cdot} \cdot \vec{\sigma}\right)+I \otimes I\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { PR Box state is of the form: } \\
\left.O_{P R}=\frac{1}{4}\left[I \otimes I+\sum_{\alpha, \beta=1}^{3} C_{\alpha \beta}^{P R} \sigma_{\alpha} \otimes \sigma_{\beta}\right], \begin{array}{rrr}
e & 0 & e \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & 1 \\
\hdashline & C_{\alpha \beta}^{P R}= & 1 \\
1 & 1
\end{array}\right], ~
\end{array} \\
& P(a, b \mid x, y)=1 / 2 \text { if } a \oplus b=x \cdot y \bmod 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Quantum Singlet (Pure) State (Bell) } \quad\left|\psi_{\text {singlet }}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2} \\
& \rho^{\text {anglet }}=\frac{1}{4}\left[I \otimes I+\sum_{\alpha, \beta=1}^{3} C_{\alpha \beta}^{\text {singlet }} \sigma_{\alpha} \otimes \sigma_{\beta}\right], \quad C_{\alpha \beta}^{\text {singlet }}=-\delta_{\alpha \beta}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \\
& \Rightarrow E^{\text {singlet }}(\vec{m}, \vec{n})=-\vec{m} \cdot \vec{n} \\
& \text { What determines the } \\
& \text { structure of } \\
& \text { Bell states } \quad c^{\text {ansen}}=\left\{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right\} \\
& \vec{s}^{(1)}, \vec{s}^{(2)}, C_{\alpha \beta} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& P(a, b \mid x, y)=1 / 2 \text { if } a \oplus b=x \cdot y \bmod 2 \\
& \begin{array}{cc}
\text { Most general 2-qubit state: Alice Bloch } \\
\text { max, mixed } \\
\text { vector }
\end{array} O^{(2)}=\frac{1}{4}\left[I \otimes I+\left(\bar{s}^{(1)} \cdot \vec{\sigma}\right) \otimes I+I \otimes\left(\bar{s}^{(2)} \cdot \vec{\sigma}\right)+\sum_{\alpha, \beta=1}^{3} \sum_{\alpha,}^{\substack{\text { Bob Bloch } \\
\text { vector }}} \begin{array}{c}
\text { 2-party } \\
\text { Alice-Bob } \\
\text { correlations }
\end{array}\right. \\
& \text { Quantum Singlet (Pure) State (Bell) } \quad\left|\psi_{\text {sanglet }}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2} \\
& \rho^{\text {ainglet }}=\frac{1}{4}\left[I \otimes I+\sum_{\alpha, \beta=1}^{3} C_{\alpha \beta}^{\text {singlet }} \sigma_{\alpha} \otimes \sigma_{\beta}\right], \quad C_{\alpha \beta}^{\text {singlet }}=-\delta_{\alpha \beta}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \\
& \text { Bell states } c_{\text {ath }}^{\text {ars. }}=\left\{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right],\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right\} \\
& \Rightarrow E^{\text {singlet }}(\vec{m}, \vec{n})=-\vec{m} \cdot \vec{n} \\
& \text { What determines the } \\
& \text { structure of } \\
& \vec{s}^{(1)}, \vec{s}^{(2)}, C_{\alpha \beta} \text { ? }
\end{aligned}
$$

No Signaling (NS) Theories Extension to Tripartite case: 3-qubits

- No Signaling Theories can be extended to tripartite systems of 3-qubits, each with m-inputs (measurements) to measure pure tripartite entanglement.
- The generalization of the bipartite CHSH inequality was given by Svetlichny Svetlichny, PRD 35, 3066 (1987)
First, consider correlations $E(a, b, c \mid x, y, z)$ between 3 observers A, B, C with inputs: $x, y, z \in\{0,1\}$, and outputs: $a, b, c \in\{0,1\}$
The relevant inequality to compute is the Svetlichny inequality (SI)

$$
\begin{aligned}
S & =\mid E(a, b, c \mid 0,0,0)+E(a, b, c \mid 0,1,0)+E(a, b, c \mid 1,0,0)-E(a, b, c \mid 1,1,0) \\
& +E(a, b, c \mid 0,0,1)-E(a, b, c \mid 0,1,1)-E(a, b, c \mid 1,0,1)-E(a, b, c \mid 1,1,1) \mid
\end{aligned}
$$

