Title: Pentahedral Volume, Chaos, and Quantum Gravity

Date: May 30, 2012 04:00 PM

URL: http://pirsa.org/12050084

Abstract: The space of convex polyhedra can be given a dynamical structure. Exploiting this dynamics we have performed a Bohr-Sommerfeld quantization of the volume of a tetrahedral grain of space, which is in excellent agreement with loop gravity. Here we present investigations of the volume of a 5-faced convex polyhedron. We give for the first time a constructive method for finding these polyhedra given their face areas and normals to the faces and find an explicit formula for the volume. This results
br>in new information about cylindrical consistency in loop gravity and a couple of surprises about polyhedra. In particular, we are interested in discovering whether the evolution generated by this volume is chaotic or integrable as this will impact the interpretation of the spin network basis in loop gravity.
br>
br>

Pirsa: 12050084 Page 1/57

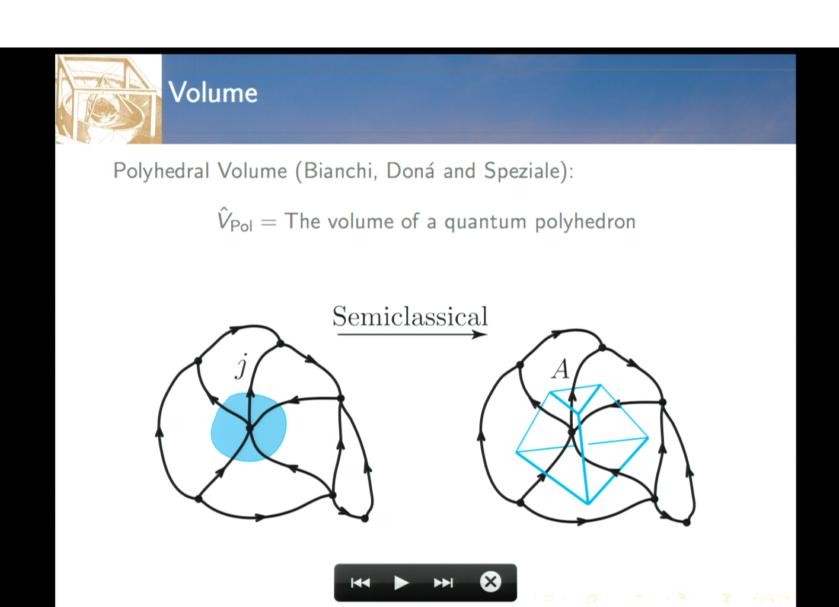
Pirsa: 12050084 Page 2/57

Pentahedral Volume, Chaos, and Quantum Gravity

Hal Haggard

May 30, 2012

Pirsa: 12050084 Page 3/57



Pirsa: 12050084 Page 4/57

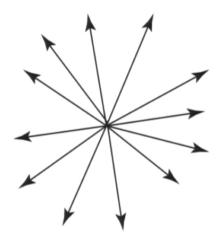
- 1 Pentahedral Volume
- 2 Chaos & Quantization
- 3 Volume Dynamics and Quantum Gravity

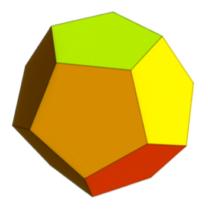
Pirsa: 12050084 Page 5/57

Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

$$\vec{A}_1 + \cdots + \vec{A}_n = 0.$$

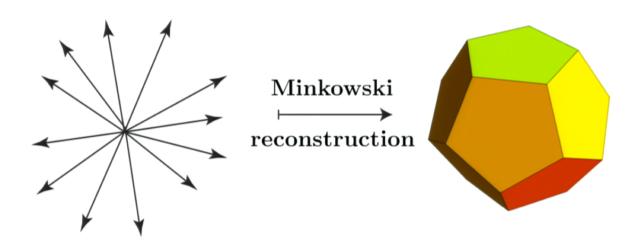




Minkowski's theorem: polyhedra

The area vectors of a convex polyhedron determine its shape:

$$\vec{A}_1 + \cdots + \vec{A}_n = 0.$$



Only an existence and uniqueness theorem.

Interpret the area vectors of tetrahedron as angular momenta:

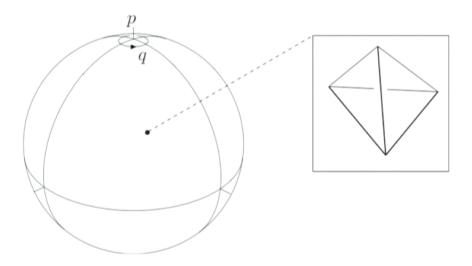
$$\vec{A}_1 + \vec{A}_2 + \vec{A}_3 + \vec{A}_4 = 0 \quad \Longleftrightarrow$$

For fixed areas A_1, \ldots, A_4 each area vector lives in S^2 .

Symplectic reduction of $(S^2)^4$ gives rise to the Poisson brackets:

$$\{f,g\} = \sum_{l=1}^{4} \vec{A}_{l} \cdot \left(\frac{\partial f}{\partial \vec{A}_{l}} \times \frac{\partial g}{\partial \vec{A}_{l}}\right)$$

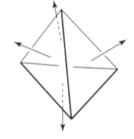
For fixed areas A_1, \ldots, A_4



$$p=|ec{A}_1+ec{A}_2|$$
 $q=$ Angle of rotation generated by p : $\{q,p\}=1$

Interpret the area vectors of tetrahedron as angular momenta:

$$\vec{A}_1 + \vec{A}_2 + \vec{A}_3 + \vec{A}_4 = 0 \quad \iff$$

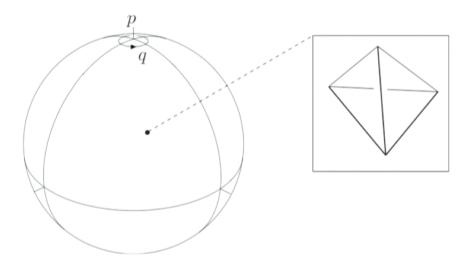


For fixed areas A_1, \ldots, A_4 each area vector lives in S^2 .

