Title: On the Preparation of States in Nonlinear Quantum Mechanics

Date: Jun 28, 2012 11:30 AM

URL: http://pirsa.org/12060048

Abstract: Recent analysis of closed timelike curves from an information-theoretic perspective has led to contradictory conclusions about their information-processing power. One thing is generally agreed upon, however, which is that if such curves exist, the quantum-like evolution they imply would be nonlinear, but the physical interpretation of such theories is still unclear. It is known that any operationally verifiable instance of a nonlinear, deterministic evolution on some set of pure states makes the density matrix inadequate for representing mixtures of those pure states. We re-cast the problem in the language of operational quantum mechanics, building on previous work to show that the no-signalling requirement leads to a splitting of the equivalence classes of preparation procedures. This leads to the conclusion that any non-linear theory satisfying certain minimal conditions must be regarded as inconsistent unless it contains distinct representations for the two different kinds of mixtures, and incomplete unless it contains a rule for determining the physical preparations associated with each type. We refer to this as the `preparation problem' for nonlinear theories.

Pirsa: 12060048 Page 1/41

The Preparation Problem in Nonlinear Extensions of Quantum Theory

Nicolas C. Menicucci

The University of Sydney

E. G. Cavalcanti, NCM, and J. L. Pienaar, arXiv:1206.2725 [quant-ph]

Pirsa: 12060048 Page 2/41

The Preparation Problem in Nonlinear Extensions of Quantum Theory

Nicolas C. Menicucci

The University of Sydney

E. G. Cavalcanti, NCM, and J. L. Pienaar, arXiv:1206.2725 [quant-ph]

Pirsa: 12060048 Page 3/41

All new!

Nonlinear quantum evolution!

State discrimination!

No orthogonality? No problem!

28 Jun 2012

Pirsa: 12060048 Page 4/41

Pirsa: 12060048 Page 5/41

Pirsa: 12060048 Page 6/41

28 Jun 2012

Case 1: "You can only put in |0>."

28 Jun 2012

Pirsa: 12060048 Page 7/41

Case 2: "You can only put in $|-\rangle$."

28 Jun 2012

Pirsa: 12060048 Page 8/41

Case 3: "You must alternate between $|0\rangle$ and $|-\rangle$."

28 Jun 2012

Pirsa: 12060048 Page 9/41

Case 3: "You must alternate between $|0\rangle$ and $|-\rangle$."

28 Jun 2012

Pirsa: 12060048 Page 10/41

Case 5: "You can use any method you want" to choose your input state to be $|0\rangle$ or $|-\rangle$."

(*Can be relaxed to a finite set of methods that "seem random enough.")

28 Jun 2012

Pirsa: 12060048 Page 11/41

- How we know what we (claim to) know
- Claims must be verifiable

28 Jun 2012

Pirsa: 12060048 Page 12/41

- How we know what we (claim to) know
- Claims must be verifiable

28 Jun 2012

Pirsa: 12060048 Page 13/41

- How we know what we (claim to) know
- Claims must be verifiable
- Unverifiable claims are not considered

28 Jun 2012

Pirsa: 12060048 Page 14/41

- How we know what we (claim to) know
- Claims must be verifiable
- Unverifiable claims are not considered
- Requirements for verification do not depend on details of the physics but rather on the process of logical reasoning and inference

28 Jun 2012

Pirsa: 12060048 Page 15/41

- How we know what we (claim to) know
- Claims must be verifiable
- Unverifiable claims are not considered
- Requirements for verification do not depend on details of the physics but rather on the process of logical reasoning and inference
 - Stay close to scientific method
- Can sometimes allow buyer to be fooled and still get meaningful results

28 Jun 2012

Pirsa: 12060048 Page 16/41

Closed Timelike Curves (CTCs)

- Several models
 - · Deutsch model (several forms)
 - Postselected teleportation model (P-CTCs)
- All involve nonlinear quantum evolution

28 Jun 2012

Pirsa: 12060048 Page 17/41

Closed Timelike Curves (CTCs)

