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Abstract: It is well known that superradiance can extract energy from a black hole and, in an asymptotically global AdS background, it drives the
black hole unstable. The onset of superradiance also signals a bifurcation to a new family of AdS black holes in a phase diagram of stationary
solutions. We construct non-linearly the hairy black holes, solitons and boson stars associated to scalar superradiance. We present both charged and
rotating solutions with scalar hair. In the charged case, the structure of phase diagram varies considerably, depending on the charge of the
condensate. In the rotating case, the hairy solutions give the first examples of black holes with only a Killing field: the black holes are neither
stationary nor axisymmetric, but are invariant under a single Killing field which is tangent to the null generators of the horizon. <br>We discuss the
role of these solutionsin afull time evolution of the superradiant instability. We emphasize how scarce is our knowledge of the rotating superradiant
instability endpoint, and that thisinstability will compete with the turbulent instability of AdS.
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Cutline:

* Superradiance
e Charged Superradiance:

Hairy black holes and solitons in global
e Rotating Superradiance:

BHs with a single Killing field
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-—»’ﬁlparrac{uxmt Scattering _ o . o
- Zel’dovich 71°, Storobinsky, 73, Unruh 76

* Superradiant scattering on a rotating BH or charged BH:
Scalar
Waves incident upon a BH Electromagnetic,
Gravitational
with angular velocity £y or chemical potential u = ! waves

are amplified by superradiant scattering if @ < m L4

b = [[, ()) ¢ ’-n-‘f( rm o

* [n the ergoregion, Killing vector that defines energy measured by asymptotic observers becomes spacelike.
So, we can have negative energy excitations (absorbed by horizon) that,
asymptotically look like positive outward flux.

Energy extraction occurs classically and BH spins-down.

* Why can we have superradiance only for @ <m Qn ?

First law applied to emission process from BH with A F : and d.J

K
L —ﬁ_—l” W !H(__)H‘

87

Superradiance of modes with @ > m H would violate the second law of thermodynamics

Page 5/47



e ":ur;’e'_rradiant Instabilities

e [nsert a mirror around a rotating absorbing cylinder: ( Zel’dovich, 1972)
Multiple reflection & amplification =~ [nstability
e [nsert a mirror around a rotating black hole ( BH ):

9

Make a black hole bomb! ( Press, Teukolsky, 19

( Cardoso, OD., Lemos,Yoshida, 2004 )

e Natural mirrors around a rotating or charged BH

Global AdS box (Cardoso, OD, 2004: Uchikata, Yoshida 2010 ...)
Massive scalar field (Detweiller; Dolan; Kodama, Yoshino ...

KK momentum (Cardoso, Lemos 2005; OD. 2006 ...)
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B ":ur;’k'_T‘T“&dLQnL' Instabilities

e [nsert a mirror around a rotating absorbing cylinder: ( Zel’dovich, 1972)
Multiple reflection & amplification —p [nstability
e [nsert a mirror around a rotating black hole ( BH ):

9

Make a black hole bomb! ( Press, Teukolsky, 19

( Cardoso, OD, Lemos,Yoshida, 2004 )

e Natural mirrors around a rotating or charged BH

Global AdS box (Cardoso, OD, 2004; Uchikata, Yoshida 2010 ...)
Massive scalar field (Detweiller: Dolan; Kodama. Yoshino ...

KK momentum (Cardoso, Lemos 2005: OD., 2006 ...)
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0712.0791.

. . . . . OD, Emparan, Maccarrone
e Superradiant scattering — <= Stimulated cmission

* But, semiclassically there 1s also spentaneous superradiant emission

* To 1solate superradiance, we need an extremal rotating BH

0 = Absence of Hawking emission Ergo-cold BH
with only
Rotating = Presence of ergoregion superradiant emission

* Rotation in SUGRA solution «=  Fermionic excitations charged under R-symmetry group on CFT
L- sector is thermally excited: provides for the entropy.

R-sector (77— 0, Sg — 0) populated by polarized fermions filling up energy levels up to the Fermi level
T'=0 but

L.R-movers are still available to annihilate and emmit a closed string to the bulk.

spontancous emission absor ption process

Net result of competition: superradiant scattering
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Hairy black holes and solitons in global AdS,

1112.4447. OD, Figueras, Minwalla, Mitra, Monteiro, Santos

See also 1112.3979, Gentle, Rangamani, Withers

e AdS Abelian Higgs model: AdS Einstein - Maxwell gravity interacting with a charged massless scalar field

| o I I .

