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Abstract: | will describe an approach to the problem of time that uses dust as a time variable. The canonical theory is such that there is a true
Hamiltonian with spatial diffeomorphisms as the only gauge symmetry. This feature, and the form of the Hamiltonian, suggest a model for
non-perturbative quantum gravity that is computationally accessible using the formalism of loop quantum gravity.& nbsp;& nbsp;
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Hey, raise those eyes for you do not see
the universe's mysteries.

Behind the green are games anew
Despair not

= Hafez of Shiraz (14th century)
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. Problems of time in QG and possible “solutions’
. Canonical QG: state of the art

. A model QG: classical theory and quantization

. Summary and problems
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Problem of time in QG

341 ADM action

S / d*xdt (ﬁﬂ’qdb b Py — N(He + Hum) — N*(CS 4

source of problem: Hamiltonian constraint

H= H(,(Q'JT) } 'HM 0.

“Dirac quantization” )
HV([q, @] = 0.

Not a TDSE - evolution is gauge.

What is the Hilbert space in which W[q, ¢] lives?
How is H defined?
What is the physical Hilbert space?
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Problem of time in QG

341 ADM action

S /d3xdt (fr"*’qdb k Py — N(He + Hum) — N°(CS 4 C.;M))- (1)

source of problem: Hamiltonian constraint

H=He(g,m)+Hm=0.

“Dirac quantization” .
HV([q, 9] = 0.

Not a TDSE - evolution is gauge.

What is the Hilbert space in which W[q, ¢] lives?
How is H defined?
What is the physical Hilbert space?
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“Solutions” to the problem of time

Fix time gauge: (partially) reduced pause space quantization

(eg. Horava-Lifshitz, Shape dynamics)

Problems:

no canonical choice

square root or other complicated form of physical hamiltonian: hard to
write operator

different choices — unitarily inequivalent quantum theories.
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Do not fix time gauge: Dirac Quantization

Emergent time: time arises in IR (WKB or other mechanism)
Relational time: correlations between (quantum) observables

Hamiltonian constraint is linear in one of the momenta — functional
(many fingered time) Schrodinger equation.

In this talk we take the first approach— but use matter as time
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Do not fix time gauge: Dirac Quantization

Emergent time: time arises in IR (WKB or other mechanism)
Relational time: correlations between (quantum) observables

Hamiltonian constraint is linear in one of the momenta — functional
(many fingered time) Schrodinger equation.

In this talk we take the first approach— but use matter as time
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Non-perturbative QG: state of the Dirac quantization program

. Define a suitable kinematical Hilbert space H;,
. Define constraints as operators on Hy,.
. Check algebra of constraint operators

. Find space of solution of the constraints: physical Hilbert space Hppys.

. physical observables, semiclassical states - - - .

State of the art in LQG: 1, 2 4+ some solutions of constraints that
also satisfy

[H(N), H(M)]¢) = 0
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The model

1

= / d*xv/=gR + Su

1
2,

Fields g, M, T. Sy is any matter action.

With U, = 0, T the dust stress-energy tensor is

T = MU?U® + (M/2)g®® (geq U U? + 1)

Special case of Brown-Kuchar action which has 4 dust fields.

Considered much before: in spherical symmetry —
Tolman-Bondi-Lemaitre model.

/d“x V—gM(g0,TopT + 1),
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The model

1

4G_/d4x\/ gR + Sm

1
2,

Fields g, M, T. Sy is any matter action.

With U, = 0, T the dust stress-energy tensor is

T = MU°U® + (M/2)g* (geaUSU? + 1)

Special case of Brown-Kuchar action which has 4 dust fields.

Considered much before: in spherical symmetry —
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Hamiltonian theory of dust

Substitute ADM metric
ds? = —N2dt? + q,p(N?dt + dx?)(N°dt + dxP)

into dust action:

Mg

- {(T + N2, T)? — N2(q*8, T T + 1)} .

2N
dlp

M .
D T+ N9, T

PT =

o /'dtd%{pr'r NHp N“’C,”J.

