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Abstract: <span>After an introduction to generalized uncertainty
principle(s), we study uncertainty relations as formulated in a crystal-like
universe, whose lattice spacing is of order of & nbsp;

Planck length. For Planckian energies, the uncertainty relation for

position and momenta has alower bound equal to zero. Connections of this
result with 't Hooft's deterministic quantization proposal, and with double
special relativity are briefly presented. We then apply our formulae to

(micro) black holes, we derive a new mass-temperature

relation for Schwarzschild black holes, and we discuss the new thermodynamic
entropy and heat capacity.

In contrast to standard results based on Heisenberg and

stringy uncertainty relations, we obtain both afinite Hawking's temperature
and a zero rest-mass remnant at the end of the (micro) black hole evaporation.

[Ref.Paper: PRD 81, 084030 (2010). arXiv:0912.2253] </span>
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Generalized Uncertainty Principles
(GUPs)

= Research on generalizations of the Heisenberg
uncertainty principle has several decades of history (C.N.

Yang, 1947 - Snyder, 1947 - F. Karolyhazy, 1966).

Last 20 years: (Veneziano 1987, Gross 1987)
suggests that, in gedanken experiments involving

at high energy strings scattering, the uncertainty relation
should read
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Gedanken Experiment on scatterings involving
(Scardigli, Adler 1g99) yields similar relation

for AE < €

for AE > €
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Quantum Mechanics and GUP on a Planck
Lattice

In order to reconcile GR and QM a dramatic conceptual shift is
required in our understanding of a spacetime. ==

Revival of the idea of spacetime as a discrete coarse-grained

structure at Plackian lengths 7, ~ 10 3°m =

Quantum-gravity models:
@ space-time foam (John Wheeler - 1955)
locop quantum gravity
non-commutative geometry
black-hole physics
cosmic cellular automata (Stephen Wolfram - 2004)
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seems a good TOY MODEL for Planck Physics.
(Lattices are also numerical regulator in QFT, or in GR)

* EXAMPLE: The defect structure of a crystal (Kleinert 1989),
(lattice spacing of about a Planck length) the so called

can reproduce the geometry of Einstein(-Cartan) spaces

@ Curvature is due to rotational def., torsion due to translational def.

* Formulate Quantum Mechanics , and study the
associated

— Consequences for Black Hole physics (LHC?)
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DIFFERENTIAL CALCULUS ON A LATTICE (1D LlLattice)

The lattice sites are at r,, = ne, With n € Z.
There are two fundamental derivatives of a function f(x):

V() = —lf(z+e)—f=)],
TNl — %[_r(.a-) flz—e)j.

They obey the generalized Leibnitz rule

(Vfg)(z) = (VNH(x)g(z)+ f(z+€)(Vg)(x),
(Vig)(xz) = (VN(x)g(z)+ f(z—€)(Vg)(x).
On a lattice, integration is performed as a summation:

‘/«i-rf(-r) = Y f(a).

where x runs over all xn.
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Integration by parts:

S Hx)Va(x) = =3 g(x)Vf(x)

One can also define the lattice Laplacian as

VVi(x) = VVI(x) = Flz[f(xﬂ) — 2f(x) + f(x —€)]

which reduces in the continuum limit to Laplace operator 92.

The above calculus can be easily extended to any nhumber of dims.
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Quantum Mechanics ona a1-D lattice:

Scalar Product

This implies that
(fIVg) = —(Vfl|g)
so that (/iV)' = iV, and neither /¥ nor iV are hermitian operators.

The lattice Laplacian VV = VV is HERMITIAN.

The position operator X, acting on wave functions of x is defined by a
simple multiplication with x:

(X F)(x) = xf(x)
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The lattice momentum operator P.: To ensure hermiticity we relate P,
to symmetric lattice derivative, i.e.,

(Pf)(x) = Z(VOX) + (FH(X)] = 2-[F(x + ) — F(x — ©)]

For small ¢, this reduces to momentum operator p = —ihd,:
ﬁ’. — ﬁ -+ (:.)(r ?)
The “canonical” commutator between X, and P. on the lattice:

([)"(, , P, ]r) (xX) = ﬂ[f(x + &) + f(x — €)] = in(l.r)(x)

Operator 1 is a lattice-version of unit operator (average over neighboring sites)
Operators X, P, I, are hermitian under the defined scalar product

X..P., and ], form E(2) algebra, which contracts to the standard
Weyl-Heisenberg algebra in the limit ¢ — O: X. —» &, P. > p. L3

= ordinary QM is obtained from lattice QM by a contraction of the
E(2) algebra via the limit e — O

Pirsa: 12060063 Page 10/23



eFourier-decomposition with wave numbers in the Brillouin zone:

. — e ﬂ" = ik
s = [ SEFa0ets,

with the coerricients

F(e) = D> f(x)e =,

This Implies the good-old de Broglie relation

BH(E) = nBef(x),
and its lattice version

(—iVHI(K) = Kf(k), (—iVH(E) = Kf(x),
with the eigenvalues
(t_i.l:: 1)"‘2,1,‘
the Fourler transforms of the operators X,., P. I.: we can rewrite the

e d - commutation
(X DK) = i——f(k), )

) = ) relation
(P.HK) —sin(ke) f(K), -

(I. (k) cos(ke) f(k) .,
ihhcos (ep/h) f(x).

