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Abstract: <span>Bases of orthonormal localized states are constructed in Rindler coordinates and applied to an Unruh detector with good time
resolution and an accelerated rod-like array detector.</span>
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Localized states are controversial in relativistic QM. The
corresponding field is not localized and it has been claimed that
there are problems with invariance and causality and that there is
no photon position operator or number density. (Hegerfeldt,

Bialnicki-Birula, Sipe, Scully and Zubairy QO, and Birrell and
Davies.) But experimentalists count photons-every day. Itis
straightforward to define an orthonormal and complete basis u, , on
a hypersurface that describes a hypothetical particle counting
experiment (even for photons, see arXiv/quant-ph Hawton).
Following Newton and Wigner I will call these the localized states.
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INTRODUCTION

Localized states are controversial in relativistic QM. The
corresponding field is not localized and it has been claimed that
there are problems with invariance and causality and that there is
no photon position operator or number density. (Hegerfeldt,

Bialnicki-Birula, Sipe, Scully and Zubairy QO, and Birrell and
Davies.) But experimentalists count photons-every day. Itis
straightforward to define an orthonormal and complete basis u, , on
a hypersurface that describes a hypothetical particle counting
experiment (even for photons, see arXiv/quant-ph Hawton).
Following Newton and Wigner I will call these the localized states.
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OUTLINE

Notation and inner product
Photon counting detectors
Plane wave and localized bases in

Minkowski, Rindler and Unruh coordinates

A S
¢

Absorption by accelerated detectors :
Conclude -~
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NOTATION, FIELD OPERATORS

(—, +) metric signature in 2D
natural units h = e¢ =1
= (t,z) or (n,&) are the spacetime coordinates
= (WhideOk (2 /0 waze frequency and wave-veetor
/‘-1‘“;1‘“ = kz — wt or K§ — Qn

The +w) w part of the vector potential with polarization A is

~JL exp(ikz—iw L
(Lf\ ()= ["__dk ‘(p”,(? ),f/), ek (w, k) ay (w, k)

while the electric hel(l is

I " 00 2w)'/? exp(ikz—i -~
E)" (t,@) = [, dilel_sela—till g (i, k) @5 (w; k)
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INDEFINITE INNER PRODUCT 1n
x-space and k-space on hypersurface X

(0 10) = ‘JL dyHo"* (t, x) () wU (8. 2)

The covariant inverse Fourier transtform is
;,1, ds] l‘{[) (thzx —tu.ft) I .
Y Z,\ ]z, ks 27)1/2 )\ (w l‘) WA (OJ, I“)

with € = Isg/ |ks:| so the inner product can be written as

= Toae Js 2hs O3 (W, k) ¥ (w, k).«
If E is a t = const hyperburfdce

Z)\EJ——OO {;:.‘J I") ";f’,\ (W, k)
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PHOTON COUNTING POVM

A semiconductor detector counts photons if it is thick enough to
absorb all incident photons. Absorption probability 1s «c w but
penetration depth 1s oc 1/w. The Glauber probability for a atom to

absorb a photon is «

<£,' It x .."t,'>xwexp(—2aw.ﬂ)

X

W
2c¢,

The w dependence cancels so that probability is proportional to
photon number. This is straightforward for a plane wave since there

probabilityoc on dzwexp (—2a,x) = where a, x w.

is a single frequency and thus there are no interference terms.
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The x-basis will always count the same number of photons as
the k-basis. Ideally a photon would be counted at the (7,x)
coordinates where 1t crossed X, but this 1s an approximation.

If 1)) is a pulse with center frequency w’ and width Aw,

to 2nd order is (w — w') /Aw the probability density to count a
photon at time ¢ is (¢ |0y (t — At, z)| )

where At is a 1st order correction of a few optical periods,

o _—— St
Ax{ty2)= za/\T (t,z) O ay, (t,z)

This 7 is the integrand of the inner product converted to an operator.

A noncovariant number operator was used in the published version.