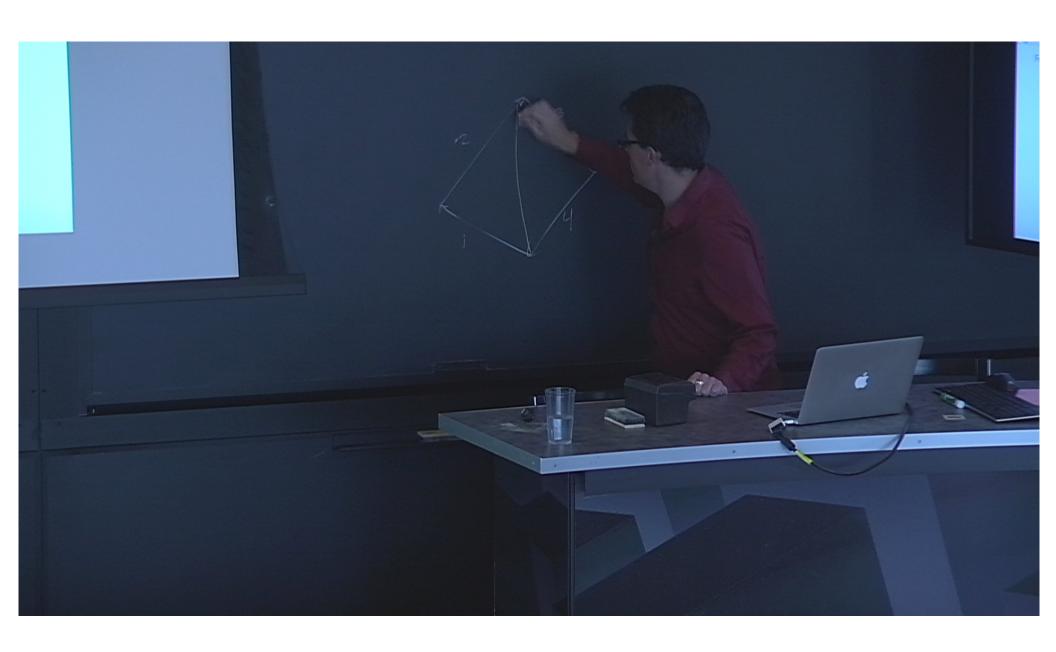
Symplectic reduction of $(S^2)^4$ gives rise to the Poisson brackets:

$$\{f,g\} = \sum_{l=1}^{4} \vec{A}_l \cdot \left(\frac{\partial f}{\partial \vec{A}_l} \times \frac{\partial g}{\partial \vec{A}_l}\right)$$

For fixed areas A_1, \ldots, A_4



$$p=|ec{A}_1+ec{A}_2|$$
 $q=$ Angle of rotation generated by p : $\{q,p\}=1$



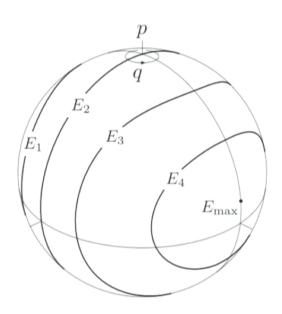
Pirsa: 12050084 Page 12/57

Pirsa: 12050084 Page 13/57

Dynamics

Take as Hamiltonian the Volume:

$$H = V^2 = \frac{2}{9}\vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3)$$



Bohr-Sommerfeld quantization

Require Bohr-Sommerfeld quantization condition,

$$S=\oint_{\gamma}pdq=(n+rac{1}{2})2\pi\hbar.$$

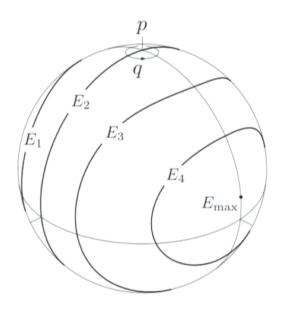
Area of orbits given in terms of complete elliptic integrals,

$$S(E) = \left(\sum_{i=1}^4 a_i K(m) + \sum_{i=1}^4 b_i \Pi(\alpha_i^2, m)\right) E$$

Dynamics

Take as Hamiltonian the Volume:

$$H = V^2 = \frac{2}{9}\vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3)$$



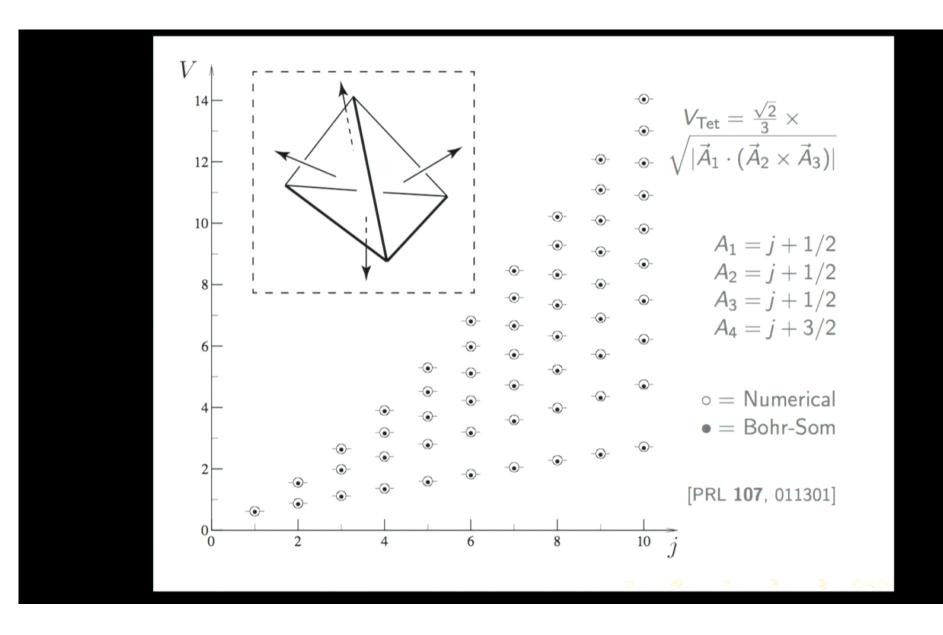
Bohr-Sommerfeld quantization

Require Bohr-Sommerfeld quantization condition,

$$S=\oint_{\gamma}pdq=(n+rac{1}{2})2\pi\hbar.$$

Area of orbits given in terms of complete elliptic integrals,

$$S(E) = \left(\sum_{i=1}^4 a_i K(m) + \sum_{i=1}^4 b_i \Pi(\alpha_i^2, m)\right) E$$