The bounds on the Svetlichny inequality are

Classical: $\left|S_{c}\right| \leq 4 ;$ QM: $\left|S_{Q}\right| \leq 4 \sqrt{2} ;$ Algebraic Maximum: $\left|S_{A M}\right| \leq 8$
A Tripartite No Signaling (TNS) Box yielding the algebraic maximum of S is given by probabilities

 with measurement settings x, y, z and outcomes a, b, c as bits, i.e $a, b, c, x, y, z \in\{0,1\}($ Note: $\{0,1\} \leftrightarrow\{+1,-1\})$	With a TPR Box: $\begin{aligned} S & =1+1+1-(-1) \\ & +1-(-1)-(-1)-(-1) \\ & =8 \end{aligned}$

Tripartite (3-qubits) case:

 m-inputs $(x, y), r=2$ outputs (a, b)We generalize this to m measurements settings (inputs), still with binary outputs

$$
\begin{aligned}
& \text { TPR Box: } \\
& \quad P(a, b, c \mid x, y, z)=\left\{\begin{array}{cc}
1 / 4 & \text { if } a \oplus b \oplus c=x \cdot y \oplus y \cdot z \oplus x \cdot z \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { with } m \text { measurement settings } x, y,=\text { and binary outcomes } a, b, c, \text { (i.e. qubits) }
\end{aligned}
$$

and find the 3 -qubit entanglement witness exhibiting TPR correlations:

$$
\begin{aligned}
& O_{T R R}=\frac{1}{8}\left[I \otimes I \otimes I+\quad O_{\text {OR }} 2^{2-q u b i t ~ t e r m ~}\right.
\end{aligned}
$$

Tripartite (3-qubits) case:

 m-inputs $(x, y), r=2$ outputs (a, b)We generalize this to m measurements settings (inputs), still with binary outputs

$$
\begin{aligned}
& \text { TPR Box: } \\
& \quad P(a, b, c \mid x, y, z)=\left\{\begin{array}{cc}
1 / 4 & \text { if } a \oplus b \oplus c=x \cdot y \oplus y \cdot z \oplus x \cdot z \\
0 & \text { otherwise }
\end{array}\right. \\
& \text { with } m \text { measurement settings } x, y, z \text { and binary outcomes } a, b, c, \text { (i.e. qubits) }
\end{aligned}
$$

and find the 3 -qubit entanglement witness exhibiting TPR correlations:

$$
\begin{aligned}
& O_{T P R}=\frac{1}{8}\left[I \otimes I \otimes I+\quad O_{\text {on }} 2^{2 \text { qubbit term }}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left\{\left(\vec{m}_{o} \cdot \bar{\sigma}\right) \otimes\left(\overrightarrow{\underline{n}}_{0} \cdot \vec{\sigma}\right)+\left(\overrightarrow{\underline{m}}_{o} \cdot \bar{\sigma}\right) \otimes\left(\vec{n}_{a} \cdot \vec{\sigma}\right)+\left(\overrightarrow{\underline{m}}_{\sim_{e}} \cdot \vec{\sigma}\right) \otimes\left(\overrightarrow{\underline{n}}_{0} \cdot \vec{\sigma}\right)-\left(\vec{m}_{a} \cdot \vec{\sigma}\right) \otimes\left(\vec{n}_{a} \cdot \vec{\sigma}\right)\right\} \otimes\left(\vec{r}_{\sigma} \cdot \vec{\sigma}\right)\right] \\
& \text { where } \underset{\substack{\vec{q}_{e} \\
\text { even }}}{ }=\sum_{i=0,12} \bar{q}_{21}, \quad \vec{c}_{\substack{{\underset{q}{c}}_{o} \\
\text { odd }}}=\sum_{i=0,1,2}{\underset{\sim}{2}}_{2+1}, \quad \underset{\sim}{\bar{q}}=\{\vec{m}, \vec{\sim}, \vec{\sim}\}
\end{aligned}
$$

Positivity Constraints

$$
\begin{aligned}
& \text { Traceless part of state } O^{(n)}=\frac{1}{N}\left[I_{N}-K\right] \quad \text { Define: } K \equiv\left[I_{N}-N O^{(n)}\right] . \quad \text { If } O^{(n)} \geq 0 \Rightarrow K \leq 1 . \\
& \text { Characteristic Polynomial } \chi_{A}(\lambda)=\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right), \quad\left\{\lambda_{1=1}, N \leq 1\right\} \quad \text { Cayley-Hamilton Theorem } \quad \chi_{A}(K)=0 \\
& \quad \chi_{A}(\lambda)=\left.\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right)\right|_{\lambda 21} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda \geq 1} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda=1} \geq 0
\end{aligned}
$$