8rlGs : |

* Field content: gravity, Maxwell field and a charged complex scalar.

e Static and spherically symmetric solutions:
expect a three parameter family of solutions parametrized by {M,0.¢}.

ds?® f(r)dt* + g(r) dr= + r= dQ7,, | A, dxt = A(r)dt,

* AdS Reissner-Nordstrom BH: EQ=EQ(Ru)

Regular extremal limit, with near horizon geometry AdS: = 8§27, with Sext # 0:

with

Page 9/47



¢ AdS Reissner-Nordstrom BH has two instabilities:

1) Superradiant Instability:
I[f a wave e 1@ scatters off a charged black hole with 0 <w=epu,
it returns with a larger amplitude: superradiant scattering.

In AdS, the outgoing wave reflects-off infinity: Multiple Superradiance / Reflection leads to instability.

Can we estimate the instability onset?

¢ The scalar modes that can propagate in RN-AdS, for R

are effectively the normal modes of global AdS: ;A.,'{ —e l R _2/) . Lowest mode has p = 0.

® On the other hand, small extremal black holes require ;< f1. /
\ 1—0

» Arbitrarily small extremal RN-AdS black holes are superradiant unstable for
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¢ AdS Reissner-Nordstrom BH has two instabilities:

1) Superradiant Instability:
If a wave ¢1@I scatters off a charged black hole with 0<w=epu,
: /
it returns with a larger amplitude: superradiant scattering.

In AdS, the outgoing wave reflects-off infinity: Multiple Superradiance / Reflection leads to instability.

Can we estimate the instability onset?

e The scalar modes that can propagate in RN-AdS, for [

are effectively the normal modes of global AdS: ;A.f{ e l + _2/) . Lowest mode has p = 0.

® On the other hand, small extremal black holes require ;< f1, /
\ 21—

Pirsa: 12060010 Page 11/47



¢ AdS Reissner-Nordstrom BH has two instabilities:

1) Superradiant Instability:
Ca wave e 10 geatters off a charged black hole wi m=epu,
If a way lwf t f1 harged black hole with 0 <w =e¢ey
it returns with a larger amplitude: superradiant scattering.

In AdS, the outgoing wave reflects-off infinity: Multiple Superradiance / Reflection leads to instability.

Can we estimate the instability onset?

e The scalar modes that can propagate in RN-AdS, for [

are effectively the normal modes of global AdS: ;A.,'{ p— [ + _2/) . Lowest mode has p = 0.

® On the other hand, small extremal black holes require ;1 < f1. /
\ 2—0
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2) Near-Horizon scalar condensation instability:

. . . - y
* Consider charged massive scalar field: Q-mg-@p=10

Normalizable modes — scalar field must obey the BF bound: 771

e Take any extreme, AdSs BH whose near-horizon geometry contains an AdS: factor w/ radius [ags;:

. . ) |
the BF bound associated to this AdS:, m~ -
sINH BF [ ]2
\d S,

, 1s different from the BF of AdS.

N

In particular 1f: 2 ) D)

m= < mc < ml. ,
— S — SINH BF

STBF
then the asymptotic AdSs space will be stable, but the near-horizon geometry is unstable.

» This suggests that the AdSs BH

will be unstable to scalar condensation of scalar field !

» Confirmed in 1007.3745 . OD. R lo Monteiro, H o S
\ scalar field condensation instabilityv of rotating AdS BHs
ANY  extreme BH with AdS: NH geometry has this instability. Includes:
* Charged BHs (e.g. planar RN-AdS (holographic superconductors) where it was 1st found )
e Rotating (uncharged or charged) BHs

e Static and uncharged BHs: hyperbolic Schwarzschild-AdS with spatial horizon topology H“*
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2) Near-Horizon scalar condensation instability:
e Return to the particular RN-AdS case where we start with massless scalar.
Linearized eq for charged ¢ on NH RN-AdS reduces to eq for a massive scalar with effective mass:

4 ) ] ) { )
Jec - - 2R*-
)

miligc -
el 8 (2 + 3R2)2

y . . ‘) )
® 4dS> is unstable whenever it violates the 2d BF bound: ;;;‘/‘1 1
& SACLD D

. F . ‘ 24\9
» extremal RN-AdS i1s unstable whenever . 2(0< + 3R<)*

f_[_ ) ) L) ]
3R=((= + 2R-)

e The RHS i1s a monotonically decreasing function of R.At large R, this reduces to

2(0? + 3R?%)?

