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Summary

e INntroduction

Shock waves (fluids, plasmas)

String / gauge theory duality (

Strongly coupled plasmas in AdS/CFT

e Shock waves in AdS/CFT

Dual description and main properties
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Shock waves in fluids ( )

When an object moves supersonically in a fluid
generically creates shock waves. These shocks are
perturbations that propagate supersonically and
(usually) seen as discontinuities in the hydrodynamic
quantities.

supersonic
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Examples

MISSILE NOSE CONES 1953-1957 MANNED CAPSULE CONCEPT 1957

Photo by John Gay
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Shock waves in fluids ( )

When an object moves supersonically in a fluid
generically creates shock waves. These shocks are
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AdS/CFT correspondence (Maldacena)

Gives a precise example of the relation between
strings and gauge theory.

Gauge theory String theory

N=4 SYM SU(N) on R4 1B on AAS;xS°®

DY radius R

;_“\II 3 4 | ., C - A
Operators W/ conf. dim. A String states w/E = —

R
R/I. =(g;, N

th.
A small - field th.

A large - string

Pirsa: 12060009 Page 8/34



3

AdS/CFT correspondence and plasma physics

N=4 SYM at finite temperature is a conformal
plasma which is dual to a black hole in AdS space.

Z=0

boundary

" horizon

Black hole
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Hvdrodvnamics of the =4 conformal plasma

Low energy excitations of a plasma are given by
temperature variations and displacements characterized
by T and u, (4 variables). We define T and u,, through:

T w, = —3(71T)* u"

T, has nine indep.comp. Hydrodynamics determines

these 9 variables in terms of u, and T.
Then we can use 4 equations:

O, T" = 0
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Hydrodynamics from gravity (Battacharyya, Hubeny,
Minwalla, Rangamani)_

For any conserved T ,, we can find a dual metric

g,. (@asymptotically AdS + &6g,,— T,,)- However those

metrics are generically singular. For long wavelengths

(along the boundary direction) we can systematically

find the T  that gives rise to a non-singular metric.

v
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BHMR construction (more detail)

Eddington-Finkelstein coordinates (infalling)

>

ds=<

)

» ’ ‘D ’
—2u,, datdr — r= f(br)u, v, de de” + r= P dae da!

l
f(r) =1 — u? = |
r Vv 1 — 32

“tube wise approximation”:
wt — u, (), b — b(ax")

(g = .(/(”)(.')',-./)) - (.r/(l)(,')’,-./)) —+ ("_(/{2’(.)',-./)) —+ .-

(0)

‘),/':'),('“)_}_('i,' -+ ..

4

(0) (O)
b, = b, + €b,"" + ---

Grr = 0, Grp X Uy, Tr ((,q"") 'g‘”’) — 0. (n > 0)
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Second order differential egn. at each order:

£ g7 6] (g<”><r“>)

But always the same!. No derivatives of g©

We choose non-singular solution at the horizon and
normalizable at infinity.

This is the concrete implementation of the procedure.
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Gravitational resolution of the shock waves

Core: for strong shocks
It would require an
exact solution.
(numerical?)

Vv

Amplitude

If small then we can
use hydrodynamics 7

/

Exponential tails: small variations, linearized gravity.
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Weak Shock waves in (gravitational) hydrodynamics

Ideal hydro 7% = (a71)* (""" + 4u"u") ?)

e

Matching " L u”

T)('f |

)
07)
supersonic subsonic

.

Vi, Tl’l V2,'T2
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Higher order hydrodynamics: (v breaks time rev.)

We perform a systematic expansion in the amplitude
of the Sf?OCkI W =  U) t+ wy + we)

""Hl.

V2

TI8R U~ tanh & .