General: Characteristic Polynomial in terms of Traces of Matrix A: $T_{m} \equiv \operatorname{Tr}\left[A^{\prime \prime}\right]$

$$
\begin{aligned}
& \chi_{1}(\lambda)=\lambda^{N}+D_{1} \lambda^{N-1}+\ldots+D_{N-1} \lambda+D_{N} \\
\Rightarrow & m D_{m}+D_{m-1} T_{1}+D_{m-2} T_{2}+\ldots+D_{1} T_{m-1}+T_{m}=0, m=1,2, \ldots, N .
\end{aligned}
$$

$$
\sum_{n=1}^{N}\binom{N-r}{N-k}\left(-D_{r}\right) \leq\binom{ N}{k}=\frac{N!}{k!(N-k)!}, \quad T_{2} \leq N(N-1), \quad(N-2)\left(T_{2} / 2\right)+\left(T_{3} / 3\right) \leq\binom{ N}{3}, \quad \frac{(N-2)(N-3)}{2}\left(T_{2} / 2\right)+(N-3)\left(T_{3} / 3\right)+1 / 4\left(T_{4}-1 / 2 T_{2}^{2}\right) \leq\binom{ N}{4}
$$

$$
\Rightarrow n=2: \vec{s}^{2(\alpha)}+\vec{s}^{2(2)}+\sum_{a_{1} a_{1}=1}^{J} c_{a_{1} a_{2}}^{2} \leq(N-1)_{N=2^{2}}=3 \text {, }
$$

Positivity Constraints

$$
\begin{aligned}
& \text { Traceless part of state } O^{(n)}=\frac{1}{N}\left[I_{N}-K\right] \quad \text { Define: } K \equiv\left[I_{N}-N O^{(n)}\right] . \quad \text { If } O^{(n)} \geq 0 \Rightarrow K \leq 1 . \\
& \text { Characteristic Polynomial } \chi_{A}(\lambda)=\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right) . \quad\left\{\lambda_{1-1}, N \leq 1\right\} \quad \text { Cayley-Hamilton Theorem } \quad \chi_{A}(K)=0 \\
& \quad \chi_{A}(\lambda)=\left.\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right)\right|_{\lambda \geq 1} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda \geq 1} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda=1} \geq 0
\end{aligned}
$$

General: Characteristic Polynomial in terms of Traces of Matrix A: $T_{m} \equiv \operatorname{Tr}\left[A^{\prime \prime}\right]$

$$
\begin{aligned}
& \chi_{1}(\lambda)=\lambda^{N}+D_{1} \lambda^{N-1}+\ldots+D_{N-1} \lambda+D_{N} \\
\Rightarrow & m D_{m}+D_{m-1} T_{1}+D_{m-2} T_{2}+\ldots+D_{1} T_{m-1}+T_{m}=0, m=1,2, \ldots, N .
\end{aligned}
$$

$$
\sum_{n=2}^{N}\binom{N-r}{N-k}\left(-D_{r}\right) \leq\binom{ N}{k}=\frac{N!}{k!(N-k)!}, \quad T_{2} \leq N(N-1), \quad(N-2)\left(T_{2} / 2\right)+\left(T_{3} / 3\right) \leq\binom{ N}{3}, \quad \frac{(N-2)(N-3)}{2}\left(T_{2} / 2\right)+(N-3)\left(T_{3} / 3\right)+1 / 4\left(T_{4}-1 / 2 T_{2}^{2}\right) \leq\binom{ N}{4}
$$

$$
\frac{\text { Results: }}{2 \text { \& } 3 \text { Qubits }} T_{2}=\operatorname{Tr}\left[K^{2}\right]=N\left[\sum_{i=1}^{n}\left(\vec{s}^{(n)}\right)^{2}+\sum_{i \leqslant 1}^{n} \sum_{a_{1}, \alpha_{2}=1}^{3}\left(C_{\alpha_{1} \alpha_{1}}^{0, N}\right)^{2}+\ldots+\sum_{a_{1} a_{1} \ldots, \alpha_{2}=1}^{3}\left(C_{\alpha_{1} \alpha_{2}, \ldots \alpha_{n}}^{0,2, \ldots, n}\right)^{2}\right] \leq N(N-1)
$$

$$
\Rightarrow n=2: \vec{s}^{2(1)}+\vec{s}^{2(2)}+\sum_{a_{1} a_{1}=1}^{3} C_{\alpha_{1} \alpha_{2}}^{2} \leq(N-1)_{N=2^{2}}=3,
$$