Photon number and probability density are meaning
at least in the context of a photon counting experime
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TO AVOID MULTIPLE COUNTING, PHOTONS
SHOULD BE COUNTED ON A HYPERSURFACE

Spacelike gedanken experiment: At any time a photon must be
somewhere 1n space. Imagine an array of transparent photon
counting detectors throughout space turned on at time #=a with
timelike normal n=(1,0). The photon will be detected at some
position Xx.

Timelike real experiment: A photon is detected when it arrives
at the detector at x=b with spacelike normal »=(0,1) at time .
Since all ®’s are required, the basis does not distinguish
between absorption and emission but this may be known from
the 1nitial or final state.
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SPACELIKE DETECTOR AT REST
[f w>0 a photon 1s absorbed, while if w<O0 1t 1s emitted.

ITTTTT]
a

HITIIIHII‘EEED]]IEEEED:I:DI

incident
photon

Spacelike array detectorturned on at
=a. In this example the pixel at x

absorbs the single photon present but |

the array can count 0,1,2, .. photons. |

collapse
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TIMELIKE DETECTOR AT REST
This 1s not a Cauchy surface and there 1s no Killing vector
to separate positive and negative frequencies.

|

t axis

Timelike detectorat x=b
In this example it absorbs a
single photon at time 7.
incident
photon

Here |1) is the Minkowski plane wave with wave vector k and +ve w.

2

- . : . | exp(ikb—iwt
The probability density to count a photon at (t,b) is | SR — L

(2m)1/2

w > 0 ensures that the photon is absorbed rather than emitted.
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TIMELIKE DETECTOR AT REST
This 1s not a Cauchy surface and there 1s no Killing vector
to separate positive and negative frequencies.

|

t axis

Timelike detector at x=b
In this example it absorbs a
single photon at time 7.
incident
photon

Here |1) is the Minkowski plane wave with wave vector & and +ve w.

2

- o : . | exp(ikb—iwt
['he probability density to count a photon at (¢,b) is '-\]’{(:—_]’,'—1 = L,

-

w > 0 ensures that the photon is absorbed rather than emitted.
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TIMELIKE DETECTOR AT REST
This 1s not a Cauchy surface and there 1s no Killing vector
to separate positive and negative frequencies.

|

t axis

Timelike detectorat x=b
In this example it absorbs a
single photon at time 7.
incident
photon

Here |1) is the Minkowski plane wave with wave vector k& and +ve w.

2

- o : . | exp(ikb—iwt
The probability density to count a photon at (t,b) is |SRU2—@ ) — L

(2m)1/2

w > 0 ensures that the photon is absorbed rather than emitted.
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e.g. incident
photon pulse

The probability density to
count a photon depends on
the photon state vector, |>.
Only modes present in />
affect the outcome.

The propagating |w> is not exactly localized so the Hegerfeldt
theorem is not a problem. The photon counting experiment and

1ts associated localized basis (POVM) never leave X.
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SPACELIKE AND TIMELIKE DETECTORS WITH
VELOCITY [ RELATIVE TO THE OBSERVER

P
y |
y
/
/

Moving timelike detector (velocity )
located at x=f¢ at time .

Moving spacelike array detector (velocity f3).
The pixel at x is turned on at /=Px (not simultaneously). |
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RINDLER SPACELIKE AND TIMELIKE DETECTORS

wedge II

Spacelike Rindler array detector. The
pixel at x is turned on at 7= 3x. The

| velocity of the entire array 1s [ =tanh(an).

T
"t (-
T LS
R

T e

wedge I

Timelike accelerated (Rindler) detector at

£ following the curve x3-= a“exp(2al).
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Consider a single A", Uy k.M (t, %) = U k2 arn 0 (8, T).
Prime denotes an fixed value, no prime a variable.

