Title: Vacuum Entanglement and Gauge Symmetry

Date: Jun 27, 2012 10:20 AM

URL: http://pirsa.org/12060067

Abstract:

Pirsa: 12060067

Entanglement entropy

In a quantum field theory, every region of space has entanglement entropy.

This quantity arises:

- As a quantum correction to the Bekenstein-Hawking entropy.
- In efficient representations of the ground state.
- As a probe of phases.
 - Confinement/deconfinement.
 - Topological phases.
- In AdS/CFT.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

2 / 12

Pirsa: 12060067 Page 2/17

Entanglement entropy

Consider a lattice with nodes N.

For each $A \subset N$ there is a Hilbert space:

$$\mathcal{H}_A = \bigotimes_{n \in A} \mathcal{H}_n.$$

The full Hilbert space splits as a tensor product

$$\mathcal{H}=\mathcal{H}_{A}\otimes\mathcal{H}_{A^{c}}$$
.

For each region there is a density matrix and an entanglement entropy:

$$ho_{\mathcal{A}} = \operatorname{tr}_{\mathcal{A}^c}(|\psi\rangle\!\langle\psi|) \qquad \mathcal{S} = -\operatorname{tr}
ho_{\mathcal{A}}\ln
ho_{\mathcal{A}}.$$

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

lines

Entanglement entropy

Consider a lattice with nodes N.

For each $A \subset N$ there is a Hilbert space:

$$\mathcal{H}_A = \bigotimes_{n \in A} \mathcal{H}_n.$$

The full Hilbert space splits as a tensor product

$$\mathcal{H}=\mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\mathcal{A}^c}$$
.

For each region there is a density matrix and an entanglement entropy:

$$ho_{\mathcal{A}} = \operatorname{tr}_{\mathcal{A}^c}(|\psi\rangle\!\langle\psi|) \qquad \mathcal{S} = -\operatorname{tr}\rho_{\mathcal{A}}\ln\rho_{\mathcal{A}}.$$

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

lines

Entanglement entropy in gauge theory

In gauge theory, states are gauge-invariant functionals,

$$\mathcal{H} = L^2(\mathcal{A}/\mathcal{G}), \qquad \frac{\mathcal{A}}{\mathcal{G}} = \frac{\text{Vector potentials}}{\text{Gauge transformations}}.$$

The vector potentials split as a tensor product,

$$L^2(\mathcal{A}) = L^2(\mathcal{A}_A) \otimes L^2(\mathcal{A}_{A^c}).$$

But gauge symmetry implies constraints, e.g. Gauss' law:

$$\nabla \cdot E = 0$$
.

This constraint is **nonlocal**, so breaks the tensor product structure

$$\mathcal{H} \neq \mathcal{H}_A \otimes \mathcal{H}_{A^c}$$
.

40 > 40 > 42

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

lune

Entanglement entropy in gauge theory

In gauge theory, states are gauge-invariant functionals,

$$\mathcal{H} = L^2(\mathcal{A}/\mathcal{G}), \qquad rac{\mathcal{A}}{\mathcal{G}} = rac{ ext{Vector potentials}}{ ext{Gauge transformations}}.$$

The vector potentials split as a tensor product,

$$L^2(\mathcal{A}) = L^2(\mathcal{A}_A) \otimes L^2(\mathcal{A}_{A^c}).$$

But gauge symmetry implies constraints, e.g. Gauss' law:

$$\nabla \cdot E = 0$$
.

This constraint is **nonlocal**, so breaks the tensor product structure,

$$\mathcal{H} \neq \mathcal{H}_A \otimes \mathcal{H}_{A^c}$$
.

<ロ> <回> <回> <き> <き> <き> ≥ つへ(

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 201

Lattice gauge theory

In **lattice gauge theory**, degrees of freedom are group elements on links.

Wilson loops are gauge invariant:

$$\operatorname{tr}_r\left(\prod_{l\in\square}u_l\right)$$

Extend to an orthonormal basis: (generalized) spin networks

$$S = (R, I)$$
 spin network

R = an irreducible representation for each link

I =an intertwining operator for each node

ex: If G = U(1), $r \in \mathbb{Z}$ are electric flux. Spin networks \approx E-field basis.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Lattice gauge theory

In **lattice gauge theory**, degrees of freedom are group elements on links.

Wilson loops are gauge invariant:

$$\operatorname{tr}_r\left(\prod_{l\in\square}u_l\right)$$

Extend to an orthonormal basis: (generalized) spin networks

$$S = (R, I)$$
 spin network

R = an irreducible representation for each link

I =an intertwining operator for each node

ex: If G = U(1), $r \in \mathbb{Z}$ are electric flux. Spin networks \approx E-field basis.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 201

Localization of states

Issue: States are not localized!

Consider partial trace of a Wilson loop state:

Reduced state is an electric string with an endpoint:

Not allowed by Gauss' law.

イロトイクトイミトイミト ま りへ(

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Edge states

Solution: Relax gauge-invariance along the boundary ∂A .

Reducing the gauge group gives new degrees of freedom: **edge states**. c.f. 2+1 quantum gravity, quantum Hall effect.

An orthonormal basis of \mathcal{H}_A is given by open spin networks:

$$S_A = (R_A, I_A, \underbrace{R_\partial, M_\partial}_{\mathsf{Edge\ DOF}}).$$

Instead of equality have an embedding:

$$\mathcal{H} \neq \mathcal{H}_A \otimes \mathcal{H}_{A^c},$$

 $\mathcal{H} \subset \mathcal{H}_A \otimes \mathcal{H}_{A^c}.$

But this is sufficient: first embed, then compute entanglement.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Decomposition of the reduced density matrix

Edge states transform under $G^{|\partial A|}$; this restricts the form of ρ_A :

$$\rho_{A} = \bigoplus_{R_{\partial}} p(R_{\partial}) \left[\left(\bigotimes_{l \in L_{\partial}} \frac{\mathbb{1}_{r_{l}}}{\dim(r_{l})} \right) \otimes \rho_{A}(R_{\partial}) \right].$$

Where: $p(R_{\partial}) = \text{probability of a given set of representations crossing } \partial A$. $\rho_A(R_{\partial}) = \text{matrix elements of } \rho_A \text{ with fixed } R_{\partial}$.