_ _ O/ R?)
SR*(¢? + 2R?)

It follows that large extremal RN-AdS BHs are unstable when

Note that when R—0 the NH instability requires ¢

So NH instability # Superradiant instability
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Hairy black holes and solitons in global AdS,

1112.4447. OD, Figueras, Minwalla, Mitra, Monteiro, Santos

See also 1112.3979, Gentle, Rangamani, Withers

* AdS Abelian Higgs model: AdS Einstein - Maxwell gravity interacting with a charged massless scalar field

| . | I )
/ff'-f'\ g { (Rlg| + 12) FrnFH /’,..u'}

8rlis 2 |
* Field content: gravity, Maxwell field and a charged complex scalar.

e Static and spherically symmetric solutions:
expect a three parameter family of solutions parametrized by {M.,0.¢}.

ds?® _“I'M//J f y;['r']:/r: b r? rfﬂf;'];,l‘. .\Nf/.!‘”

* AdS Reissner-Nordstrom BH: EQ=EQ(Rnu)

Regular extremal limit, with near horizon geometry AdS: = 8§27, with Sext # 0:

floxt with
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2) Near-Horizon scalar condensation instability:

e Return to the particular RN-AdS case where we start with massless scalar.
Linearized eq for charged ¢ on NH RN-AdS reduces to eq for a massive scalar with effective mass:

p ) 9 ) ¢ )
e R (< + 2R~

]

m:l5 e
5 \lf‘“‘ru Q ‘{_

‘ ‘) )
SH=)-

y . . ‘) )
® AdS> is unstable whenever it violates the 2d BF bound: !H'/_\ 16
& SACED D

. F . ‘ 2419
» extremal RN-AdS i1s unstable whenever . 2(0< + 3R<)~

f_{_ ‘ ) ) L) ]
3R=((= + 2R=)

e The RHS is a monotonically decreasing function of R.At large R, this reduces to

2(0? + 3R?%)?

TR2([2 o R2) O (/R
Dyahe “ T &1Il”

It follows that large extremal RN-AdS BHs are unstable when

Note that when R—0 the NH instability requires ¢

So NH instability Superradiant instability
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Heuristics (conclusion): RN-AdS BHs (apparently) stable for 22 <3
Very large extremal RN-AdS BHs are NH unstable when e? 2> 3.

Arbitrarily small extremal BHs are superradiant unstable when €2 > >32/3

Linear instability analysis of zero-modes (@ =10) confirms expectations:

-

Critical value of scalar charge e(M, Q) for instability:
e For given R, minimum value of ¢2 1s for extremal BHs

1

* ¢2min monotonically decreases from 32/3 to 3 as BH size
e For ¢2 <3 all BHs are stable under scalar condensation.

* Fore?>32/3, all extremal BHs are unstable.

AM = M — Mext,
Wext 1s the mass of the extremal RN AdS BH
with the same charge Q

%

» Assuming that hairy BHs bifurcate from RN-AdS family at the onset of the instability,

this suggests we should look into 3 regimes

e“l? < 3
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Heuristics (conclusion): RN-AdS BHs (apparently) stable for e > <3

Very large extremal RN-AdS BHs are NH unstable when e? 2> 3.

Arbitrarily small extremal BHs are superradiant unstable when €2 > >32/3

Linear instability analysis of zero-modes (@ =0) confirms expectations:

Vs

Critical value of scalar charge e(M, Q) for instability:
e For given R, minimum value of ¢2 1s for extremal BHs

1
s '

* ¢2min monotonically decreases from 32/3 to 3 as BH size
e For ¢2 <3 all BHs are stable under scalar condensation.

* Fore?>32/3, all extremal BHs are unstable.