Positivity Constraints

$$
\begin{aligned}
& \text { Traceless part of state } O^{(n)}=\frac{1}{N}\left[I_{N}-K\right] \quad \text { Define: } K \equiv\left[I_{N}-N O^{(n)}\right] . \quad \text { If } O^{(n)} \geq 0 \Rightarrow K \leq 1 . \\
& \text { Characteristic Polynomial } \chi_{A}(\lambda)=\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right), \quad\left\{\lambda_{1-1, \ldots, N} \leq 1\right\} \quad \text { Cayley-Hamilton Theorem } \chi_{A}(K)=0 \\
& \quad \chi_{A}(\lambda)=\left.\prod_{i=1}^{N}\left(\lambda-\lambda_{1}\right)\right|_{\lambda=1} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda \geq 1} \geq\left. 0 \Rightarrow \frac{d^{k} \chi(\lambda)}{d \lambda^{k}}\right|_{\lambda=1} \geq 0
\end{aligned}
$$

General: Characteristic Polynomial in terms of Traces of Matrix A: $T_{m} \equiv \operatorname{Tr}\left[A^{\prime \prime}\right]$

$$
\begin{aligned}
& \chi_{1}(\lambda)=\lambda^{N}+D_{1} \lambda^{N-1}+\ldots+D_{N-1} \lambda+D_{N} \\
\Rightarrow & m D_{m}+D_{m-1} T_{1}+D_{m-2} T_{2}+\ldots+D_{1} T_{m-1}+T_{m}=0, m=1,2, \ldots, N .
\end{aligned}
$$

$$
\sum_{n=2}^{1}\binom{N-r}{N-k}\left(-D_{r}\right) \leq\binom{ N}{k}=\frac{N!}{k!(N-k)!}, \quad T_{2} \leq N(N-1), \quad(N-2)\left(T_{2} / 2\right)+\left(T_{3} / 3\right) \leq\binom{ N}{3}, \quad \frac{(N-2)(N-3)}{2}\left(T_{2} / 2\right)+(N-3)\left(T_{3} / 3\right)+1 / 4\left(T_{4}-1 / 2 T_{2}^{2}\right) \leq\binom{ N}{4}
$$

$$
\Rightarrow n=2: \vec{s}^{2(1)}+\vec{s}^{2(2)}+\sum_{a_{1} a_{1}=1}^{3} C_{a_{1} \alpha_{2}}^{2} \leq(N-1)_{N=2^{2}}=3,
$$

Positivity Constraints

3-Qubit states $O^{(1)}=\frac{1}{8}\left[I \otimes I \otimes I+\left(\bar{s}^{(1)} \cdot \vec{\sigma}\right) \otimes I \otimes I+I \otimes\left(\bar{s}^{(2)} \cdot \vec{\sigma}\right) \otimes I+I \otimes I \otimes\left(\vec{s}^{(\sigma)} \cdot \vec{\sigma}\right)\right.$

$$
\left.+\sum_{\alpha, \beta=1}^{3} A_{\alpha \beta} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes I+\sum_{\alpha, \beta=1}^{3} B_{\alpha \beta} \sigma_{\alpha} \otimes I \otimes \sigma_{\beta}+\sum_{\alpha, \beta=1}^{3} C_{a \beta} I \otimes \sigma_{\alpha} \otimes \sigma_{\beta}+\sum_{\alpha, \beta, \gamma=1}^{3} C_{\alpha \beta \gamma} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right] .
$$