The positive frequency Minkowski plane waves 1n x-space
(.‘xp(—iw’t—{—ik’;r)

(2w")1/2(2m)/2

are orthonormal and complete on . Their complex conjugate
negative frequency waves are also orthonormal and complete,
but with negative inner product. Mixed inner products are zero.

oot e 1 (£, %) =

On ¥ defined by t' = const with ' = |K/|

(Y-Lw’.k’.f\[: uw”,k”,ﬂ[) =0 (A:, e kﬂ)

* o il g J Lot S
(uw’,k'.Mv “‘w”.k:”.z\-[) = —o0(k" — k")

(uw’.kr’,ﬂ[a u:.:”,k”sfu) .
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Consider a single X', U k7,0 (8, ) = U k2 2x M (8, 2).
Prime denotes an fixed value, no prime a variable.

The positive frequency Minkowski plane waves 1n x-space
(‘xp(—iw’t—{—ik';r)

(2w")1/2(2m)/2

are orthonormal and complete on Z. Their complex conjugate
negative frequency waves are also orthonormal and complete,
but with negative inner product. Mixed inner products are zero.

oot e 1 (£, %) =

On X defined by t' = const with w’ = |K/|

(U kM Ut e ) = O (K — K7

* o e J £ o
(uw’,k’.ﬂ»[? “‘w”.k:”.z\-[) = —o(k" — k")

(uw’.kr’,ﬂ[a u:.?”,k”sfu) '
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RECIPE TO CONVERT A PLANE WAVE IN x-SPACE TO
A LOCALIZED STATE IN k-SPACE

Move the Vw factor to the numerator. Interchange wave vector
and position coordinates. Change the sign 1n the exponent. All &
are then included with equal weight so it is d—function localized.

exp(—iw’t+z’k’m)

(Qw)uzexp(iwt'—ikx’)
(2,”_)1/‘2

(wa)l/'z(zw)l/z =2
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[’ll define the Minkowski +ve w localized states in k-space as
(2w)1/? (xp(r’.wt’—iﬂ:.r’)
(2m)1/?

wpr o 1 (w0, ) =

so that they are orthonormal. This can be verified by substitution.

On ¥ defined by t’ = (ronst

(wer 2o s Upr g ) = [ ;i Uy o g Wy k) ugr o pr (w, k)

(2" — 2"

—
(T'L:’.;r’.z"t[’u;" =’ M ) == —(5(
) =0

(T-L.’C’.;I.".i\[': U-:r ! M

The field (potential) described in x-space,

(2w)/? exp|—iw(t—t' ) +ik(z—2’
Ut 2" M (f ] — ]_ ‘:;:‘J [ (2‘”()1/2) ( )]

1s nonlocal due to the factor Vew. This expression also explains
the choice of sign in the exponent in the definition above. But
it’s easier to work in k-space when using localized states.
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Rindler plane waves in wedges [ and Il are analogous to
Minkowski1 plane waves. For Rindler frequency £2'and wave
vector K', e.g. on the 77=const hypersurface with -co<{<oeo,

('xp(—flS!'rH—H\”E)
”‘SZ’.[\”.[ (”"E) - (2521)1/'_’(2“.)1/2

px;)(.&SE’U‘I—U\"f)
uqe k11 (0,§) = (2)Y/ 2 (2x)*/2

(“SZ’.K’.I-”r’fSZ’.K”.[) =0 (K, i KH) AT

The Rindler localized states at (&', ) will be defined as
1/2 ()xp(iﬂ‘r)’—'i[\’f’)
(2m)1/?

9 exp(—iQn' —iK¢'
7,11 (@, K) = (20)1/2 2 CoRE :

(T'l"',",f'af? ’u?’]’,ﬁ”,f) o 6 (5, T £”) P e L,

Uy & 1 (Q ]\) = (QQ)
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The spacelike hypersurface n'=const i1s a Cauchy surface with Killing

vector d,.inTand 0,

.1n II. The localized basis separates into +ve and —ve

w parts and annihilation and creation operators can be defined.
The £'=const hypersurface (the path of the Rindler detector) is not a

Cauchy surface so +ve and

ve frequencies are not separated in the basis.

t axis

Uy g1 ] I)'d-h'iH
/f S

—r \

"4 “‘,-("' ]

