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Abstract: We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time
evolution of a large number of initially anisotropic states as determined, on the one hand, by the full non-linear Einstein's equations and, on the
other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that
exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of order /T, with T the final equilibrium
temperature. We comment on possible extensions to less symmetric situations.
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The gauge/string duality

| Gauge Theory

String Theory
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Deconfinement (QGP) = Black Hole

Black Hole
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Out of equilibrium

Out-of-equilibrium QFT

!

Classical Dynamical GR in AdS
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Remember

* QCD dual is beyond supergravity.
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Remember

* QCD dual is beyond supergravity.

* Do not try to do precision. QCD physics.

e Search for physical insights.
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In the context of HIC

* Fast isotropization of the QGP (~ 1 fm/c) remains
outstanding challenge.

* Consider simplest possible set-up in AdS/CFT:
[sotropization of homogeneous 4D CFT plasma
(e.g. N=4 SYM plasma).
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In the context of HIC

* Fast isotropization of the QGP (~ 1 fm/c) remains
outstanding challenge.

* Consider simplest possible set-up in AdS/CFT:

[sotropization of homogeneous 4D CFT plasma
(e.g. N=4 SYM plasma).

* Homogeneity: 9, 7" =0 — o177 =0
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In the context of HIC

* Fast isotropization of the QGP (~ 1 fm/c) remains
outstanding challenge.

* Consider simplest possible set-up in AdS/CFT:

[sotropization of homogeneous 4D CFT plasma
(e.g. N=4 SYM plasma).
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In the context of HIC

® Fast isotropization of the QGP (~ 1 fm/c) remains
outstanding challenge.

* Consider simplest possible set-up in AdS/CFT:
[sotropization of homogeneous 4D CFT plasma
(e.g. N=4 SYM plasma).

* [HHomogeneity: o, 7"
L. -

e No hvdrodynamics: w —

® Only “quasi-normal modes” (QNM).
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Posing the problem: Causal Structure

JAAS

timelike
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Posing the problem: Causal Structure

Equilibrium horizon

JdAdS

timelike)
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Posing the problem: Causal Structure

Equilibrinm horizon

JAdS

timelike

Out-of-equilibrium horizon

Most general initial
state for 51D metric

compatible with constraints
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Posing the problem: Causal Structure

Equilibrinm horizon

JAAS
timelike)
,\ll SONTrces
Out-of-equilibrium horizon

Dvnamics

Most general initial
state tor 51D metric

compatible with constraints

Characterized by infinite

number of scales.
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Posing the problem: Causal Structure

JAdS

timelike
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Dvnamics

Source
Most general initial
Vacuum state for 51D metric

AdS compatible with constraints

Characterized by infinite

number of scales.

Compare with
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Posing the problem: Causal Structure

JAdS

timelike

,\ll SONrces

Dvnamics

Source
Mosrt general initial
Vacuum state for §1D metric

AdS compatible with constraints

Characterized by infinite

number of scales.
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Posing the problem

* Generalized Eddington-Finkelstein coordinates:
ds® = 2dtdp — Adt* + X% *Pdx? + S2ePdx3

A, X, B functions of £, p only.

Dvnamics
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Posing the problem

* (yeneralized l':(l(fingt(m Finkelstein coordinates:

ds* = 2dtdp — Adt* 4+ E?e *dx} + T%e”dx;

A. X, B functions of £, p only.

® In equilibrium:

2 17,4 Dvnamics
1= p°(1—p,/p

g (] P o
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Posing the problem

* (yeneralized [':(l(iingt(m Finkelstein coordinates:

f

J\: _’;H,f".n .lll,-l + \:'Ir .';r/_r:" . \_"Ir ‘;r/,\":
A, X, B functions of £, p only.
* Near-boundary fall-off:

iy 2b.(t)* Dvnamics
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Posing the problem

® Generalized Eddington-Finkelstein coordinates:
ds* = 2dtdp — Adt* + X%e*Pdx? + S2ePdx?

A, X, B functions of £, p only.