AM = M — Mext,
Mext 1s the mass of the extremal RN AdS BH
with the same charge Q

A

» Assuming that hairy BHs bifurcate from RN-AdS family at the onset of the instability

this suggests we should look into 3 regimes

Pirsa: 12060010 Page 18/47



AM =M — Mext, where Mext is mass of extremal RN AdS with same charge O

Q

* Soliton curve terminates at a naked singularity at some finite Q
(‘Chandrashekhar® limit) where Kl|,-0— % & f(0)=0.

* Q vs. £(0) has a (possibly infinite) series of

self-similar damped oscillations as we approach /(0) =0

* £ vs. Q. has spiralling behavior towards the singular solution.
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e Soliton curve terminal

(*Chandrashekhar™
e Q vs. /(D) has a (po

self-similar damped

es vs. Q. has spirallin
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AM =M — Mext, where Mext is mass of extremal RN AdS with same charge O

Q

* Soliton curve terminates at a naked singularity at some finite Q
(‘Chandrashekhar® limit) where Kl|,-0— 2 & f(0)=0.

* Q vs. £(0) has a (possibly infinite) series of

self-similar damped oscillations as we approach /(0) =0

* £ vs. Q. has spiralling behavior towards the singular solution.
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e Soliton curve termindal

(*('handrashekhar™ hm

e Q vs. /(D) has a4 (po
self-similar damped ¢

vs. Q. has spirallin;
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. RN AdS BHs above extremality ( AM =0 ).

* Black curve: soliton branch with cusps that ends in singularity.

* Blue region: hairy BHs
(*horizontal” lines: fixed values of &, and R, to the left;
‘diagonal’ blue lines near green curve are segments of a

hairy BH with fixed R, and ¢ / to the right)
* Lower mass bound of hairy BHs 15 well described at small QO
by the dashed green line (perturbative prediction).

* Red curve: line of marginal modes of the linear problem;
agrees w/ dashed magenta line for small Q

(perturbative prediction).

* Soliton curve and the hairy BHs surface

are NOT related in the range 3 <e?/? <32/3.
In particular, soliton family does not arise as

a zero size limit of the hairy BH.

* We find large hairy BHs, but NO small hairy BHs in agreement with:

large extremal RN-AdS are NH unstable when ¢*/°> 3,

but small extremal RN-AdS are superradiant unstable only when ¢°/°

* Keeping ¢ fixed as R ™, we approach lower mass bound of hairy BH: T—0 & Ky—> as R—Ruin .

* These results suggest that, for 3 <e*/* <32/3, hairy BHs have an extremal singular limit,

* Solitons are more massive than the extremal hairy BHs of the same charge
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RN AdS BHs above extremality ( AM = 0).

Black curve: soliton branch (no cusps; no end).

Blue region: hairy BHs
- (*horizontal” lines: fixed values of &, and R ™, to the left;
-
- A “di al’ blue line AT OTReT CTITUe ATe e . g
\\\\\\\\\\\ diagonal’ blue lines near green curve are segments of a
- OO

hairy BH with fixed R, and & / to the right)
Red curve: line of marginal modes of the linear problem:
agrees w/ non-lincar hairy BHs in limit ¢—0.

0.16

0.2: Blue

0.3: Purple
0.4: Green
0.5: Brown

0.7: Pink

* Soliton curve now lies entirely below RN AdS region,
& it continues for arbitrarily large values of Q.

* Soliton curve and hairy BHs surface are now related:

For Q < Qc~ 0.75, soliton is zero size limit of hairy BH (T—x)

However, for Q > @, lower mass bound of hairy BHs

is an extremal singular ( 7—0 & Ky— ) solution below the soliton.

Pirsa: 12060010
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RN AdS BHs above extremality ( AM =0 ).

Black curve: soliton branch (no cusps; no end).

Blue region: hairy BHs
- (*horizontal” lines: fixed values of &, and R ™, to the left;
-
-~ A “di al’ blue line e, . ,
\\\\\\\\“\ diagonal’ blue lines near green curve are segments of a
SN \".\“\

hairy BH with fixed R, and & / to the right)
Red curve: line of marginal modes of the linear problem:
agrees w/ non-lincar hairy BHs in limit £¢—0.

Q.16

0.2: Blue

0.3: Purple
0.4: Green
0.5: Brown

0.7: Pink

* Soliton curve now lies entirely below RN AdS region,
& it continues for arbitrarily large values of Q.