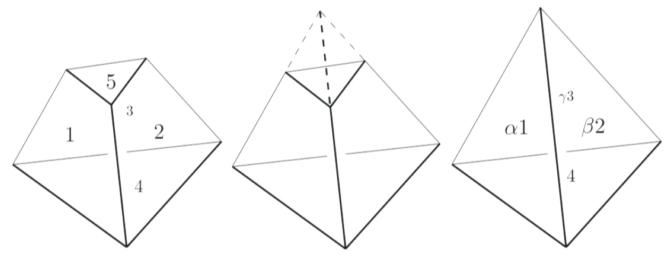
Pirsa: 12050084 Page 18/57

Table			
<i>j</i> 1 <i>j</i> 2 <i>j</i> 3 <i>j</i> 4	Loop gravity	Bohr- Sommerfeld	Accuracy
6667	1.828	1.795	1.8%
	3.204	3.162	1.3%
	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%
$\frac{11}{2}$ $\frac{13}{2}$ $\frac{13}{2}$ $\frac{13}{2}$	1.828	1.795	1.8%
	3.204	3.162	1.3%
	4.225	4.190	0.8%
	5.133	5.105	0.5%
	5.989	5.967	0.4%
	6.817	6.799	0.3%

Pirsa: 12050084 Page 19/57

Volume of a pentahedron

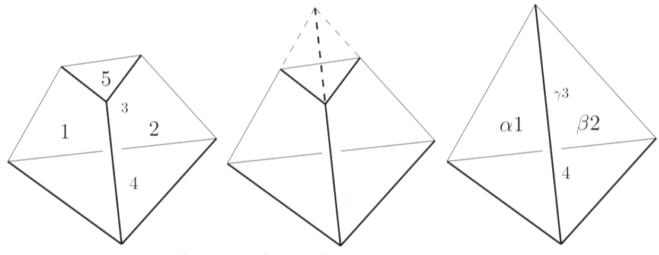
A pentahedron can be completed to a tetrahedron



Pirsa: 12050084 Page 20/57

Volume of a pentahedron

A pentahedron can be completed to a tetrahedron



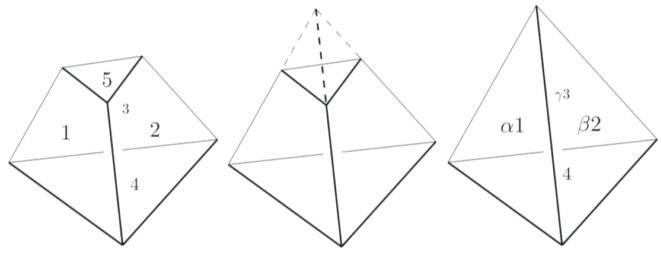
 $\alpha, \beta, \gamma > 1$ found from,

$$\alpha \vec{A}_1 + \beta \vec{A}_2 + \gamma \vec{A}_3 + \vec{A}_4 = 0$$

e.g.
$$\implies \alpha = -\vec{A}_4 \cdot (\vec{A}_2 \times \vec{A}_3) / \vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3)$$

Volume of a pentahedron

A pentahedron can be completed to a tetrahedron

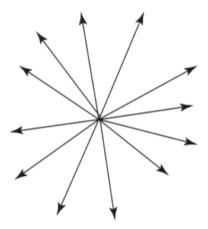


The volume of the prism is then,

$$V = \frac{\sqrt{2}}{3} \left(\sqrt{lphaeta\gamma} - \sqrt{(lpha-1)(eta-1)(\gamma-1)}
ight) \sqrt{ec{A}_1 \cdot (ec{A}_2 imes ec{A}_3)}$$

Adjacency and reconstruction

What's most difficult about Minkowski reconstruction? Adjacency!



Remarkable side effect of introducing α, β and γ : they completely solve the adjacency problem!

Pirsa: 12050084

Determining the adjacency

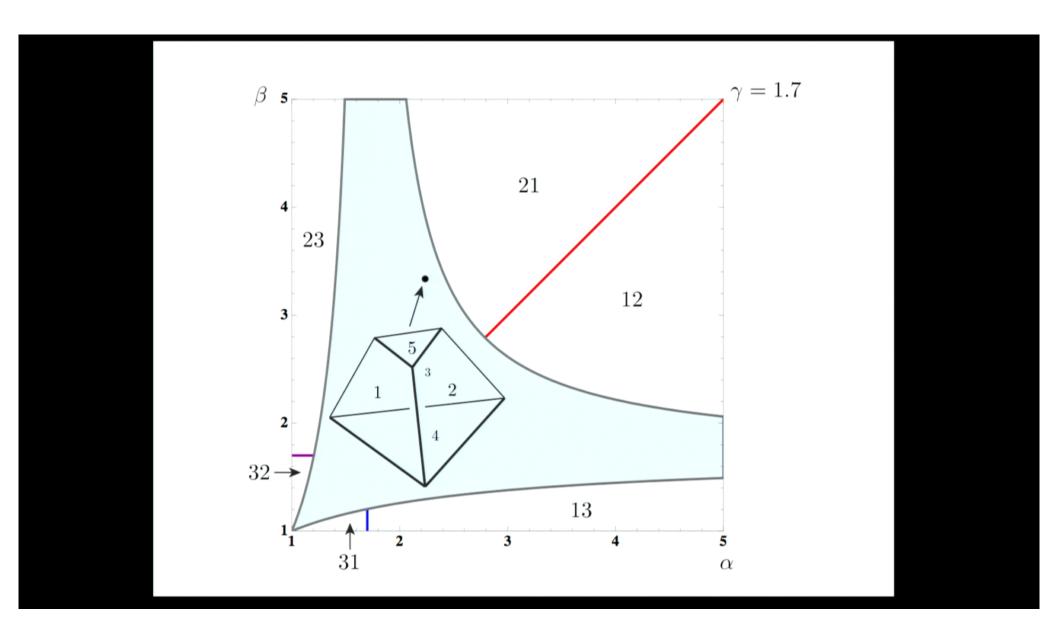
Let $W_{ijk} = \vec{A}_i \cdot (\vec{A}_j \times \vec{A}_k)$. Different closures imply,

