Title: Physical Results with Fermions in RQI

Date: Jun 25, 2012 11:00 AM

URL: http://pirsa.org/12060046

Abstract: A number of works in the field of relativistic quantum information have been devoted to the study of entanglement on certain simple families of Unruh-mode entangled states in non-inertial frames. In the fermionic case remarkable results such as the survival of entanglement at infinite acceleration have been obtained. In this talk we will present and analyze some issues related to the anticommuting character of fermionic field operators, which have been overlooked in the past, sometimes leading to unphysical results. We provide a simple way of obtaining physical results, yielding interesting consequences such as convergence of field entanglement for different families of Unruh mode-entangled states in the infinite acceleration limit.

- Fermionic entanglement ambiguity in noninertial frames, M. Montero and E. Martín-Martínez, Phys. Rev. A 83, 062323 (2011).
 Follow-up: K. Brádler, R. Jáuregui, Phys. Rev. A 85, 016301 (2012), M. Montero and E. Martín-Martínez, Phys. Rev. A 85, 016302 (2012).
- Convergence of fermionic-field entanglement at infinite acceleration in relativistic quantum information, M. Montero and E. Martín-Martínez, Phys. Rev. A 85, 024301 (2012).

・ロットの日々 日々 日々 日々 しょう

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

Entanglement of field states

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

(a) < (a) < (b) < (b)

æ

DQQ

Quantization depends on the observer

 Quantization in Minkowski coordinates: Minkowski modes ^uM,

$$c_{\mathsf{M}} \left| 0 \right\rangle_{\mathsf{M}} = d_{\mathsf{M}} \left| 0 \right\rangle_{\mathsf{M}} = 0.$$

 $(c_{M} \rightarrow \text{particle modes}, d_{M} \rightarrow \text{antiparticle modes})$

- Alice \rightarrow Minkowski modes.
- Quantization in Rindler coordinates: Rindler modes u_I, u_{II},

$$c_{\mathrm{I}} \ket{0}_{\mathrm{Rindler}} = c_{\mathrm{II}} \ket{0}_{\mathrm{Rindler}} = d_{\mathrm{I}} \ket{0}_{\mathrm{Rindler}} = d_{\mathrm{II}} \ket{0}_{\mathrm{Rindler}} = 0.$$

• Rob \rightarrow Rindler modes.

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

The Unruh modes

- They define the same vacuum as the Minkowski modes: $c_{\rm U}(r,q_{\rm R}) |0\rangle_{\rm M} = 0.$
- They have a simple expression in terms of Rindler modes.
- Parametrized by two parameters: q_R and r.

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

イロン イロン イヨン イヨン

- 문

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

The parameters and the states

 The parameter r can be related to Rob's acceleration and probing frequency:

$$\tan r = e^{-\pi c \omega/a}, \quad r \in [0, \pi/4].$$

- *q*_R is related to the spatial localization of the Unruh modes at *r* = 0 (equivalently, *a* = 0).
- We consider linear combinations of $|0\rangle_{M}$ and Unruh excitations, $c_{U}^{\dagger}(r, q_{R}) |0\rangle_{M}$, such as

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left[\mathbf{I} + c^{\dagger}_{\mathsf{Alice}} c^{\dagger}_{\mathsf{U},\mathsf{Rob}}(r,q_{\mathsf{R}}) \right] |0\rangle_{\mathsf{M}} \,.$$

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

< 🖓 > < 🖘 > < 🗣

Relativistic Quantum Information

Partial traces and fermion-qubit mappings The physical ordering: RQI Summary The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

Computing entanglement measures

- Express Rob's part of the state in the Rindler basis.
- 2 Compute the density matrix $ho = |\Psi\rangle\langle\Psi|$ and trace out region II unobservable modes.

イロン イロン イヨン イヨン

귿

DQC

Compute entanglement measures.

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

Previous results

Negativity as a function of r, for different q_{R} :

We can show that at $r = \pi/4$ entanglement measures must be independent of $q_R \rightarrow$ Contradiction!

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

イロン イロン イマン イマン

Convergence at infinite acceleration: Why

At infinite acceleration, the Unruh excitations are

$$\begin{split} c_{\mathsf{U}}^{\dagger} &= \frac{1}{\sqrt{2}} [(q_{\mathsf{R}} c_{\mathsf{I}}^{\dagger} - q_{\mathsf{L}} d_{\mathsf{I}}) + (q_{\mathsf{L}} c_{\mathsf{II}}^{\dagger} - q_{\mathsf{R}} d_{\mathsf{II}})] = a_{\mathsf{I}}^{\dagger} + a_{\mathsf{II}}^{\dagger}, \\ q_{\mathsf{L}} &= \sqrt{\frac{1}{2} - q_{\mathsf{R}}^{2}}, \quad a_{\mathsf{I}}^{\dagger} |0\rangle_{\mathsf{M}} = a_{\mathsf{II}}^{\dagger} |0\rangle_{\mathsf{M}}, \end{split}$$

so that the field state may be written as

 $|\Psi
angle = A_{\mathsf{I}} |0
angle_{\mathsf{M}}$.