* Soliton curve and hairy BHs surface are now related:

For Q < Qc~ 0.75, soliton is zero size limit of hairy BH (T—x)

However, for Q > @, lower mass bound of hairy BHs

is an extremal singular ( 7—0 & Ky— ) solution below the soliton.
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e Actually the story for the boson stars is slightly more intricate:

1112.3979, Gentle, Raneamani, Withers

\
32

3 there 1s not one but two BS branches that merge for e°/°
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What have we learned so far ¢

* RN AdS 1s unstable both to superrandiant and near-horizon scalar condensation instabilities
* The onset of superradiant/ NH scalar condensation instabilities 1s a merger/bifurcation curve
to new family of charged hairy BHs
* RN-AdS not only static BH. Intricate BH / soliton phase diagram structure that depends on range of €.
* Phase space of static BHs of the Einstein-Maxwell theory, minimally coupled to a charged scalar field,
in global AdS 1s now probably complete.

( If spatial horizon topology is R* ( instead of S%) hairy BHs describe holographic superconductor phase;

Our BHs reduce to these in limit radius §* — «, and are dual to superfluid phases of QFT on R, x §°.

* Given (M, O}, Shairy B > Skx ags ¢ For fixed €, hairy BHs should be endpoint of charged superradiance

e=0.1

time evolution of the system would confirm this expectation

)

e However, could the hairy BHs be only a metastable state’

le, shouldn’t we expect hairy BHs to be superradiant unstable?

NO: Given (M, O}, M hairvBln < Ry ags and such that

superradiant modes no longer fit inside AdS:

Remon>e u
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b

Whaot have we Llearned so {'&T‘i

* RN AdS 1s unstable both to superrandiant and near-horizon scalar condensation instabilities
* The onset of superradiant/ NH scalar condensation instabilities 1s a merger/bifurcation curve
to new family of charged hairy BHs
* RN-AdS not only static BH. Intricate BH / soliton phase diagram structure that depends on range of €.
* Phase space of static BHs of the Einstein-Maxwell theory, minimally coupled to a charged scalar field.
in global AdS 1s now probably complete.

( If spatial horizon topology is R* ( instead of S*) hairy BHs describe holographic superconductor phase;

Our BHs reduce to these in limit radius §* — «, and are dual to superfluid phases of QFT on R, x §°.

* Given (M, O}, Shairy B > Skrx ags ¢ For fixed €, hairy BHs should be endpoint of charged superradiance

€
time evolution of the system would confirm this expectation

)

* However, could the hairy BHs be only a metastable state’

le, shouldn’t we expect hairy BHs to be superradiant unstable?

NO: Given (M, O}, M hairvBn < Ry ags and such that

superradiant modes no longer fit inside AdS:

Re eon > e u
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BHs with a single Killing field. Rotating Superradiamce
OD, Gary Horowitz, Jorge Santos, 1105.4167

-

* AdS-Einstein gravity (ind = 5) minimally coupled to 2 complex massless scalar fields [1’:

L[ 12 2 Gay — 60 2ga, = Ty
™ / d’r\/—yg {/I) b — 2 |VII ‘| g
o V211 = 0

f-
* Look for boson star and (hairy) BH solutions whose gravitational and scalar fields obey the ansatz:

) . dr= Cos (/ B | y ) )
fgdte 7 T ) do (__’(U) - I(lll‘)‘ - sin” 0do®)

) \

* MP-AdS with equal J 1s case lI=0, g = 1/h.

&
Unstable to m-superradiant modes above m-line.
Most unstable mode is m =1
Blue curve describes Extremal MP
of
f v Y
b

I'y I.\,y _=r"‘f "\. hir.)