$$\alpha_1 \vec{A}_1 + \beta_1 \vec{A}_2 + \gamma_1 \vec{A}_3 + \vec{A}_4 = 0,$$

$$\alpha \equiv \alpha_1 = -\frac{W_{234}}{W_{123}}$$
 $\beta \equiv \beta_1 = \frac{W_{134}}{W_{123}}$ $\gamma \equiv \gamma_1 = -\frac{W_{124}}{W_{123}}$

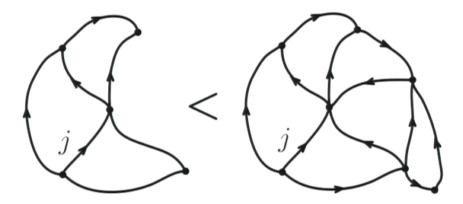
$$\alpha_2 = \frac{W_{234}}{W_{124}} = \frac{\alpha}{\gamma} \quad \beta_2 = -\frac{W_{134}}{W_{124}} = \frac{\beta}{\gamma} \quad \gamma_2 = -\frac{W_{123}}{W_{124}} = \frac{1}{\gamma}$$

They are mutually incompatible!



Cylindrical consistency

Smaller graphs and the associated observables can be consistently included into larger ones

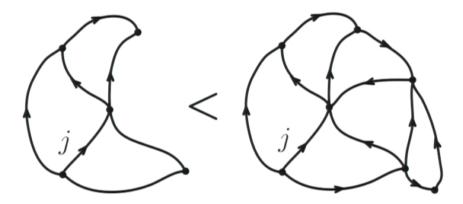


Cylindrical consistency is non-trivially implemented for the polyhedral volume

Pirsa: 12050084 Page 26/57

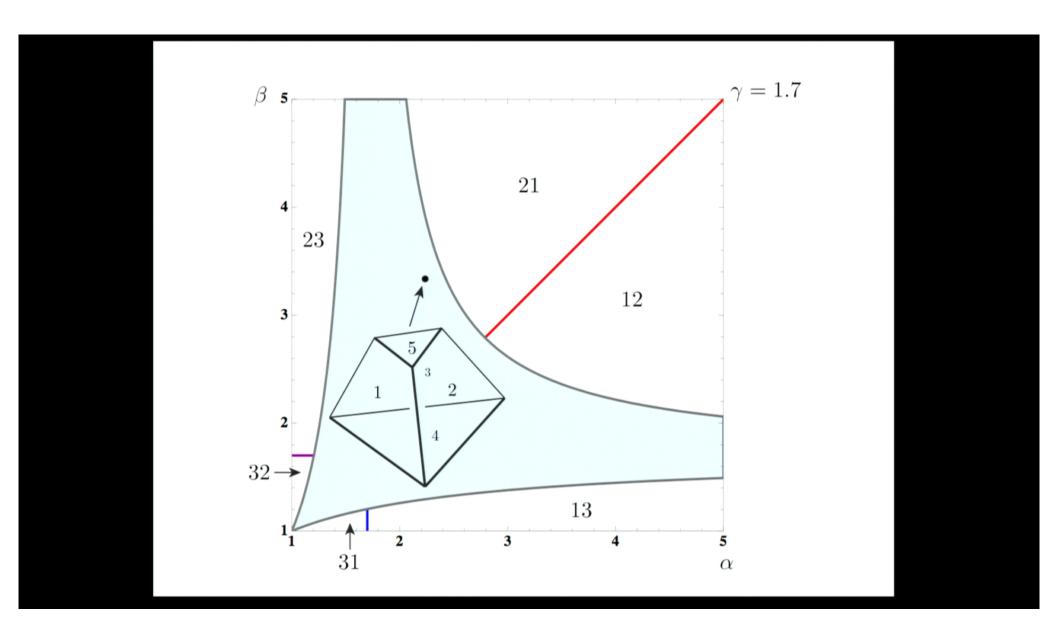
Cylindrical consistency

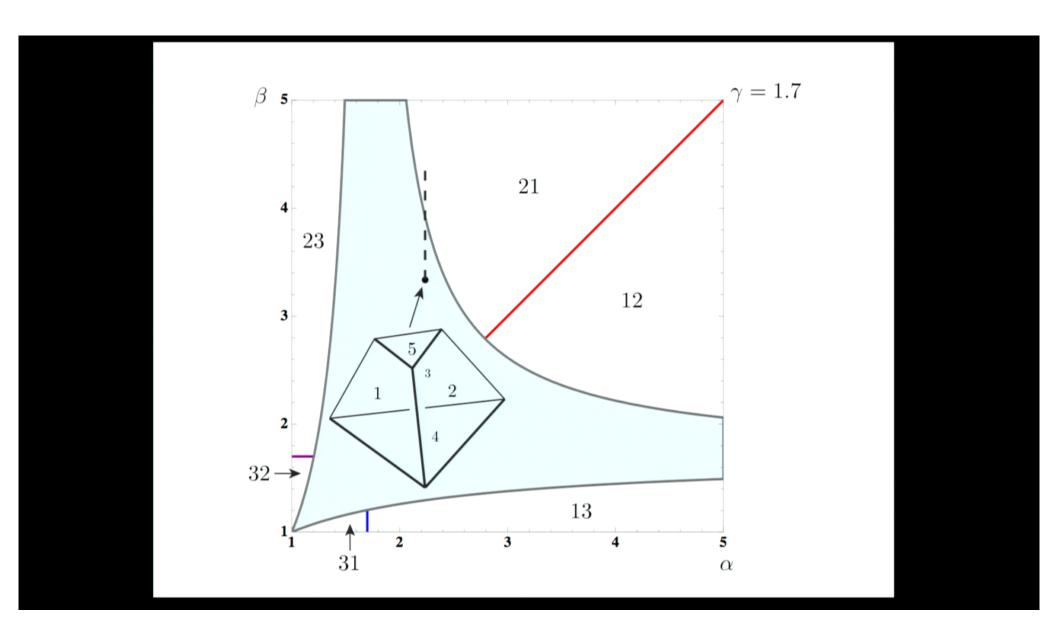
Smaller graphs and the associated observables can be consistently included into larger ones