I_{2} Positivity Constraint

Tripartite PR Box
States are of the
$O_{T P R}=\frac{1}{8}\left[I \otimes I \otimes I+\sum_{\alpha, \beta, \gamma-1}^{3} C_{\alpha \beta \gamma}^{T P R} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right], \begin{aligned} & \text { Example: } C_{\alpha \beta \gamma}^{T P R ;} \equiv \varepsilon_{\alpha \beta \gamma}\left(\varepsilon_{123}=1\right) \\ & \text { (i) NOT a quantum state } \\ & \text { (ii) NOT a pure state }\end{aligned}$ form:
(ii) NOT a pure state
But odd n-qubit states of solely
$n=2 n^{\prime}+1$-party correlations

$$
\varepsilon_{13}=\varepsilon_{311}=\varepsilon_{312}=1
$$

have $T_{2 n^{\prime}+1}=0\left(T_{3}=0\right)$;
Consider D_{3} constraint:

$$
\begin{aligned}
& (N-2)\left(T_{2} / 2\right)+\left(T_{3} / 3\right) \leq\binom{ N}{3}=T_{2} \leq N(N-1) / 3 \\
& \Rightarrow \sum_{a, \beta, \beta=1}^{3}\left(C_{\text {aft }}\right)^{2} \leq 7 / 3, \text { but } \sum_{a, \beta, y=1}^{3}\left(C_{a \beta f r}^{I P R, ;}\right)^{2}=6>7 / 3
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon_{213}=\varepsilon_{32}=\varepsilon_{132}=-1 \\
T_{2}=6<7
\end{gathered}
$$

Positivity Constraints

3-Qubit states $O^{(\overline{)}}=\frac{1}{8}\left[I \otimes I \otimes I+\left(\bar{s}^{(1)} \cdot \vec{\sigma}\right) \otimes I \otimes I+I \otimes\left(\bar{s}^{(2)} \cdot \vec{\sigma}\right) \otimes I+I \otimes I \otimes\left(\bar{s}^{())} \cdot \vec{\sigma}\right)\right.$

$$
\left.+\sum_{\alpha, \beta=1}^{3} A_{a \beta} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes I+\sum_{\alpha, \beta=1}^{3} B_{a \beta} \sigma_{\alpha} \otimes I \otimes \sigma_{\beta}+\sum_{\alpha, \beta=1}^{3} C_{a \beta} I \otimes \sigma_{\alpha} \otimes \sigma_{\beta}+\sum_{\alpha, \beta, r=1}^{3} C_{a \beta \gamma} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right] .
$$

I_{2} Positivity Constraint

$$
T_{2}=\operatorname{Tr}\left[K^{2}\right]: n=3: \vec{s}^{2(1)}+\bar{s}^{2(2)}+\bar{s}^{2(3)}+\sum_{\alpha_{1}, \alpha_{2}-1}^{3} A_{\alpha_{1} \alpha_{2}}^{2}+\sum_{\alpha_{1}, \alpha_{2}-1}^{3} B_{\alpha_{2} \alpha_{2}}^{2}+\sum_{\alpha_{1}, \alpha_{2}-1}^{3} C_{\alpha_{1} \alpha_{2}}^{2}+\sum_{\alpha_{1}, \alpha_{2}, a_{3}=1}^{3} C_{\alpha_{1} \alpha_{2} \alpha_{3}}^{2} \leq(N-1)_{N-2^{3}}=7
$$

Tripartite PR Box

States are of the form:
$O_{T P R}=\frac{1}{8}\left[I \otimes I \otimes I+\sum_{\alpha, \beta, \gamma-1}^{3} C_{\alpha \beta \gamma}^{T P R} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right], \begin{aligned} & \text { Example: } C_{\alpha \beta \gamma}^{T P R, \epsilon} \equiv \varepsilon_{\alpha \beta \gamma}\left(\varepsilon_{123}=1\right) \\ & \text { (i) NOT a quantum state } \\ & \text { (ii) NOT a pure state }\end{aligned}$
But odd n-qubit states of solely
$n=2 n^{\prime}+1$-party correlations
have $T_{2 m^{\prime 2}+1} \equiv 0\left(T_{3} \equiv 0\right)$;
Consider D_{3} constraint:

$$
\begin{aligned}
& (N-2)\left(T_{2} / 2\right)+\left(T_{3} / 3\right) \leq\binom{ N}{3} \Rightarrow T_{2} \leq N(N-1) / 3 \\
& \Rightarrow \sum_{a, \beta, \beta=1}^{3}\left(C_{a \beta f}\right)^{2} \leq 7 / 3, \text { but } \sum_{\alpha, \beta, y=1}^{3}\left(C_{a \beta f r}^{I P R ;}\right)^{2}=6>7 / 3
\end{aligned}
$$

$$
\begin{gathered}
\varepsilon_{13}=\varepsilon_{211}=\varepsilon_{312}=1 \\
\varepsilon_{231}=\varepsilon_{321}=\varepsilon_{132}=-1 \\
T_{2}=6<7
\end{gathered}
$$