* Boson stars are smooth horizonless solutions
( with harmonic time dependence e¢” ')
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BHs with a single Killing field. Rotating SLLPerradLamce

OD, Gary Horowitz, Jorge Santos, 1105.4167

* AdS-Einstein gravity (ind = 5) minimally coupled to 2 complex massless scalar fields [1/:

| - 12 |2
: d’r\/—g | R+ — — 2|VII
167 J v L= =t
' VIl =0

solutions whose gravitational and scalar fields obey the ansarz:

v . 9 J—
(rufr - ('”( —.(Jfffh /uh

* Look for boson star and (hairy) BH

dr= , Cos (/ , ) )
I.r,'l“‘I { I; -7 h (tli' } N do (__)(“) f 1 {ll”‘ } -;|]|‘”(l<ﬁ]

* MP-AdS with equal J 1s case lI=0, g = 1/h.
Unstable to m-superradiant modes above m-line.
Most unstable mode is m =1

Blue curve describes Extremal MP

’.j\ {

|
d—2
/” | I.l,/ o', \/ /Hl'.}
* Boson stars are smooth horizonless solutions

( with harmonic time dependence e¢” ')
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= Single KVE:
e Killing Vector Field of the hairy solutions:
Symmetry of the solution must leave both the metric and matter fields invariant:
Gravitational field gu» has 5 linearly independent KVF: | &4, ¢y, 3 rotations of 5%}

— . p p
However, the only linear combination which leaves Il invariant is: /\ ()f ", ()f‘

Lig=0 and L1 =0 for a 1.2

Only KVF of the hairy solutions: J{° 0y + w ()

1

* |[K|u =0 — event horizon is Killing horizon. Stationary but not time symmetric nor axisymmetric BH

e Does it contradict rigidity theorems?

...which show that stationary BHs must be axisymmetric...

(RT assumes 3 stationary KV &, that is not normal to H...= 37,)

NO, these theorems are not applicable to these BHs, since our

(stationary) single KVF generates the horizon, ie it is normal to horizon

e Not usual to have solutions where matter fields have much less symmetry than the metric !

Doublet scalar field ansatz is special; it conspires in such way that 7, only depends on radial coord:
T, = (n”u';),,n 1 ,'),,nz),,][') Gt (;),uu*']]') Iy =T..(7)

Pirsa: 12060010
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= Single KVEF:
e Killing Vector Field of the hairy solutions:
Symmetry of the solution must leave both the metric and matter fields invariant:
Gravitational field gu» has 5 linearly independent KVF: | &4, ¢y, 3 rotations of §°}.

— . :
However, the only linear combination which leaves [l invariant is: /\ ()

W (.), ,

Lig=0 and L1 =0 for o 1.2

Only KVF of the hairy solutions: J{’ Oy + w d

1

* |[K|u =0 — event horizon is Killing horizon. Stationary but not time symmetric nor axisymmetric BH

e Does it contradict rigidity theorems?
...which show that stationary BHs must be axisymmetric...

(RT assumes 3 stationary KV ¢, that is not normal to H...= 37,)

NO, these theorems are not applicable to these BHs, since our

(stationary) single KVF generates the horizon, ie it is normal to horizon

e Not usual to have solutions where matter fields have much less symmetry than the metric !

Doublet scalar field ansatz is special; it conspires in such way that 7, only depends on radial coord:
—[:rfn - ((l)u]]"‘)hll 1N fl)u[I(‘)h][’) o ,’}'fl|> ((‘)r[[(‘){l]]‘) /rl/IJ /rifJ[:./‘]
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BHs with a single Killing field. Rotating SLLPerradLamce

OD, Gary Horowitz, Jorge Santos, 1105.4167

* AdS-Einstein gravity (ind = 5) minimally coupled to 2 complex massless scalar fields [1/:

L [ . 12 oal?
: / d’r\/—g |R+ — — 2 |VII
167 J ve g
' VIl = 0

solutions whose gravitational and scalar fields obey the ansarz:

' . 9 —
(rufr - (J{ —,(quh /uh

* Look for boson star and (hairy) BH

dr= , Cos (/ , ) )
f.r,'lif‘l { i; Fre|h (tli' | = do (__’(“) f 1| (IIU‘ } -'|]l‘“(lu‘]

* MP-AdS with equal J 1s case lI=0, g = 1/h.
Unstable to m-superradiant modes above m-line.
Most unstable mode is m =1

Blue curve describes Extremal MP

’.j\ {

| :
L By 11ﬂ _=f"f‘ RY hir, )

* Boson stars are smooth horizonless solutions
( with harmonic time dependence e¢” ')
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= Single KVEF:
e Killing Vector Field of the hairy solutions:
Symmetry of the solution must leave both the metric and matter fields invariant:

Gravitational field gu» has 5 linearly independent KVF: | &y, &y, 3 rotations of 5°)
. . M M - . . , . e

However, the only linear combination which leaves [l invariant is: /\ (), — (W ()f‘

] v (X Y ¢

Lig=0 and LIl =0 for o = 1,2

Only KVF of the hairy solutions: J{° dy + w dy,

* |[K|u =0 — event horizon is Killing horizon. Stationary but not time symmetric nor axisymmetric BH

e Does it contradict rigidity theorems?