1[ p¥ Myaq , , ab D D
Hp = CcVC
=0 [M\/q+ p% (P7 +97CC)

CP = —pro,T.
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Hamiltonian theory of dust

Substitute ADM metric
ds? = —N2dt? + q,p(N?dt + dx?)(N°dt + dxP)

into dust action:

M .
Lp= 2}6" {(T + N2, T)? — N3(q*0, TO T + 1)} .

dlp

M .
D _ T+ N, T

PT =

5 /.dtd‘}x[pr?" NHp N“’C,”J.

1[ p% Myq , , ab~D D
- cbc
Hp 2[M\/q+ s (pF +q*°CCP)

CaD = Aprr')a T.
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Hamiltonian theory of dust

Substitute ADM metric
ds? = —N2dt? + q,p(N?dt + dx?)(N°dt + dxP)

into dust action:

M .
Lp= 2}6" {(T + N2, T)? — N3(q*8, TO T + 1)} .

dlp

M .
D T+ N, T

PT =

Sp /'dtd%{pr'r NHp Ndc?J.

H 1 pzl M\/q 2 abrD D
=29 [M\/q pzr ( " )

CP = —p;0,T.
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Equation of motion for M gives
M = [q] /% p% [pF + q** CP CP] Y2,

Plug back into dust action gives

Sp /djx dt {pr-T N\/pzr Fq**CPCP - N CP].

- a square root Hamiltonian.

Final canonical theory: (q,m), (T, pr), (¢, Ps) subject to constraints

He+ Hp +Hm 0
G+CG+C'=0
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Time gauge fixing

Dirac quantization is difficult.
But the form of the dust Hamiltonian suggest a natural time gauge:

T =t.

This is second class with H.

Preservation of gauge under time evolution gives

T=t=1 {T\/ d3x(NH + NC)} 7=
JE

This fixes N = 1 and leaves N? arbitrary. Lapse and shift decouple!

Pt = Honys = He(m, q) + Hm(p, Py)

— Physical hamiltonian is not a square root.

- It is independent of time.
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Quantization

Basic idea

Use the Ashtekar-Barbero canonical variables for gravity: (AL, E7).

Use LQG Hy;n: spin network basis.

Hy;, carries a representation of the spatial diffeomorphism group.
(cf. QFT Hilbert space carries a rep of Poincare group).

At least one construction of H¢ available on Hy;, (Thiemann)

But in this theory H¢ is the physical Hamiltonian!
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Hyin
Connection triad formulation contains Gauss law constraint D,E? = 0 in
addition to H =0and C, = 0.

Connection representation:

VIA] = (U (A), U2 (A), -~ U (4))

~i: curves embedded in spatial slice; collection {~;} is a graph I'.

U2 : holonomy of SU(2) connection in representation jj;.

~
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Hyin
Connection triad formulation contains Gauss law constraint D,E* = 0 in
addition to H =0and C, = 0.

Connection representation:

VIA] = (U5 (A), UL (A), - U (A))

;. curves embedded in spatial slice; collection {~;} is a graph I'.

U2 : holonomy of SU(2) connection in representation jj.

Y

Spin network states:

Tie up holonomies at points of intersection of edges using intertwiners
Z: eg. trivalent vertex

GIAL = (U (A (U (A (U (A)] T4

13 (8 S p18 X1

SU(2) Haar measure provides inner product.

r;thJ.Q £ 'jn; I1 i ‘Im>
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Hyin
Connection triad formulation contains Gauss law constraint D,E? = 0 in
addition to H =0and C, = 0.

Connection representation:

VA = F(U],(A), U5 (A), - - U, (A))

~i: curves embedded in spatial slice; collection {~;} is a graph I'.

U : holonomy of SU(2) connection in representation jj;.