Cylindrical consistency is non-trivially implemented for the polyhedral volume

Pirsa: 12050084 Page 27/57





- 1 Pentahedral Volume
- 2 Chaos & Quantization
- 3 Volume Dynamics and Quantum Gravity

Pirsa: 12050084 Page 30/57

Sommerfeld and Epstein extended Bohr's condition, $L=n\hbar$, as we have seen

$$S = \int_0^T \rho \frac{dq}{dt} dt = nh$$

and applied it to bounded, separable systems with *d* degrees of freedom,

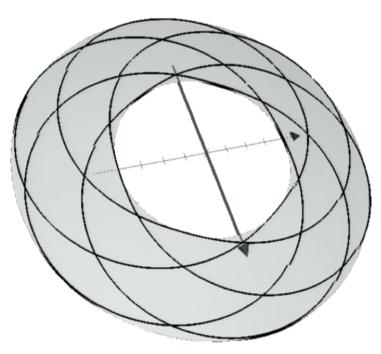
$$\int_0^{T_i} p_i \frac{dq_i}{dt} dt = n_i h, \qquad i = 1, \dots, d$$

Here the T_i are the periods of each of the coordinates.

Einstein(!) was not satisfied. These conditions are not invariant under phase space changes of coordinates.



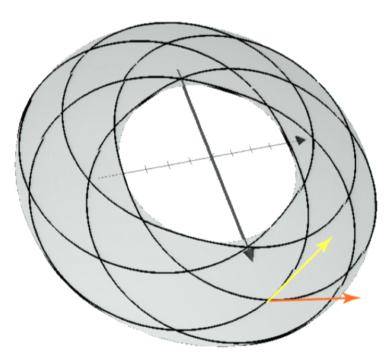
Motivating example: central force problems



In configuration space trajectories cross

Pirsa: 12050084 Page 32/57

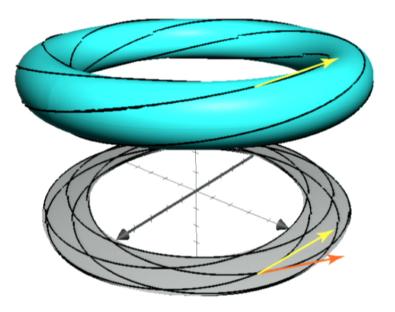
Motivating example: central force problems



Momenta are distinct at such a crossing

Pirsa: 12050084 Page 33/57

Motivating example: central force problems



In phase space the distinct momenta lift to the two sheets of a torus

Pirsa: 12050084 Page 34/57

Following Poincaré, Einstein suggested that we use the invariant

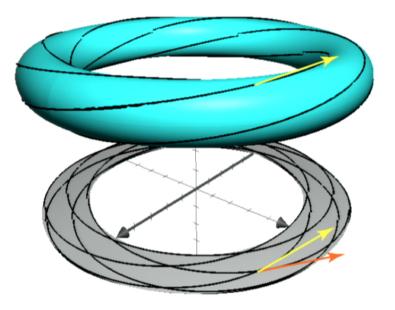
$$\sum_{i=1}^{d} p_i dq_i$$

to perform the quantization.

The topology of the torus remains under coordinate changes, and so the quantization condition should be,

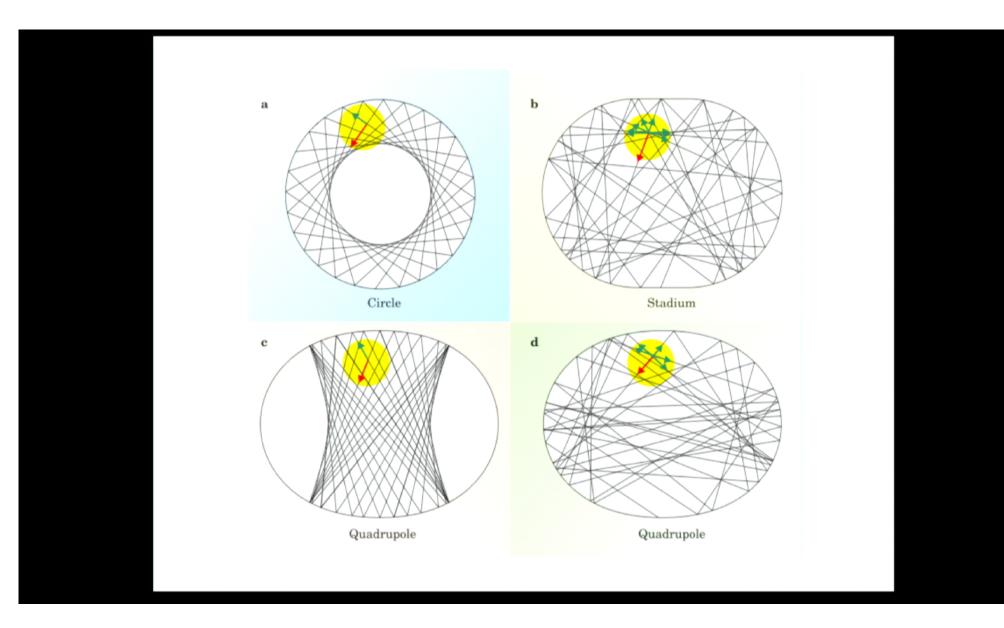
$$S_i = \oint_{C_i} \vec{p} \cdot d\vec{q} = n_i h.$$