...which show that stationary BHs must be axisymmetric...

that is mot normal to H..= 3¢,)

(RT assumes 3 stationary KV ¢,
NO, these theorems are not applicable to these BHs, since our

(stationary) single KVF generates the horizon, ie it is normal to horizon
e Not usual to have solutions where matter fields have much less symmetry than the metric !

Doublet scalar field ansatz is special; it conspires in such way that 7, only depends on radial coord:

T, = ((},Ill"i),,li - ,')J,Iin,,li') — Gab (f‘),li(‘)"li‘) Tt = Top (1)

Page 38/47

Pirsa: 12060010



= Boundarv Conditions:
e Asymptotic BC:
BS & BH asymptote to global AdS w/ next-to-leading order terms fixing {M.J}. Il must be normalizable:
g.: asymptotic amplitude

o). g . — + O (r ™) of condensate [I

O (1

e [nner BC:

e
BS: are smooth horizonless solutions. Functions must be regular at » = 0. Regularity of I1

1+O (r?) h| . =1+0(%), Q| =0(1), I _ =0

BH: inner bdry is Horizon at r=r, defined as location where f(r,)= 0. Other functions are regular:
O(r—-r _ O(1 (1), o o)., I Of(l)

From the EOM evaluated at the horizon we further find that we must have:
= First law of thermodynamics: BS: dE=w d/ BH: d=wd/+TydS. with @ =Q

. . . . , - - . " -
= Properties of single KVF: K=+ wdy with norm |K|< fg+rih(m— Q)32
* BCs == |K|u =0 — cvent honizon 1s Killing horizon. K is always timelike just outside H and in neighboorhood of » = 0.
* BCs == |K|,.. — r2(@? —1/12). KVF is asymp. timelike/null/spacelike depending on whether o/ < 1, w/=1orwl > 1.

* Our solutions all have @l > 1. So, not globally stationary: effective ergoregion at large 7 where Il is concentrated.
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= Perturbative construction of Boson stars and hairy BHs:
e Rotating Boson Stars: smooth horizonless geometries with harmonic time dependence.
* One-parameter family of solutions: in the perturbative regime can be parametrized by &

* Construct perturbatively BS fields through a power expansion in £ around global AdS:

r r
F(r, e) E Foi(r) e, [1(r, €) E [Ty (r) e, w(€)
j=0 1=0

) \ Expand also «: at linear order it is an AdS normal mode
{ 1.9. h, (--}1 but receives corrections at higher order

* Leading order contribution in the expansion, n = 0, describes the linear perturbation problem:
introduce non-trivial I1 in global AdS, but this condensate does not back-react on g,.
BCs fix regular Il and quantize its o ( normal mode of AdS):

[1(r)

o ' /"IJ . {_Eu “

¢ Go to higher order: back-reaction corrections in 2. (odd n) and corrections in Il and its o (even n):

15 22456447 | a . ‘
€ o ¢ + 0O (") v~ First law, dF = o dJ
28 35562240
77951

127008

| )( ,‘] p . \:;[f_’[ 1 ()‘ “}‘
( += ¢ . . € -+ f t ¢
‘ ' 1270080 ‘
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= Full non-linear construction of Boson stars and hairy BHs:

¢« Numerical method:

- standard relaxation (Newton-Raphson) method.
- spectral discretization on a Chebyshev grid.

- residual gauge freedoom, that leaves the gravitational/scalar fields invariant:

W= 0+ At (0 —=Q+ A,
Choose A to be such that Qo) =0 (the physical gauge) or ® = 0.
Use this freedom to optimize the numerical construction:
convergence Is better in different gauges in different regions of parameter space.
v Use First Law of thermodynamics to check numerics: maximal error of 0.005%

v" Check with perturbative construction of BS and hairy BHs [also Stotyn, Park, McGrath, Mann,d>5 |

* Non-linear code gives £ — (0 Hairy BHs that agree w/ m =1 threshold instability curve of linear code.

