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Entanglement entropy

In a quantum field theory, every region of space has entanglement entropy.

This quantity arises:
@ As a quantum correction to the Bekenstein-Hawking entropy.
@ In efficient representations of the ground state.
@ As a probe of phases.

e Confinement/deconfinement.
e Topological phases.

o In AdS/CFT.
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Entanglement entropy

. Consider a lattice with nodes N.

A

For each A C N there is a Hilbert

space:
Ha = ®Hn.

neA

.. L] L ..

S The full Hilbert space splits as a
A tensor product

H — %A X HAC.

For each region there is a density matrix and an entanglement entropy:

PA = trAc( ><(|) S=—trpalnpa.
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Entanglement entropy in gauge theory

In gauge theory, states are gauge-invariant functionals,

H = [2(A/G). A Vector potentials

G  Gauge transformations’

The vector potentials split as a tensor product,
[2(A) = L%(An) ® L2 (Axc).
But gauge symmetry implies constraints, e.g. Gauss' law:
Vi E=:0!

This constraint is nonlocal, so breaks the tensor product strug
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Entanglement entropy in gauge theory

In gauge theory, states are gauge-invariant functionals,

H = [2(A/G), A Vector potentials

G  Gauge transformations’

The vector potentials split as a tensor product,
[2(A) = L%(An) ® L3 (Axc).
But gauge symmetry implies constraints, e.g. Gauss' law:
Vi-.Ei=0i
This constraint is nonlocal, so breaks the tensor product structure,

H#HArRQ HA.
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Lattice gauge theory

In lattice gauge theory, degrees of
freedom are group elements on links.

Wilson loops are gauge invariant:

tr, H Ly

ledd

Extend to an orthonormal basis: (generalized) spin networks

Si=:(1) spin network
R = an irreducible representation for each link

| = an intertwining operator for each node

ex: If G = U(1), r € Z are electric flux. Spin networks ~ E-field basis.
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Lattice gauge theory

In lattice gauge theory, degrees of
freedom are group elements on links.

Wilson loops are gauge invariant:

tr, H Uy

ledd

Extend to an orthonormal basis: (generalized) spin networks

Si=:(4) spin network
R = an irreducible representation for each link

| = an intertwining operator for each node

ex: If G =U(1), r € Z are electric flux. Spin networks ~ E-field basis.
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Localization of states

Issue: States are not localized!

Consider partial trace of a Wilson loop state:

D

Reduced state is an electric string with an endpoint:

Not allowed by Gauss' law.
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Edge states

Solution: Relax gauge-invariance along the boundary JA.

Reducing the gauge group gives new degrees of freedom: edge states.
c.f. 2+ 1 quantum gravity, quantum Hall effect.

An orthonormal basis of H 4 is given by open spin networks:

S (R KL RS MED)
N’
Edge DOF

Instead of equality have an embedding:

;L[ # HA 024 %Ac.
H C HA 0] HAL

But this is sufficient: first embed, then compute entanglement.
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Decomposition of the reduced density matrix

Edge states transform under GI7Al: this restricts the form of pa:

Jlf; v .
® dim(n) | & PALR)

I€Ly
Where: p(Rs) = probability of a given set of representations crossing JA.
pa(Ro) = matrix elements of pa with fixed Rj.

Note that:
e Different boundary representations R; cannot be in superposition.

@ The M vectors are maximally mixed (c.f. singlet of j x j).

Using properties of von Neumann entropy under ¢ and @,

lEOA
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Decomposition of the reduced density matrix

Edge states transform under GI?Al: this restricts the form of pa:

Jlf; v .
® dim(n) | © PARe)

I€Ly
Where: p(Rs) = probability of a given set of representations crossing JA.
pa(Rs) = matrix elements of pa with fixed Ry.

Note that:
e Different boundary representations R; cannot be in superposition.

@ The M vectors are maximally mixed (c.f. singlet of j x j).

Using properties of von Neumann entropy under ¢ and ®,

lEOA
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Three kinds of entropy

The Shannon entropy of boundary representations:

o Z P(Rn) In P(Ra))

A correction for non-abelian G:

> p(Ro) Y Indimn.

leOA

Both of these are local to the boundary: area law is automatic.

There is also an entropy associated to non-local correlations

> p(R9)S(pa(Rs)).

This seems to be subdominant.
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Example: Electric string ansatz

Consider Z, gauge theory: two irreps (trivial and alternating).

Let L(S) be the total length of “electric strings” (nontrivial irreps)

1 a
) = 7> e #]s)
N S

Small o« = long strings, large o = short strings.
Only Shannon entropy term is nonzero: S = — > p(Ry)In p(Ry).

As o« — 0, get an equal superposition of all string states,
S = (|0A| — # components(dA)) In 2.

This is a topological phase, topological entanglement entropy 21In 2.
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Example: Strong coupling

Consider ground state of SU(2) Kogut-Susskind Hamiltonian

Hi= ZJ;(J; + 1) + 3A Z [tr(un) + h.c]

leL O
First term is diagonal in spin network basis, second creates/destroys loops.

For strong coupling (A < 1), the ground state is single loops:

Q) = (1—3N0A?)[0) + A ) [O) + O(N?)
O

Only local terms contribute at order \?:
S = |8A|(d — D)X3(—In )% + 1 + 2In2) + O()\).

Area law at strong coupling, with non-analytic coefficient.

William Donnelly (UMD) Vacuum entanglement and gauge symmetry

Pirsa: 12060067 Page 15/17



Conclusion

Definition of entanglement entropy requires care in gauge theory.
Localizing degrees of freedom leads to edge states.

Boundary gauge symmetry restricts the form of pa.

Entropy splits as a sum of three terms:

e The Shannon entropy of spin network endpoints,
e A correction for non-abelian theories,
e A non-local term.

In some interesting cases, the dominant contribution is local.

Thank you.
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