Purity Constraints

Pure State

$$
O_{\text {pure }}^{(n)}=\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right| \quad O_{\text {pure }}^{2(n)}=O_{\text {pure }}^{(n)} \quad O_{\text {pure }}^{(n)}\left(O_{\text {pure }}^{(n)}-I_{N}\right)=0 . \quad\left(N=2^{n}\right)
$$

$\begin{aligned} & \text { Pure State } \\ & \text { Constraint }\end{aligned} O^{(n)}=1 / N\left[I_{N}-K\right]: O_{\text {pure }}^{(2)}\left(O_{\text {pure }}^{(2)}-I_{N}\right)=0 \Rightarrow K^{2}=(N-1) I_{N}-(N-2) K$
$\Rightarrow T_{m+2}=(N-1) T_{m}-(N-2) T_{m+1}: \quad T_{3}=-N(N-1)(N-2), \quad T_{4}=N(N-1)^{2}+N(N-1)(N-2)^{2}$,

An Immediate Consequence

States of solely odd
$n=2 n^{\prime}+1$-party
correlations cannot be pure due to

$$
O^{\left(2 n^{\prime}+1\right)}=\frac{1}{N}\left[I \otimes I \otimes \cdots \otimes I+\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n^{\prime}+1}-1}^{3} C_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n^{\prime}+1}}^{(1,2, \ldots, n)} \sigma_{\alpha_{1}} \otimes \sigma_{\alpha_{2}} \otimes \cdots \otimes \sigma_{\alpha_{2 n^{\prime}+1}}\right]
$$

$\mathrm{T}_{2 n^{\prime}+1} \equiv 0\left(\mathrm{~T}_{3} \equiv 0\right)$
Tripartite PR Box States
are not pure states:

$$
O_{T P R}=\frac{1}{8}\left[I \otimes I \otimes I+\sum_{\alpha, \beta, \gamma-1}^{3} C_{\alpha \beta \gamma}^{T P R} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right],
$$

2-Qubits

Most general 2-qubit state:
2-party
Alice-Bob

$$
O^{(2)}=\frac{1}{4}\left[I \otimes I+\left(\vec{s}^{(1)} \cdot \vec{\sigma}\right) \otimes I+I \otimes\left(\vec{s}^{(2)} \cdot \vec{\sigma}\right)+\sum_{\alpha, \beta=1}^{3} C_{\alpha \beta}^{\text {vector }} \sigma_{\alpha} \otimes \sigma_{\beta}\right]
$$

Pure State

$$
O^{(n)}=1 / N\left[I_{N}-K\right]: O_{p u r a}^{(2)}\left(O_{p \text { pure }}^{(2)}-I_{N}\right)=0 \Rightarrow K^{2}=(N-1) I_{N}-(N-2) K
$$

2-Qubit

 Pure State$$
p_{\text {pure }}^{(2)}=1 / 4\left[I \otimes I+p \sigma_{1} \otimes I+p I \otimes \sigma_{1}-\sigma_{1} \otimes \sigma_{1}-q \sigma_{2} \otimes \sigma_{2}-\sigma_{3} \otimes \sigma_{3}\right] \geq 0
$$

$$
0 \leq p \leq 1 \text { (} p=0: \text { max ent. Bell States), } \quad q=\operatorname{Tr}\left[\rho_{p u r e}^{(2)} \rho_{p u r a}^{(2)}\right]=\sqrt{1-p^{2}} \geq 0 \text { (concurrence) }
$$

Purity
Constraint

$$
\begin{gathered}
\vec{s}^{(1)}=\mathrm{C} \cdot \vec{s}^{(2)}, \quad \vec{s}^{(2)}=\vec{s}^{(1)} \cdot \mathbf{C}, \\
C_{\alpha \beta}=s_{\alpha}^{(1)} s_{\beta}^{(2)}-C_{\alpha \beta}^{(s u b)}
\end{gathered} C_{\alpha \beta}^{(s u b)} \equiv 1 / 2 \sum_{\mu \nu \mu^{\prime} \nu^{\prime}=1}^{3} C_{\mu \nu} C_{\mu^{\prime} \nu^{\prime}} \varepsilon_{\mu \mu^{\prime} \alpha} \varepsilon_{\nu \nu^{\prime} \beta} .
$$