Note that:

- Different boundary representations R_{∂} cannot be in superposition.
- The M vectors are maximally mixed (c.f. singlet of $j \times j$).

Using properties of von Neumann entropy under \oplus and \otimes ,

$$S = -\sum p(R_{\partial}) \ln p(R_{\partial}) + \sum p(R_{\partial}) \sum_{l \in \partial A} \ln \dim r_l + \sum p(R_{\partial}) S(\rho_A(R_{\partial})).$$

◆□ > ◆□ > ◆章 > ◆章 > 章 の Q O

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Decomposition of the reduced density matrix

Edge states transform under $G^{|\partial A|}$; this restricts the form of ρ_A :

$$\rho_{A} = \bigoplus_{R_{\partial}} p(R_{\partial}) \left[\left(\bigotimes_{l \in L_{\partial}} \frac{\mathbb{1}_{r_{l}}}{\dim(r_{l})} \right) \otimes \rho_{A}(R_{\partial}) \right].$$

Where: $p(R_{\partial}) = \text{probability of a given set of representations crossing } \partial A$. $\rho_A(R_{\partial}) = \text{matrix elements of } \rho_A \text{ with fixed } R_{\partial}$.

Note that:

- Different boundary representations R_{∂} cannot be in superposition.
- The M vectors are maximally mixed (c.f. singlet of $j \times j$).

Using properties of von Neumann entropy under \oplus and \otimes ,

$$S = -\sum p(R_{\partial}) \ln p(R_{\partial}) + \sum p(R_{\partial}) \sum_{l \in \partial A} \ln \dim r_l + \sum p(R_{\partial}) S(\rho_A(R_{\partial})).$$

◆□ > ◆□ > ◆章 > ◆章 > 章 の Q Q

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Three kinds of entropy

The Shannon entropy of boundary representations:

$$-\sum p(R_{\partial}) \ln p(R_{\partial})$$

A correction for non-abelian G:

$$\sum p(R_{\partial}) \sum_{I \in \partial A} \ln \dim r_I.$$

Both of these are local to the boundary: area law is automatic.

There is also an entropy associated to non-local correlations

$$\sum p(R_{\partial})S(\rho_{A}(R_{\partial})).$$

This seems to be subdominant.

◆□ > ◆□ > ◆置 > ◆置 > ■ り へ で

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Example: Electric string ansatz

Consider \mathbb{Z}_2 gauge theory: two irreps (trivial and alternating).

Let L(S) be the total length of "electric strings" (nontrivial irreps)

$$|\alpha\rangle = \frac{1}{\mathcal{N}} \sum_{S} e^{-\frac{\alpha}{2}L(S)} |S\rangle$$

Small $\alpha \Rightarrow$ long strings, large $\alpha \Rightarrow$ short strings.

Only Shannon entropy term is nonzero: $S = -\sum p(R_{\partial}) \ln p(R_{\partial})$.

As $\alpha \to 0$, get an equal superposition of all string states,

$$S = (|\partial A| - \# \text{ components}(\partial A)) \ln 2.$$

This is a topological phase, topological entanglement entropy 2 ln 2.

4 D > 4 D > 4 2 > 4 2 > 2 9 9 0

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Example: Strong coupling

Consider ground state of SU(2) Kogut-Susskind Hamiltonian

$$H = \sum_{I \in L} j_I(j_I + 1) + 3\lambda \sum_{\square} \left[\operatorname{tr}(u_{\square}) + \operatorname{h.c.} \right]$$

First term is diagonal in spin network basis, second creates/destroys loops.

For strong coupling ($\lambda \ll 1$), the ground state is single loops:

$$|\Omega\rangle = \left(1 - \frac{1}{2}N_{\square}\lambda^{2}\right)|0\rangle + \lambda\sum_{\square}|\square\rangle + O(\lambda^{2})$$

Only local terms contribute at order λ^2 :

$$S = |\partial A| (d-1)\lambda^{2} (-\ln \lambda^{2} + 1 + 2\ln 2) + O(\lambda^{3}).$$

Area law at strong coupling, with non-analytic coefficient.

4 D > 4 D > 4 2 > 4 2 > 2 990

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

June 27th, 2012

Conclusion

- Definition of entanglement entropy requires care in gauge theory.
- Localizing degrees of freedom leads to edge states.
- Boundary gauge symmetry restricts the form of ρ_A .
- Entropy splits as a sum of three terms:
 - The Shannon entropy of spin network endpoints,
 - A correction for non-abelian theories,
 - A non-local term.
- In some interesting cases, the dominant contribution is local.

Thank you.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

lune

Pirsa: 12060067 Page 16/17

Conclusion

- Definition of entanglement entropy requires care in gauge theory.
- Localizing degrees of freedom leads to edge states.
- Boundary gauge symmetry restricts the form of ρ_A .
- Entropy splits as a sum of three terms:
 - The Shannon entropy of spin network endpoints,
 - A correction for non-abelian theories,
 - A non-local term.
- In some interesting cases, the dominant contribution is local.

Thank you.

William Donnelly (UMD)

Vacuum entanglement and gauge symmetry

lune

Pirsa: 12060067 Page 17/17