Motivating example: central force problems



In phase space the distinct momenta lift to the two sheets of a torus

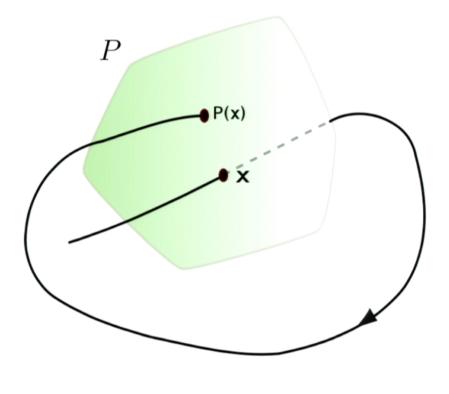
Pirsa: 12050084 Page 36/57



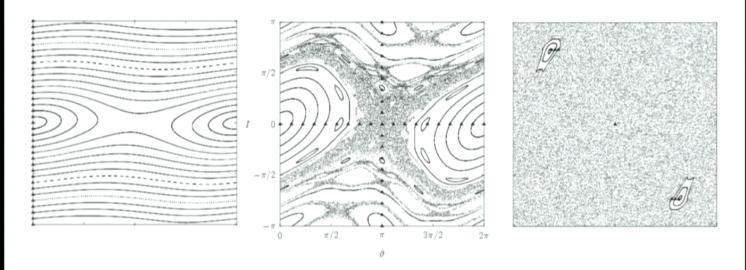
Pirsa: 12050084 Page 37/57

Surface of section

Visualizing dynamics with a surface of section



Pirsa: 12050084 Page 38/57



Pirsa: 12050084 Page 39/57

EBK quantization III

Following Poincaré, Einstein suggested that we use the invariant

$$\sum_{i=1}^{d} p_i dq_i$$

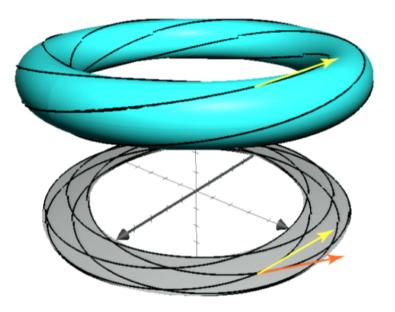
to perform the quantization.

The topology of the torus remains under coordinate changes, and so the quantization condition should be,

$$S_i = \oint_{C_i} \vec{p} \cdot d\vec{q} = n_i h.$$

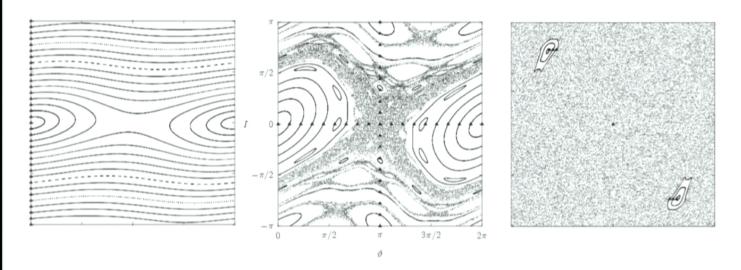
EBK quantization II

Motivating example: central force problems

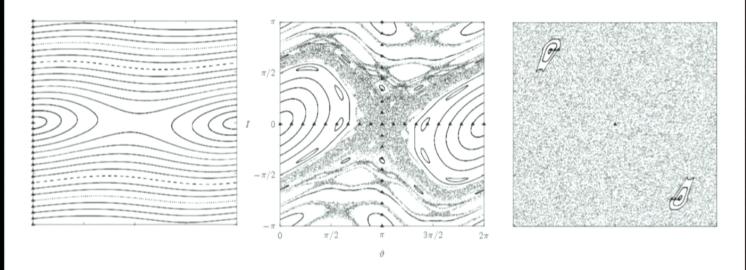


In phase space the distinct momenta lift to the two sheets of a torus

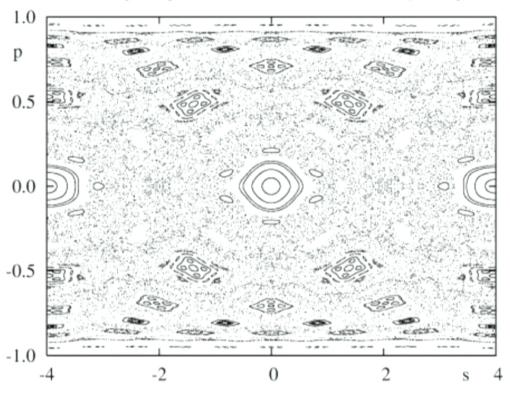
Pirsa: 12050084 Page 41/57



Pirsa: 12050084 Page 42/57



Pirsa: 12050084 Page 43/57



Toroidal Islands and island chains are left within a sea of chaos

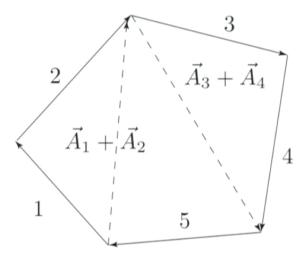
Pirsa: 12050084 Page 44/57

- 1 Pentahedral Volume
- Chaos & Quantization
- 3 Volume Dynamics and Quantum Gravity

Pirsa: 12050084 Page 45/57

Phase space of the pentahedron I

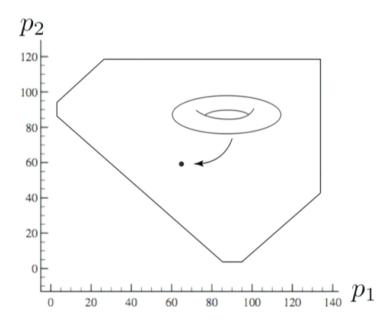
The pentahedron has two fundamental degrees of freedom,



The angles generated by $p_1=|\vec{A}_1+\vec{A}_2|$ and $p_2=|\vec{A}_3+\vec{A}_4|$.