(= [11 cosl & _ 5 ‘
- {1\/3(1 In 2) — + HV2 (l;llnll‘g - tanh £ + ;)}

¢
-

¢

(‘ualll“ ('ur«}l;\

O

v 2 . v 2 . I ,
I oyt | 7,
“ ) “ ) 'I

L |
e . » i
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Entropy generation:

Current: s" = 4mnu’ — —o" (Loganayagam)

First order hydro
(symmetric)

Second order hydro
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Gravity dual: (using BHMR construction)
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Strong shock waves (linearized gravity)

.\'

V=V, +0V, V=V,+0V,

Even for strong shocks 0ov,/v; << 1 (0Vy/v, << 1)

We can use linearized gravity.

(()) 2 ol 4101
Yur — Ypuv -+ /”/11/? /’;m(/--"- r) = /'”/[;u/(f')( / o

" Boosted black hole =0, g imag.
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Strong shock waves (linearized gravity)

.\'

V=V,+0V, V=V,o,+0V,

Even for strong shocks 0ov,/v; << 1 (0Vy/v, << 1)

We can use linearized gravity.

(0) > ieot—
Gur = Gpv + Ny, h(t,a,r) =1r>H,, (re "

‘Boosted black hole =0, g Imag.
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Boundary conditions:

Infalling boundary conditions at the horizon are
analytically continued to give the correct b.c. breaking
the time reversal symmetry leading to the correct shock
wave. Equivalently we ask regularity in Eddington-

Filkenstein coordinates.

. dr=

) ) s ].() ) -
(/.s‘[_, /'_///,,,(/.!'/’(/.1" 1 —_)((f/ cosh 7 — darsinh )~
2

(ds7 y= [//m.(//"} + Hidae® + 2Hodtdr +~ H (dy= + (/::)} o
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)

Z(r) = Hopo(r) + (l +7 _> H (1)

" + Pu) 2 + Q(u)~Z O
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Results:

v = 0 (Auid at rest) e,
v = 1/v3 (the speed of sound) ¢ = 0

Vv 2/3 (the singular point) g =

v — 1 (ultrarelativistic limit)qo(v) - L.895 /7

w? cosh? 3 Scaling

P |
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|
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Results:

v = 0 (Auid at rest) e,
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Numerically:

Im(q)/7 1 Ultrarelativistic

sound
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Comparison with hydrodynamics:

_— gravity

F

Second order hydro

Israel-Stewart
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Further results:

The scaling of q for v — oo probes the ultraviolet of the
theory and should be interesting to study in other cases.
Even in the conformal case the exponent depends on
the dimension as q ~ y2/d

For a stationary solution the surface gravity should
be constant”? This would mean the temperature is
uniform. However the very definition of surface gravity
requires the existence of a Killing vector becoming
light-like at the horizon. We do not seem to have any.

Numerical metrics.
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V2 Matching conditions

L1/ L/
> n, 17" = n, T}

subsonic

T = T (" + duru”)

\\'I \\

| a = = Goethvier

/7 -, .
/ on' = —iC(w, 0, k,.,0)
n«= (0,1,0,0)

st bsonic side.

nmterface
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Generation of sound waves:
(corrugation instability)

Similarly as in the case of domain walls, the surface
of the shock can oscillate. These oscillations generate
sound-waves. In the case of viscous fluids the
oscillations are damped but can persist for a long time
for large wave-lengths.
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INn the subsonic side we have a superposition of a
sound and a shear wave.

Shear wave: Fluid at rest v, (y) is a solution (ideal fluid)
y A

s75h sosh —  L2ly o sh

(24

(>

-

X
Sound: pressure wave (c.2=1/3)
A o ke — wWos
7
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Conclusions

We performed a systematic study of how gravity

resolves shocks in AdS/CFT for the V=4 conformal
plasma.

For weak shocks we solve for the hydrodynamic shock
and reconstructed the metric. -

For strong shocks we computed the exponential tails

and found an interesting scaling for large vy factor:
ST~

Shock waves are important probes of the microscopic
description of the theory and should be carefully studied.
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