* Near-boundary fall-off:

2b4(t)? Dvnamics

Y l){.‘t(;rlﬂill(_‘h: i _-)__ - 11 P (T). Pxlt). Pllf

and API(t) 3ba(t)
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Posing the problem

® Generalized Eddington-Finkelstein coordinates:

ds® = 2dtdp — Adt* + £%e *Pdx? + S2ePdx?
A, X, B functions of £, p only.
* Near-boundary fall-off:

s 2b.(1)* Dvnamics

' fpt S i
-diag |E, P.(t), Pc(t), Py(t

3as/4 and AP(t) 3b4(t)

® In particular, B determines AP = P, —P,.
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Posing the problem

® Generalized Eddington-Finkelstein coordinates:

ds® = 2dtdp — Adt* + %e P dx? + £2ePdx?

A. X, B functions of £, p only.

* Einstein’s equations: L
« .. ]

Derivatives along sngoing and outgorng null geodesics

M=K & h h + LA0.h
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Posing the problem

* (Generalized [':(l(lingt(m Finkelstein coordinates:
ds® = 2dtdp — Adt* + £%e*Pdx? + S2ePdx3
A, X, B functions of £, p onlv.

* Einstein’s equations: L

TR RETRE,

Z.cro radial derivative

e Constraints: Z.ero time derivative
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Posing the problem

* (yeneralized [':(l(fingt(m Finkelstein coordinates:

4)’\'1 _’.‘Hr/l{f ,ll/f'l

2

(

f

'.‘“r/_.r:" | \‘_" "A,f_\-“'

A, X, B functions of £, p only.

* Einstein’s equations:

e (Constraints:

Dvnamics

TR RN,

Z.ero radial derivative

Z.ero time derivative
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Posing the problem

* (yeneralized [':(l(iingt(m Finkelstein coordinates:

J-«" _}r”r!;r .lll,-l + \:'Ir I"‘rJJI.r__" . \:'Ir ‘;r/,\":

A. X, B functions of £, p only.

* Einstein’s equations: LTS

¢ Initial state specified by B(t = 0, p).
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Posing the problem

* (yeneralized [':(Mingt(m Finkelstein coordinates:

ds® = 2dtdp — Adt* + L% *Pdx? + S2ePdx3

A. X, B functions of £, p only.

* Einstein’s equations: SiHdS

® Initial state specified by B(f = 0. p).

e CFT: Must specity anisotropy distribution in modes.
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Posing the problem

* (yeneralized [f(l(lingt(m Finkelstein coordinates:

ds® = 2dtdp — Adt* + ?e*Pdx? + 2P dx3

A, X, B functions of £, p only.

* Einstein’s equations: T
« CS

¢ Initial state specified by B(f = 0. p).
e CFT: Must specify anisotropy distribution in modes.

® Infinitely-many-scales problem.

Pirsa: 12060013 Page 29/76



Time evolution IAAS

® In equilibrium:

Dyvnamics

* Evolve initial state according to:

» Full, non-linear EEQs.
» EEQs linearized around final equilibrium state.
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Motivation: Close-limit Approximation

* BH collision in asymptotically flat 4D general relativity:

&) -
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Motivation: Close-limit Approximation

* BH collision in asymptotically flat 4D general relativity:

Common horizon
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Motivation: Close-limit Approximation

* BH collision in asymptotically flat 4D general relativity:

View as perturbation
of final BH
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Motivation: Close-limit Approximation

* BH collision in asymptotically flat 4D general relativity:

Evolve linearized EEQs
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Motivation: Close-limit Approximation

* BH collision in asymptotically flat 4D general relativity:

— -
<+ -
< ~>
& ~

e Wave-form at infinity accurately reproduced (but perhaps
non-asymptotic properties would not be).
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Motivation: Close-limit Approximation

* BH collision in asymptotically Hat 4D general relativity:

,— -
<+ -
< ~>
& ~

e Wave-form at infinity accurately reproduced (but perhaps
non-asymptotic properties would not be).

* Analog in AdS: Boundary stress-tensor.
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Results
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Results

Horizon

JAAS
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Results

Horizon

Full AP(t)/E
JAdS
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Results

Horizon

Full AP(t)/E
JAdS
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Results

Horizon

APt/ E

Full AP(t)/E
JAdS

Pirsa: 12060013 Page 41/76



Results

® Over 2000 initial profiles.
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Results

® Over 2000 initial profiles.
* Mav or may not have AH at t=0.