~ciieiy

Uy’ ¢ 11 Dasis

Z'=const hypersurface
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PRELIMINARY APPLICATIONS

Absorption of photons by accelerated detectors in the Minkowski
vacuum to show nonlocality due to the thermal factor
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PRELIMINARY APPLICATIONS

Absorption of photons by accelerated detectors in the Minkowski
vacuum to show nonlocality due to the thermal factor
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ABSORPTION OF A PHOTON BY A
LOCALIZED RINDLER DETECTOR

The timelike detector is
turned on from Nn=0to T

-
(.{I

\.\ - «-f‘f'[j?"/- —

S| Spacelike detector array
S0 S | on n=const hyperplane
. "_' - -

X axis
=

Timelike (£=const) |
Rindler detector

_

[’ll work with a spacelike basis as 1s usual in QFT, but the Rindler detector
actually lives on the timelike hypersurface and I’ll discuss it briefly.
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AS IN UNRUH AND WALD EXCEPT IN x-BASIS

e - ]_x il-cxp(—iSZr;’-l—iKE’)A

a = > / -
n’ &', 1 (471.”)1/- (‘ISZI\[

annihilates a Rindler photon in state localized at (7', &)
in I. In the Unruh basis

252.1{.1+0XP(—7"Q/‘L)EIZ,*K,u

99,K,1 = [1—exp(—27%2/a)]'/2

The Unruh vacuum 1s the same as the Minkowsk1 vacuum.

Photons cannot be annihilated when the RHS acts on |0,>
so annthilation of a Rindler photon 1n I 1s seen as emission
of a photon 1n the Unruh basis, primarily in II. This 1s the
usual argument except that here a photon 1s absorbed
locally so I integrate over K.
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~

Working in the Unruh basis where |1o,k,11) = A$ k.11 10m)
) =@y ¢ .1 |Onr)

No's -t'xp(iﬂlu’—il\'f’) exp(—n§/a)
dF E ol i
J-os (47Q)172  [1—exp(—27Q/a)]'/? QK1)

= |1,/ ¢ a,17)
vxp(i[\"'E,—iSZ"r;’) (QSZ’) b2 cxp(iﬂr;’—ih’&’)

OO0 - *O0 -
V) = [ 4K’ J_ dK (4n Q)17 (4zQ") /2

exp (=72 . -
2 [1—«§c1(pr)((—27;sz//(;))]l/2 <0M ‘A;r?.K.IAQ’,K’J‘ 0M>

e o gpeeRlKE-e)] __ ep(-ra/e

2r [1—exp(—27Q/a)]'/?

(177’,&,11"/)) =g

This describes the spatial extent of the emitted photon density
(primarily in wedge I1) as seen by a Minkowski observer using the
bi-localized Unruh basis.
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ONE PHOTON UNRUH STATE II CREATED BY CLICK OF
A LOCALIZED RINDLER DETECTOR N I

Unruh probability densaty /a
0.025

This would be a o-function without the thermal factor (T=a/2n).
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ONE PHOTON UNRUH STATE I CREATED BY CLICK OF
A LOCALIZED RINDLER DETECTOR N I

Unruh probability densaty /a
0.025

This would be a o-function without the thermal factor (T=a/2n).
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Unruh probability density/a with cut—off at |K|=0.01

0.025 -

L A " " L () L
02 04 06 08 1.0 % -10

The slow decline of the wave function 1s due to divergence of the
thermal factor as £2—0 . In the graph above a cut-oft at [Q2/=0.01
was introduced.
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CONCLUSION
Localized bases (POVMs) describing small photon
counting hyperpixels were constructed in Rindler
and 1in Unruh coordinates.

Here localized means that (w,y ¢/ 7,y e, 7) = 0 (§' —&")
for &' and £" on ' hypersurface X in wedge J (or on

&' =const, but this basis 1s timelike).

The Unruh state created when a photon 1s absorbed
by a localized Rindler detector 1s broaden due to the
thermal factor exp (—7Q/a) /[1 — exp (—27Q/a)]*/?.
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