Phase space of the pentahedron II

For fixed p_1 and p_2 these angles sweep out a torus.



The phase space consists of tori over a convex region of the p_1p_2 -plane.

Pirsa: 12050084 Page 47/57

Volume is nonlinear

The volume is a very nonlinear function of any of the variables we have considered:

$$V = rac{\sqrt{2}}{3} \left(\sqrt{lphaeta\gamma} - \sqrt{(lpha-1)(eta-1)(\gamma-1)}
ight) \sqrt{|ec{A}_1 \cdot (ec{A}_2 imes ec{A}_3)|}$$

Recall,

$$\alpha = -\frac{\vec{A}_4 \cdot (\vec{A}_2 \times \vec{A}_3)}{\vec{A}_1 \cdot (\vec{A}_2 \times \vec{A}_3)}, \quad \text{similarly for } \beta, \ \gamma$$

Forced to integrate it numerically.

Volume is nonlinear

The volume is a very nonlinear function of any of the variables we have considered:

$$V = rac{\sqrt{2}}{3} \left(\sqrt{lphaeta\gamma} - \sqrt{(lpha-1)(eta-1)(\gamma-1)}
ight) \sqrt{|ec{A}_1 \cdot (ec{A}_2 imes ec{A}_3)|}$$

Recall,

$$lpha = -rac{ec{A}_4 \cdot (ec{A}_2 imes ec{A}_3)}{ec{A}_1 \cdot (ec{A}_2 imes ec{A}_3)}, \qquad ext{similarly for } eta, \ \gamma$$

Forced to integrate it numerically.

Numerical integration

Fortunately, the angular momenta can be lifted into the phase space of a collection of harmonic oscillators. This allows the use of a geometric (i.e. symplectic) integrator.

Explicit Euler:
$$u_{n+1} = u_n + h \cdot a(u_n)$$

Implicit Euler:
$$u_{n+1} = u_n + h \cdot a(u_{n+1})$$

Symplectic Euler:
$$u_{n+1} = u_n + h \cdot a(u_n, v_{n+1})$$

$$v_{n+1} = v_n + h \cdot b(u_n, v_{n+1})$$

Implementation: Symplectic integrator preserves face areas to machine precision and volume varies in 14th digit

Numerical integration

Fortunately, the angular momenta can be lifted into the phase space of a collection of harmonic oscillators. This allows the use of a geometric (i.e. symplectic) integrator.

Explicit Euler:
$$u_{n+1} = u_n + h \cdot a(u_n)$$

Implicit Euler:
$$u_{n+1} = u_n + h \cdot a(u_{n+1})$$

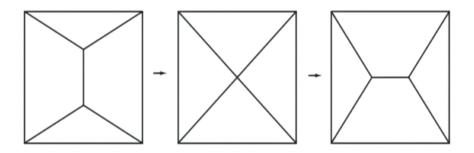
Symplectic Euler:
$$u_{n+1} = u_n + h \cdot a(u_n, v_{n+1})$$

$$v_{n+1} = v_n + h \cdot b(u_n, v_{n+1})$$

Implementation: Symplectic integrator preserves face areas to machine precision and volume varies in 14th digit

Volume dynamics: first results

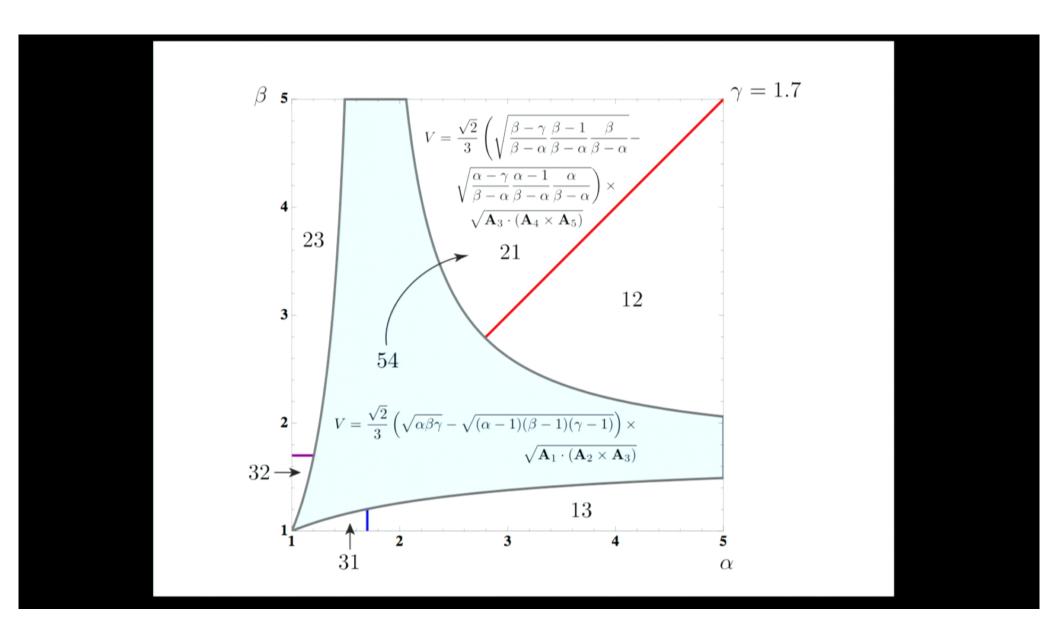
A Schlegel diagram projects a 3D polyhedron into one of its faces (left panel):