Onset of superradiant instability signals. in phase diag.. a merger line connecting MP-AdS with hairy BHs

e Boson star: In perturbative construction, ¢ appropriately parametrizes the solution,

For large {E.J}. € no longer defines the solution uniquely. Neither does (w,E, J)

Use instead the energy density IT'(0)> at BS center.
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* Boson star: For large {E.J}. € no longer defines uniquely solution. Neither does element of (o, E, J!

Use instead the energy density IT'(0)* at BS center.

Similar oscillations

for {E, J} vs I1(0)

3 ]

TIT(0) [IT'(0)

e Black hole: In perturbative construction: {&, r.} appropriately parametrizes the solution.
|
/|

For large {E.J}. {&, r+} no longer defines uniquely solution. Neither does any pair of {®m,E, .

BHs have squashed S* horizons: viewed as S' bundles over §°. -

ds

cos | / > ) )
h ( - - . | [ri”h - S1n” f)'(im_] )

Natural parametrization: size of | §', §°}: 'y =T4 \ /;(;-. )

| "
S -Aaryrs
| 31T
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= 'ull non-linear construction of Boson stars:

Zoom for small

0.0442 0.0444 0.0446

Ell? o2 i

0.00
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

JIPP

_ _ _ e Damped oscillatory behavior ( cusps, spirals ):
e Perturbative estimate for the merger line, ’

. | | OT captured by perturbative analys
Exact merger line using shooting linear code. NOT captured by perturbative analysis.
Ist law = extrema of £,/ are at same IT'(0)

* Extremal line of MP-AdS BHs. _
* Expect @ # of damped oscillations/cusps/spiral arms.

e Perturbative estimate for the bosons stars. ¢ BS is regularbut K| o grows large along BS branch

Exact I vs J tor the bosons stars ( Dots ).

e Some BS coexist with MP-AdS (purple 1s above blue).
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= Phase diagram:

0.015 /.\

AE : energy relative I
. |
to lower branch of

boson stars

0.010
AE/P

const

0.02 0.04
J/P

0.06

0.08

'd blue: extremal MP-AdS

( MP-AdS only exist above

® Solid purple curve: boson stars.

e Dotted red curve
hairy BH lines of constant ry//
(r1 /' along const r; line)

e Green “vertical™ sohd

hairy BH f constant Qy /.

* When two r; = const line cross we have non-uniqueness: same £,/ but different S.

e Close to the merger, the Syp < Shairy BH. SWP = Shairv B at merger — 2nd order phase transition.

« However, for sufficiently large ./, MP-AdS coexist with hairy BHs, and Syp > Shairv BH-

Moreover, the transition is now 1st order, because these solutions never merge for this range of J.

*In sum,in a 3d plot of { $/43, AEAZ, J/43 }:

J < J¢ : the hairy BH family i1s a 2d surface bounded by the merger line and the boson star curve

J > J¢ : Surface continues butis now bounded by extremal hairy BH curve & boson star line.

lhis 2d surface never intersects with itself and has a sequence of (regular) “cusp lines".
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= Conclusion:
* BHs with a scalar field condensate & orbitating around horizon.
e First example of stationary BH with single isometry: stationary but not time symmetric nor axisymmetric

* Does not contradict rigidity theorems

= Stability? What is the endpoint of rotating superradiant instability?

e Small {E, J} BS are deformations of AdS (linearly stable) and should be linearly stable (true for static BS)
e For larger {E, J}. we expect BS to become unstable. For static BS this occurs at maximum of £ (1% cusp)
« Hairy BHs should be the endpoint of m=1 superradiant instability. (5.~ gy = Smp for small |E J})
¢ All hairy BHs we find have Qu /> 1 => unstable to superradiant m>1 modes.
e Time evolution will never settle down?

That 1s, series of metastable configurations with higher & higher m-structure?
* What is the endpoint of the competition between superradiant and turbulent instabilities ?

[lme evolution of Superposition of modes:

e superradiance cause low @ modes to grow; high @ arc absorbed

e turbulent instability will cause higher @ modes to be created
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