Thus the lattice unit operator

1. is cos (ep/N). ]. = 1 on all lattice nodes.
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UNCERTAINTY RELATIONS ON A LATTICE

Uncertainty of an observable A in a state 4 defined by the standard deviation

TWO CRITICAL REGIMES of the GUP

l) long-wavelengths regime where (p),, — 0
Il) regime near boundary of Brillouin zone where (p),, — wh/2e¢
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For mirror-symmetric states where (p). = O this implies

’l (2 D
AX.AP, : (1 = (AP) )

Here we have substituted |...| with (...) since we assume: « =~ (,
(Planckian lattice) and Ap == 0. Therefore c2(Ap)2/2h? <

For Planckian lattices we can neglect in higher orders in € and write

- }l - o
AX. AP, = 1 — (AP)

C
2 27
I At the border of the first Brillouin zone

h

By =
Use the expansion for cos|x /2 + (ep/h — 7 /2)]) -

- e n(7T/2 — ep/R)2TH
Z” 0./0 SRelPI—1]) (211 + 1)!

o(p) i1s peaked around p == v/ /2¢ »  dominant contribution gives

L4

7 7
AX AP =
2 | 2 I

(P)

Since K is always inside Brillouin zone, (P)y = wh/2¢ and |...| — (...).
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Up to order O(¢) GUP close to boundary of Brillouin zone is

AX AP, > 2(;—% )

@ As momentum reaches boundary of Brillouin zone RHS
vanishes so that lattice QM at short wavelengths can exhibit
ClaSSlC8| behaViOl‘. G. 't Hooft, Class. Quant. Grav. 16 (1999),; Int. J. Theor. Phys. 42 (2003)

@ GUP leads to physical conclusions analogous to those found by
Magllele and SF”O'”1 ”1 DSR. J. Magueijo and L. Smolin, Phys. Rev. D 67 (2003

In this model the world can become “classical” for energies close to the
Brillouin zone, i.e., for Planckian energies.
(as in 't Hooft's "deterministic” quantum mechanics).
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DISPERSION RELATION for PHOTONS

Vector potential of a photon in the Lorentz gauge in (1 + 1)D satisfies

|
?&)?A“(X. [) — rl)fA“(X.f)

Plane wave A¥(x) = " exp[i(kx — w(k)t)] exhibits linear disp. rel.

w(k) = c|k|

On a 1D lattice 92 — V'V, and the spectrum becomes

C ¢ ¢

w(k) _ VKR — V[2—2cos(ke)] 2 sin(sz)t
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GUP for PHOTONS

Denoting the energy on the lattice /w by E., we obtain the disp. rel.

= 21 TP
hic e S'”(zh)l

For small momenta (p << h/e) this has the expansion

(2p3

522 T OWP)

E, =$cp—c

Up to order O(¢?) this allows us to rephrase GUP as

2

E 2

This relation will be our starting point for applications of the GUP to

micro black holes.
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APPLICATIONS TO (MICRO) BLACK HOLES PHYSICS

The mass-temperature relation for Black Holes strongly depends on the
actual form of the energy-position uncertainty relation

Heisenberg microscope argument: the smallest resolvable detail ox
of an object goes roughly as the wavelength of the probing photons.
If E is the (average) energy of the photons

&X (average) wavelength a
photon and E its energy

For a lattice spacing ¢ = af,, and denoting the Planck energy as &, = he/2¢,, we have

fic  a26,FE,
2E, 8,

) ,\-, ™~
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COMPARISON WITH HEISENBERG AND STRINGY
UNCERTAINTY PRINCIPLES

In continuum limit e, a — 0 and GUP reduces to Heisenberg UP

1 hcs hc

470 ~ 8nxGkgM ~ 4nksRs
which is the dimensionless version of Hawking’'s formula.

Lattice m — © relation can be compared with the one coming from
stringy uncertainty relation:
1

2m = + (2270
a0 ' >

The phenomenological consequences of the lattice relation are quite
different due to the opposite sign in front of the deformation term.
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Consider an ensemble of un-polarized photons of Hawking radiation
just outside the event horizon. Average wavelength of the Hawking
radiation = geometrical size of the hole.

photon position 0X. ™~ 2uRgs = 2ul,m
uncertainty

with Rs = f,m, where m = M /M, Is the black hole mass in Planck units (M, = &,/¢?), and
i IS a free parameter of O(1). In this regime

o
~}

2um = —
1D

Equipartition law: energy of un-polarized
photons of outgoing Hawking radiation

Defining T, = 2&,/kg ~ 10%2 Kand © = T /T,, we can rewrite m — ©
formula as

1 -2
2m = 56 — 27O

where ¢ = a/(2v2r7) and ;. = =, in order to agree with Hawking’s
formula in cont. limit.
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Three m — © relations, lattice, Hawking's, and stringy GUP, with ¢ = /2.

For the stringy GUP, the blue line predicts a maximum temperature

and minimum rest mass
!nmin
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Stringy GUP: The end of the evaporation process is reached aftera
the , and there is a REMNANT of a

r

From the standard Heisenberg UP we find ,
representing the Hawking formula. Here the evaporation process

ends, after a finite time, with a and a worrisome

Pro: Candidates for dark matter
Contra: detectability issue, excessive

Stringy GUP =2 finite mass remnants e i
production in the early universe.

In contrast, our lattice GUP predicts the red curve. This yields a
finite end-temperature

el]'lil.\

with a zero-mass remnant.

The analysis of the short wave limit fully confirms the previous
result.
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Conclusions

We derived the GUP on a cubic lattice.

Cubic-Lattice GUP allows for “classical” behavior at energies
near the border of the Brillouin zone (Planck energies).

We derived a new mass-temperature relation for
Schwarzschild (micro) black holes.

Phenomenological consequences of this formula are:

The final Hawking temperature of a decaying micro black hole
remains finite, in contrast to the infinite temperature of the
standard result obtained by Heisenberg's uncertainty
principle.

Avenues for Future Investigations
Flexible Lattice

WHAT KIND OF LATTICE (microstructure) IS REQUIRED IN
ORDERTO OBTAIN A STRINGY GUP? (i.e. related to the
existence of BH REMNANTS?)
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