- Several models
 - Deutsch model (several forms)
 - Postselected teleportation model (P-CTCs)
- All involve nonlinear quantum evolution
 - Does not respect superposition principle
- Arguments about results in this context
 - · State discrimination
 - Cloning
 - Computational speedup (classical and quantum)
 - Superluminal signaling

28 Jun 2012

Pirsa: 12060048 Page 18/41

Closed Timelike Curves (CTCs)

- Several models
 - Deutsch model (several forms)
 - Postselected teleportation model (P-CTCs)
- All involve nonlinear quantum evolution
 - · Does not respect superposition principle
- Arguments about results in this context
 - · State discrimination
 - Cloning
 - Computational speedup (classical and quantum)
 - Superluminal signaling
- Nonlinear boxes have foundational implications apart from applications to CTCs

28 Jun 2012

Pirsa: 12060048 Page 19/41

Closed Timelike Curves (CTC's)

- "Interpretations" of quantum theory
 - · Strongly affect results

28 Jun 2012

Pirsa: 12060048 Page 20/41

Closed Timelike Curves (CTC's)

- "Interpretations" of quantum theory
 - · Strongly affect results
 - Empirically distinguishable in nonlinear theory
 - · Often unstated assumption
 - Sometimes stated as fact (even worse!)
- More fundamental problem
 - Using linear tools in a nonlinear theory (e.g., density matrix)
 - Brun et al. (2009): can discriminate nonorthogonal states, but preferred decompositions of density matrices exist
 - Bennett et al. (2009): no preferred decompositions; cannot discriminate nonorthogonal states

28 Jun 2012

Pirsa: 12060048 Page 21/41

Closed Timelike Curves (CTC's)

"Interpretations" of quantum theory

- Strongly affect results
- Empirically distinguishable in nonlinear theory
- · Often unstated assumption
- Sometimes stated as fact (even worse!)

More fundamental problem

- Using linear tools in a nonlinear theory (e.g., density matrix)
- Brun et al. (2009): can discriminate nonorthogonal states, but preferred decompositions of density matrices exist
- Bennett et al. (2009): no preferred decompositions; cannot discriminate nonorthogonal states

28 Jun 2012

Pirsa: 12060048 Page 22/41

Ignorance

Alice's ignorance of the state actually prepared by Rob cannot ruin the evolution (by verifiability).

28 Jun 2012

Pirsa: 12060048 Page 23/41

Ignorance

Alice's ignorance of the state actually prepared by Rob cannot ruin the evolution (by verifiability).

28 Jun 2012

Pirsa: 12060048 Page 24/41

- Brun et al. (2009)
 - · Claim nonlinear pure-to-pure evolution
 - Can discriminate nonorthogonal states
 - · Preferred decompositions exist
 - Self-consistent!
- Bennett et al. (2009)

28 Jun 2012

Pirsa: 12060048 Page 25/41

- Brun et al. (2009)
 - Claim nonlinear pure-to-pure evolution
 - · Can discriminate nonorthogonal states
 - · Preferred decompositions exist
 - Self-consistent!
- Bennett et al. (2009)
 - · Claim nonlinear pure-to-pure evolution

28 Jun 2012

Pirsa: 12060048 Page 26/41

- Brun et al. (2009)
 - Claim nonlinear pure-to-pure evolution
 - Can discriminate nonorthogonal states
 - · Preferred decompositions exist
 - Self-consistent!
- Bennett et al. (2009)
 - Claim nonlinear pure-to-pure evolution
 - Use density matrix for proper mixture of input pure states
 - § Troublesome, but not a show-stopper (see below)
 - Cannot discriminate pure states in purported evolution

28 Jun 2012

Pirsa: 12060048 Page 27/41

- Brun et al. (2009)
 - Claim nonlinear pure-to-pure evolution
 - Can discriminate nonorthogonal states
 - Preferred decompositions exist
 - Self-consistent!
- Bennett et al. (2009)
 - Claim nonlinear pure-to-pure evolution
 - Use density matrix for proper mixture of input pure states
 - § Troublesome, but not a show-stopper (see below)
 - Cannot discriminate pure states in purported evolution