If we compute the reduced state

 $\operatorname{Tr}_{\mathsf{II}}(|\Psi\rangle \langle \Psi|) = A_{\mathsf{I}} \operatorname{Tr}_{\mathsf{II}}(|0\rangle_{\mathsf{M}} \langle 0|_{\mathsf{M}}) A_{\mathsf{I}}^{\dagger} \propto A_{\mathsf{I}} A_{\mathsf{I}}^{\dagger}.$

it does not depend on q_{R} .

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

DQA

The Unruh effect Entanglement of field states Previous results Convergence of entanglement at infinite acceleration

Convergence at infinite acceleration: Why

• At infinite acceleration, the Unruh excitations are

$$\begin{split} c_{\mathsf{U}}^{\dagger} &= \frac{1}{\sqrt{2}} [(q_{\mathsf{R}} c_{\mathsf{I}}^{\dagger} - q_{\mathsf{L}} d_{\mathsf{I}}) + (q_{\mathsf{L}} c_{\mathsf{II}}^{\dagger} - q_{\mathsf{R}} d_{\mathsf{II}})] = a_{\mathsf{I}}^{\dagger} + a_{\mathsf{II}}^{\dagger}, \\ q_{\mathsf{L}} &= \sqrt{\frac{1}{2} - q_{\mathsf{R}}^{2}}, \quad a_{\mathsf{I}}^{\dagger} |0\rangle_{\mathsf{M}} = a_{\mathsf{II}}^{\dagger} |0\rangle_{\mathsf{M}}, \end{split}$$

so that the field state may be written as

$$|\Psi\rangle = A_{\mathsf{I}} |0\rangle_{\mathsf{M}}$$
.

If we compute the reduced state

$$\operatorname{Tr}_{\mathsf{II}}(|\Psi\rangle \langle \Psi|) = A_{\mathsf{I}} \operatorname{Tr}_{\mathsf{II}}(|0\rangle_{\mathsf{M}} \langle 0|_{\mathsf{M}}) A_{\mathsf{I}}^{\dagger} \propto A_{\mathsf{I}} A_{\mathsf{I}}^{\dagger}.$$

it does not depend on q_{R} .

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

< <p>>

<日><10</td>

Bases and orderings Fermion-qubit mappings The physical ordering

Fock space bases and orderings

• Toy model: Two fermionic modes *a* and *b*,

 $\{a, a^{\dagger}\} = \{b, b^{\dagger}\} = 1, \quad \{a, b\} = \{a^{\dagger}, b^{\dagger}\} = 0.$

- Some possible Fock space bases:
 - *a*, *b* ordering,

 $|00\rangle = |0\rangle, |10\rangle = a^{\dagger} |0\rangle, |01\rangle = b^{\dagger} |0\rangle, |11\rangle = a^{\dagger} b^{\dagger} |0\rangle.$

• b, a ordering,

 $|00\rangle' = |0\rangle, |10\rangle' = a^{\dagger} |0\rangle, |01\rangle' = b^{\dagger} |0\rangle, |11\rangle' = b^{\dagger} a^{\dagger} |0\rangle.$

- Each operator ordering defines a basis.
- The change of basis from one ordering to another is nonlocal.

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

32

DQQ

Partial traces

 We want to perform a partial trace over *a* modes on a given state *ρ*.

Bases and orderings

The physical ordering

Fermion-qubit mappings

- Naïve idea: Write down ρ in the *a*, *b* or the *b*, *a* basis
- Perform the trace as in a qubit system.
- This is what we call a fermion-qubit mapping.

The reduced state depends on the particular fermion-qubit mapping.ightarrow Which one, if any, is correct?

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

イロン イヨン イヨン イヨン

DQC

æ

Bases and orderings Fermion-qubit mappings The physical ordering

Partial traces

- We want to perform a partial trace over a modes on a given state ρ.
- Naïve idea: Write down ρ in the *a*, *b* or the *b*, *a* basis
- Perform the trace as in a qubit system.
- This is what we call a fermion-qubit mapping.

The reduced state depends on the particular fermion-qubit mapping. \rightarrow Which one, if any, is correct?

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI

イロン イ団 と イヨン イヨン

귿

Bases and orderings Fermion-qubit mappings The physical ordering

The physical ordering

 A fermion-qubit mapping returns the correct reduced state of the fermionic system if in the corresponding operator ordering all traced modes appear to the right of all untraced modes.

$$|1\dots 1\rangle = \underbrace{b_1^{\dagger}, \dots b_k^{\dagger}}_{\text{Untraced modes}} \underbrace{a_1^{\dagger}, \dots a_l^{\dagger}}_{\text{Traced out modes}} |0\rangle.$$

- This way the *a* modes will give no spurious signs when computing matrix elements.
- Previous literature made use of fermion-qubit mappings but did not employ the physical operator ordering.

M. Montero, E. Martín-Martínez Physical results with fermions in RQI

ヘロマ ヘロマ ヘロマ

DQQ

Physical ordering: RQI

Previous results:

Physical ordering: RQI

The physical ordering: Results

M. Montero, E. Martín-Martínez

Physical results with fermions in RQI