~

Spin network states:

Tie up holonomies at points of intersection of edges using intertwiners
Z: eg. trivalent vertex

GIAL = (U (A2 (U (A (U (A)] T4k

Ya ] Qp sy

SU(2) Haar measure provides inner product.

r;jla_fQ e 'jn;Il . 'Im>
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Quantization

Basic idea

Use the Ashtekar-Barbero canonical variables for gravity: (AL, E7).

Use LQG Hy;n: spin network basis.

Hy;, carries a representation of the spatial diffeomorphism group.
(cf. QFT Hilbert space carries a rep of Poincare group).

At least one construction of H¢ available on Hy;, (Thiemann)

But in this theory H¢ is the physical Hamiltonian!
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Input:  DVI = Unknown Farmat
Output:  SDI - 1920x1080I@60Hz
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Hamiltonian operator

Physical Hamiltonian density is

‘ {.}‘- arb i k
5% 2\/tl(\lEE' Ej ('JkF.;b +2(1

A possible operator (following Thiemann):

HE= 3 AS

veVv(r)
The sum is over vertices of a graph.

?:lvc is composed of: A

(7) the volume operator V/(v)

(if) the combination h,[h,!, V] of holonomies and volume.

(iii) the holonomies h(v) along the minimal closed loops based at v .
(

i) and (ii) are diagonal. (iii) changes the spin labels on the edges.
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Hamiltonian operator

Physical Hamiltonian density is

2

He

B arb (i k
g (¢ 4P 4120

A possible operator (following Thiemann):
FS = 3 AS
veVv(r)
The sum is over vertices of a graph.

?:lvc is composed of: A

(7) the volume operator V/(v)

(if) the combination h,[h,!, V] of holonomies and volume.

(iii) the holonomies h(v) along the minimal closed loops based at v .
(

i) and (ii) are diagonal. (iii) changes the spin labels on the edges.
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Summary

A model for non-perturbative QG: a completion of the LQG
program.

No gauge anomaly [H(N), H(M)]: hamiltonian constraint —
physical Hamiltonian.

Physical Hilbert space, Hamiltonian operator, observables (area,
volume,: - - ), semiclassical states.

Matter couplings immediate: just add any matter term to Hppys.
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Open problems

Model provides a test bed for physical/technical problems.

» Other ways to write the Hamiltonian operator. H on Hgif?

What do reduced models look like? eg. Spherical symmetry +
scalar field (work in progress)

What is a black hole in quantum gravity?
Emergence of semiclassical gravity. Hawking radiation?
Cosmology with dust time: FRW reduction, fluctuations etc.

Lorentz invariance?
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Curiosities

1. Another use of spin network Hilbert space:
SU(2) theory (VH, K. Kuchar '91)

S le / Tr(e A e A F(A)) (i/\./.C.S.(A))

e! SU(2) dreibein in 4d. Al connection.

— power counting non-renormalizable.
— 3 local degrees of freedom.

— Hamiltonian constraint vanishes identically. Spatial diffeo + Gauss
constraints only.

- Complete non-perturbative quantization: Hppys = Hyir — Hilbert space
of diffeomorphism invariant spin networks.

— What is the spinfoam for this model?
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S le / Tr(e A e A F(A)) ( ; /\./. C.S.(A))

e! SU(2) dreibein in 4d. A! connection.

— power counting non-renormalizable.
— 3 local degrees of freedom.

— Hamiltonian constraint vanishes identically. Spatial diffeo + Gauss
constraints only.

— Complete non-perturbative quantization: Hypys = Hyir — Hilbert space
of diffeomorphism invariant spin networks.

— What is the spinfoam for this model?
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2. "Dusty string”

S / d*xVh (GABh0,Xa0sXp + M(h*8, TO T + 1))

- not conformally invariant.

- T = t gauge: physical Hamiltonian with Diff(S') constraint.
— manifest target space Poincare invariance.

— gravitons?

3. "Little A": Can put this in by hand into the gravitational physical
Hamiltonian in the dust gauge fixed action.

5= /d&dt{ﬂ”qu \;q(‘ﬂ'u?f,'},' A?) \/qV(q)}
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