28 Jun 2012

Pirsa: 12060048 Page 28/41

28 Jun 2012

Pirsa: 12060048 Page 29/41

28 Jun 2012

Pirsa: 12060048 Page 30/41

"All pure states are created equal"

+

Verifiable nonlinear pure-to-pure evolution

28 Jun 2012

Pirsa: 12060048 Page 31/41

"All pure states are created equal"

+

Verifiable nonlinear pure-to-pure evolution

28 Jun 2012

Pirsa: 12060048 Page 32/41

Verifiable nonlinear pure-to-pure evolution
+
No superluminal signaling

28 Jun 2012

Pirsa: 12060048 Page 33/41

Type II pure states

- These supposedly pure states are really just one "branch" of an entangled state that has not actually collapsed
- Remotely preparable
- Only reveal their purity to some parties
- Attempting to remotely prepare a mixture of these states only creates an improper mixture, which has no preferred decomposition

28 Jun 2012

Pirsa: 12060048 Page 34/41

Type II pure states

- These supposedly pure states are really just one "branch" of an entangled state that has not actually collapsed
- Remotely preparable
- Only reveal their purity to some parties
- Attempting to remotely prepare a mixture of these states only creates an improper mixture, which has no preferred decomposition
- Cannot be used to verify nonlinear pure-to-pure evolution (due to no-signaling requirement)

28 Jun 2012

Pirsa: 12060048 Page 35/41

- The two types are indistinguishable in ordinary (linear) quantum theory
 - Distinction between them is deemed an "interpretational" question

28 Jun 2012

Pirsa: 12060048 Page 36/41

- Preparations usually thought of as Type I
 - (Nondestructive) projective measurement
 - Cooling to ground state
 - Where do pure ancillas (for measurement) come from?
 - Where does low-entropy reservoir come from?

28 Jun 2012

Pirsa: 12060048 Page 37/41

- Preparations usually thought of as Type I
 - (Nondestructive) projective measurement
 - · Cooling to ground state
 - Where do pure ancillas (for measurement) come from?
 - Where does low-entropy reservoir come from?
- Preparations usually thought of as Type II
 - · Projectively measure one arm of an EPR pair
 - · Dynamic collapse models of quantum theory not ruled out
 - This would reduce these to Type I states in some cases
 - Speed of collapse? (state readout device [Kent, 2005])
- Deterministic versus random preparations

28 Jun 2012

Pirsa: 12060048 Page 38/41

- Preparations usually thought of as Type I
 - (Nondestructive) projective measurement
 - Cooling to ground state
 - Where do pure ancillas (for measurement) come from?
 - Where does low-entropy reservoir come from?
- Preparations usually thought of as Type II
 - · Projectively measure one arm of an EPR pair
 - Dynamic collapse models of quantum theory not ruled out
 - This would reduce these to Type I states in some cases
 - Speed of collapse? (state readout device [Kent, 2005])
- Deterministic versus random preparations
 - Alternative to the above distinction [Ralph and Myers, 2010]
 - Classical data written onto a quantum state verifies evolution
 - Random preparations (e.g., projection) do not

28 Jun 2012

Pirsa: 12060048 Page 39/41

Summary

- Epistemology provides theory-independent consistency checks
 - · Available by assumption of applicability of scientific method

28 Jun 2012 20

Pirsa: 12060048 Page 40/41

Summary

- Epistemology provides theory-independent consistency checks
 - · Available by assumption of applicability of scientific method
- If empirically meaningful, nonlinear evolution has "weird" effects that cannot be swept under the rug
- No signaling from verifiable nonlinear evolution implies Preparation Problem
 - Having a distinct mathematical representation for the different types of states is necessary (but not enough)
 - Also need to identify laboratory procedures that will produce each type of pure state
 - Dynamical collapse or a Heisenberg cut may provide a solution [Kent, 2005; Ralph and Myers, 2010]
 - Other ideas may be possible

28 Jun 2012 20

Pirsa: 12060048 Page 41/41