$\frac{\text { General }}{\text { 3-Oubit }} O^{(3)}=\frac{1}{8}\left[I \otimes I \otimes I+\left(\bar{s}^{(1)} \cdot \vec{\sigma}\right) \otimes I \otimes I+I \otimes\left(\vec{s}^{(2)} \cdot \vec{\sigma}\right) \otimes I+I \otimes I \otimes\left(\vec{s}^{(3)} \cdot \vec{\sigma}\right)\right.$
3-Qubit

$$
\left.+\sum_{\alpha, \beta=1}^{3} A_{\alpha \beta} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes I+\sum_{\alpha, \beta=1}^{3} B_{\alpha \beta} \sigma_{\alpha} \otimes I \otimes \sigma_{\beta}+\sum_{\alpha, \beta=1}^{3} C_{\alpha \beta} I \otimes \sigma_{\alpha} \otimes \sigma_{\beta}+\sum_{\alpha, \beta, r=1}^{3} C_{\alpha \beta \gamma} \sigma_{\alpha} \otimes \sigma_{\beta} \otimes \sigma_{\gamma}\right] .
$$

notation: $s_{i}^{2}=\bar{s}^{2(t)}, C_{12}^{2}=\sum_{\alpha \beta-1}^{3} A_{\alpha \beta}^{2}=\operatorname{Tr}\left[A^{T} A\right], C_{13}^{2}=\operatorname{Tr}\left[B^{T} B\right], C_{23}^{2}=\operatorname{Tr}\left[C^{T} C\right], C_{123}^{2}=\sum_{\alpha \beta \gamma-1}^{3} C_{\alpha \beta \gamma}^{2}$
$\underline{\text { Maximal Slice States }} \quad S_{\max }^{(15)}=4 \sqrt{1+\tau^{(195)}}$

Generalized GHZ State $\quad S_{\max }^{(\text {GGZ })}=4 \sqrt{1-\tau^{(G G H Z)}}$ for $\tau \leq 1 / 3 \quad S_{\max }^{(\text {GGHZ })}=4 \sqrt{2 \tau^{(G G H Z)}}$ for $\tau \geq 1 / 3$.

$$
\begin{gathered}
\left.|G G H Z\rangle=\cos \theta_{1} \mid 000\right)+\sin \theta_{1}|111\rangle, \text { with } \tau_{M S_{2}}^{2}=\sin ^{2} \theta_{2}, \tau_{M S_{3}}^{2}=\sin ^{2} \theta_{3}, \tau_{G G H Z}^{2}=\sin ^{2} 2 \theta_{1} . \\
s_{3}^{(1)}=s_{3}^{(2)}=s_{3}^{(3)}=\sqrt{1-\tau}, s_{1}^{2}+s_{2}^{2}+s_{1}^{2}=3-3 \tau, C_{12}=C_{13}=C_{23}=\operatorname{diag}(0,0,1), \quad C_{12}^{2}+C_{13}^{2}+C_{23}^{2}=3, \quad C_{123}^{2}=1+3 \tau .
\end{gathered}
$$

$$
\text { cusp at } \tau=1 / 3 \text { occurs at } \quad s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=C_{123}^{2} .
$$

$$
\begin{aligned}
& \left|M S_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle+\cos \theta_{2}|101\rangle+\sin \theta_{2}|111\rangle\right), \quad\left|M S_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle+\cos \theta_{3}|110\rangle+\sin \theta_{3}|111\rangle\right) \\
& \begin{array}{|ccll|}
\hline & s_{1}^{2}=s_{2}^{2}=0, s_{3}^{2}=1-\tau, & C_{12}^{2}=3-2 \tau, C_{13}^{2}=C_{23}^{2}=\tau, & C_{123}^{2}=3+\tau, \\
\text { Max tangle } \tau=1 & s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=0, & C_{12}^{2}=C_{13}^{2}=C_{23}^{2}=1 & C_{123}^{2}=4 \\
\hline \text { on GHZ state } & & & \\
\hline
\end{array}
\end{aligned}
$$