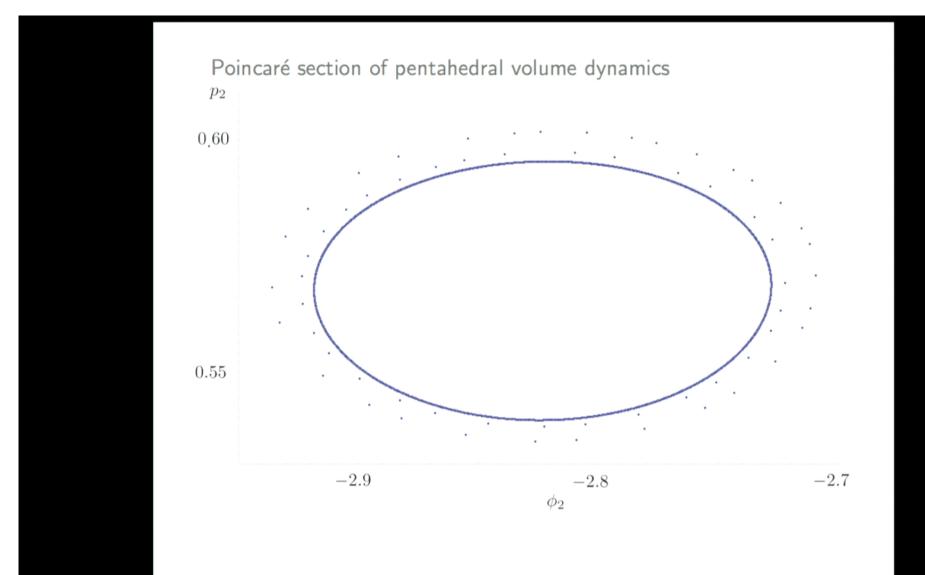


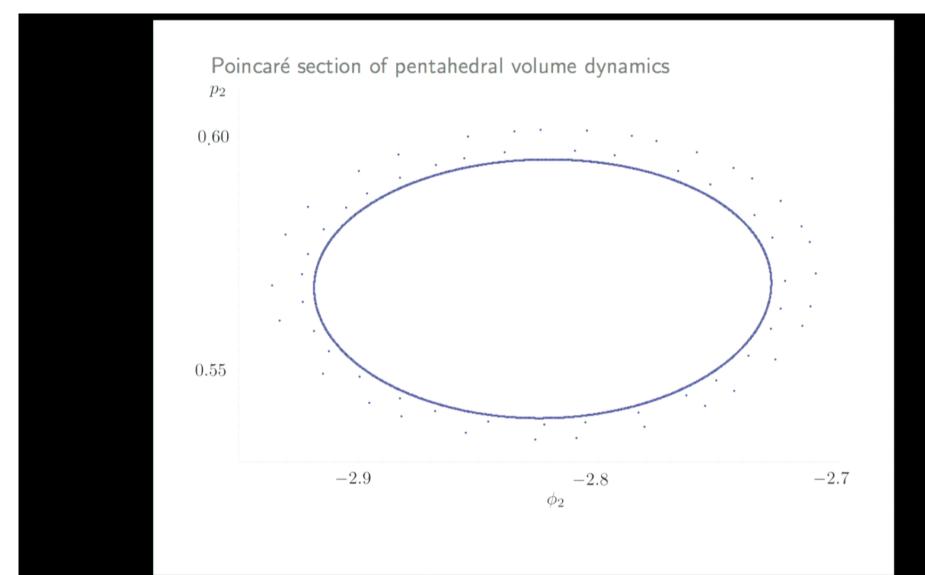
A Schlegel move merges two vertices of the diagram and and splits them apart in a different manner. This is precisely how the volume dynamics changes adjacency.

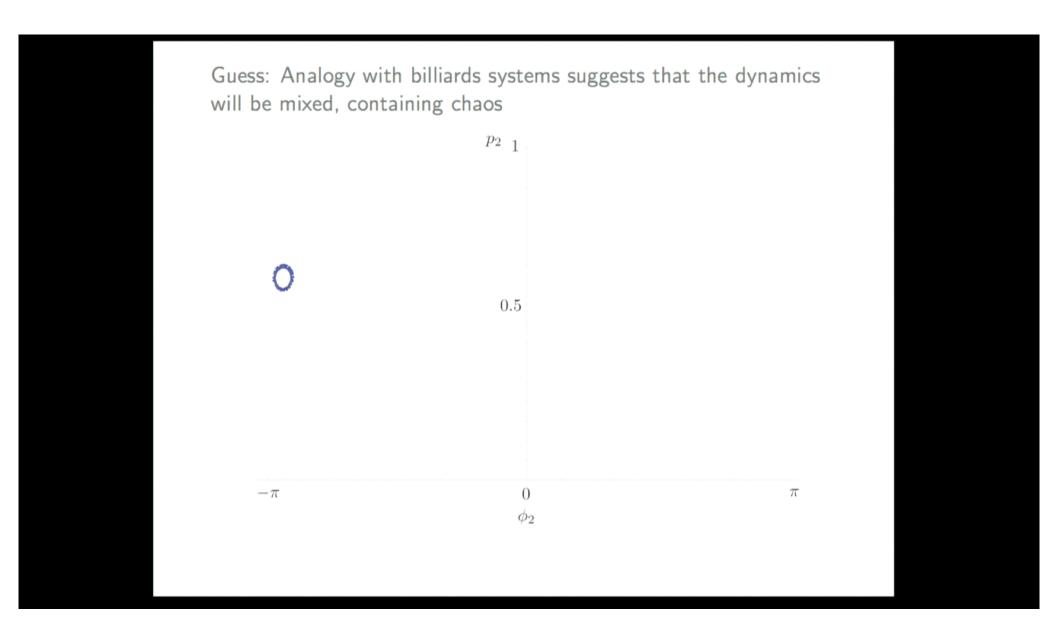
(B) (B) (B) (B) (B) (연)

Pirsa: 12050084









Conclusions

- Minkowski reconstruction for 5 vectors solved
- There is cylindrical consistency in the polyhedral picture and it is non-trivial
- The classical polyhedral volume is only twice continuously differentiable
- Can explore the classical dynamics of the volume operator in the case of a polyhedron with 5 faces
- Does this dynamics exhibit chaos?