* Ratio of scales gives accuracy: 2/10 ~ 20%
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Results

®* Over 2000 initial profiles.
e Mav or may not have AH at t=0.

® Ratio of scales gives accuracy: 2/10 ~ 20%
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Results

Over 2000 initial profiles.
May or may not have AH at t=0.
Ratio of scales gives accuracy: 2/10 ~ 20%

AP(t)/€ ~10 implies far from equilibrium.
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Results

* “Entropy” increases during isotropization.

1.0r

U,

Apparent

horizon

Event

horizon

0.6
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Results

® [sotropization time of order 1/T predicted by LA within 20%.

AP((t)/€ < 0.1
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Results

* “Entropy” increases during isotropization.
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Results

® Over 2000 initial profiles.
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Results
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Results

® Over 2000 initial profiles.
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Expand in QN Ms
AB(t.r) Zn b, (1) '
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Results

® [sotropization time of order 1/T predicted by LA within 20%.

AP((t)/€ < 0.1
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Expand in QNMs (Full / Linear / QNM)
oB(t, r) Z;_h_;;n '

—
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Expand in QNMs (Full / Linear / QNM)
OB(t. r) Zi_hiall '

—
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Discussion

* (Gauge: Small perturbations around equilibrium plasma

— Linear response theory
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Discussion

® (Gauge: Small perturbations around equilibrium plasma

— Linear response theory
® Gravity: Small perturbations around equilibrium black hole
— Linearized Einstein’s equations

* [n both cases expect linear APProx. if AP/E <
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Discussion

Gauge: Small perturbations around equilibrium plasma

— Linear response theory

Gravity: Small perturbations around equilibrium black hole

— Linearized Einstein’s equations

In both cases expect linear approx. if AP/E <

In Fourier space:

» HDMs: w . as ¢
» QNMs: w(0) # 0

Pirsa: 12060013 Page 62/76



Pirsa: 12060013

Discussion

Gauge: Small perturbations around equilibrium plasma

— Linear response theory

Gravity: Small perturbations around equilibrium black hole

— Linearized Einstein’s equations
In both cases expect linear approx. if AP/E <

In Fourier space:

» HDMs: W
» QNMs: w(0) # 0

We have studied farfrom-equilibrium dynamics of QN Ms.
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Discussion

® For small perturbations:

QNMs relax linearly and independently, with i
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Discussion

® For small perturbations:

QNMs relax linearly and independently, with ©"" ~ 1 /I w

¢ Extend to not-so-small perturbations by adding interactions.
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Discussion

* For small perturbations:

QNMs relax linearly and independently, with ¢:7" ~ 1 /I w;,

¢ Extend to not-so-small perturbations by adding interactions.

* Expected to break down for AP /E ~ 1 .... but it does not.
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Discussion

* For small perturbations:

QNMs relax linearly and independently, with ¢:"" ~ 1 /I w;,

¢ Extend to not-so-small perturbations by adding interactions.

* Expected to break down for AP /E ~ 1 .... but it does not.

* Relaxation still characterized by few frequencies.
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Discussion

* For small perturbations:

QNMs relax linearly and independently, with ¢:"" ~ 1 /Im w;,
* Extend to not-so-small perturbations by adding interactions.
* Expected to break down for AP /E ~ 1 .... but it does not.
* Relaxation still characterized by few frequencies.

® Linear approx. valid for stress tensor 1-point function;

other observables probably not well captured.
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Discussion

® For small perturbations:

QNMs relax linearly and independently, with ¢°"" ~ 1 /I w;,
¢ Extend to not-so-small perturbations by adding interactions.
* Expected to break down for AP /E ~ 1 .... but it does not.
* Relaxation still characterized by few frequencies.

® Linear approx. valid for stress tensor |-point function;
other observables probably not well captured.

* Next step: Include hydrodynamics (boost-invariant case).

* Preliminary results indicate it works.
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Potential implication

Initial state
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Potential implication

Initial state
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Potential implication

Initial state
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Potential implication
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Potential implication
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Potential implication

Common horizon

, T e

Full non-linearity of gravity encoded in the initial horizon.
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Thank you.
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