Title: Time and a Physical Hamiltonian for Quantum Gravity

Date: May 12, 2012 09:50 AM

URL: http://pirsa.org/12050076

Abstract: I will describe an approach to the problem of time that uses dust as a time variable. The canonical theory is such that there is a true Hamiltonian with spatial diffeomorphisms as the only gauge symmetry. This feature, and the form of the Hamiltonian, suggest a model for non-perturbative quantum gravity that is computationally accessible using the formalism of loop quantum gravity.

Pirsa: 12050076 Page 1/39

Pirsa: 12050076 Page 2/39

Pirsa: 12050076 Page 3/39

Pirsa: 12050076 Page 4/39

Pirsa: 12050076 Page 5/39

3+1 ADM action

$$S=\int d^3x dt \left(ilde{\pi}^{ab} \dot{q}_{ab} + P_{\phi} \dot{\phi} - N(\mathcal{H}_G + \mathcal{H}_M) - N^a (C_a^G + C_a^M) \right). \quad (1)$$

source of problem: Hamiltonian constraint

$$\mathcal{H} \equiv \mathcal{H}_G(q,\pi) + \mathcal{H}_M = 0. \tag{2}$$

"Dirac quantization"

$$\widehat{\mathcal{H}}\Psi[q,\phi] = 0. \tag{3}$$

Not a TDSE – evolution is gauge.

What is the Hilbert space in which $\Psi[q,\phi]$ lives?

How is $\widehat{\mathcal{H}}$ defined?

What is the physical Hilbert space?

Pirsa: 12050076 Page 7/39

Pirsa: 12050076 Page 8/39

Pirsa: 12050076 Page 9/39

Pirsa: 12050076 Page 10/39

Pirsa: 12050076 Page 11/39

Pirsa: 12050076 Page 12/39

Pirsa: 12050076 Page 13/39

Non-perturbative QG: state of the Dirac quantization program 1. Define a suitable kinematical Hilbert space Hkin 2. Define constraints as operators on H_{kin} . 3. Check algebra of constraint operators 4. Find space of solution of the constraints: physical Hilbert space H_{phys} . 5. physical observables, semiclassical states · · · . State of the art in LQG: 1, 2 + some solutions of constraints thatalso satisfy $[H(N),H(M)]\psi=0$

Non-perturbative QG: state of the Dirac quantization program

- 1. Define a suitable kinematical Hilbert space Hkin
- 2. Define constraints as operators on H_{kin} .
- 3. Check algebra of constraint operators
- 4. Find space of solution of the constraints: physical Hilbert space H_{phys} .
- 5. physical observables, semiclassical states · · · .

State of the art in LQG: 1, 2 +some solutions of constraints that also satisfy

$$[H(N),H(M)]\psi=0$$

イロト イプト イミト イミト

The model

$$S = rac{1}{4G} \int d^4x \sqrt{-g}R + S_{
m M} \ -rac{1}{2} \int d^4x \sqrt{-g}M(g^{ab}\partial_aT\partial_bT + 1),$$

Fields g, M, T. S_M is any matter action.

With $U_a = \partial_a T$ the dust stress-energy tensor is

$$T^{ab} = MU^aU^b + (M/2)g^{ab}(g_{cd}U^cU^d + 1)$$

Special case of Brown-Kuchar action which has 4 dust fields.

Considered much before: in spherical symmetry \longrightarrow Tolman-Bondi-Lemaitre model.

The model

$$S = \frac{1}{4G} \int d^4x \sqrt{-g}R + S_{\rm M}$$
$$-\frac{1}{2} \int d^4x \sqrt{-g} M(g^{ab} \partial_a T \partial_b T + 1),$$

Fields g, M, T. S_M is any matter action.

With $U_a = \partial_a T$ the dust stress-energy tensor is

$$T^{ab} = MU^aU^b + (M/2)g^{ab}(g_{cd}U^cU^d + 1)$$

Special case of Brown-Kuchar action which has 4 dust fields.

Considered much before: in spherical symmetry \longrightarrow Tolman-Bondi-Lemaitre model.

Hamiltonian theory of dust

Substitute ADM metric

$$ds^{2} = -N^{2}dt^{2} + q_{ab}(N^{a}dt + dx^{a})(N^{b}dt + dx^{b})$$

into dust action:

$$L_D = rac{M\sqrt{q}}{2N} \left[(\dot{T} + N^a \partial_a T)^2 - N^2 (q^{ab} \partial_a T \partial_b T + 1)
ight].$$
 $p_T = rac{\partial L_D}{\partial \dot{T}} = \sqrt{q} rac{M}{N} (\dot{T} + N^a \partial_a T)$

$$S_D = \int dt d^3x \left[p_T \dot{T} - N \mathcal{H}_D - N^a C_a^D \right].$$

where

$$\mathcal{H}_D = rac{1}{2} \left[rac{p_T^2}{M\sqrt{q}} + rac{M\sqrt{q}}{p_T^2} \left(p_T^2 + q^{ab} C_a^D C_b^D
ight)
ight] \ C_a^D = -p_T \partial_a T.$$

Hamiltonian theory of dust

Substitute ADM metric

$$ds^{2} = -N^{2}dt^{2} + q_{ab}(N^{a}dt + dx^{a})(N^{b}dt + dx^{b})$$

into dust action:

$$L_D = rac{M\sqrt{q}}{2N} \left[(\dot{T} + N^a \partial_a T)^2 - N^2 (q^{ab} \partial_a T \partial_b T + 1) \right].$$
 $\partial L_D = - M (\dot{T} + N^a \partial_a T)$

$$ho_T = rac{\partial L_D}{\partial \dot{T}} = \sqrt{q} rac{M}{N} (\dot{T} + N^a \partial_a T)$$

$$S_D = \int dt d^3x \left[p_T \dot{T} - N \mathcal{H}_D - N^a C_a^D \right].$$

where

$$\mathcal{H}_D = rac{1}{2} \left[rac{p_T^2}{M\sqrt{q}} + rac{M\sqrt{q}}{p_T^2} \left(p_T^2 + q^{ab} C_a^D C_b^D
ight)
ight] \ C_a^D = -p_T \partial_a T.$$

Hamiltonian theory of dust

Substitute ADM metric

$$ds^{2} = -N^{2}dt^{2} + q_{ab}(N^{a}dt + dx^{a})(N^{b}dt + dx^{b})$$

into dust action:

$$L_D = rac{M\sqrt{q}}{2N} \left[(\dot{T} + N^a \partial_a T)^2 - N^2 (q^{ab} \partial_a T \partial_b T + 1)
ight].$$
 $p_T = rac{\partial L_D}{\partial \dot{T}} = \sqrt{q} rac{M}{N} (\dot{T} + N^a \partial_a T)$

$$S_D = \int dt d^3x \left[p_T \dot{T} - N \mathcal{H}_D - N^a C_a^D \right].$$

where

$$\mathcal{H}_D = rac{1}{2} \left[rac{p_T^2}{M\sqrt{q}} + rac{M\sqrt{q}}{p_T^2} \left(p_T^2 + q^{ab} C_a^D C_b^D
ight)
ight] \ C_a^D = -p_T \partial_a T.$$

Equation of motion for M gives $M = [q]^{-1/2} p_T^2 [p_T^2 + q^{ab} C_a^D C_b^D]^{-1/2}.$ Plug back into dust action gives $S_D = \int d^3x \ dt \left[p_T \dot{T} - N \sqrt{p_T^2 + q^{ab} C_a^D C_b^D} - N^a C_a^D
ight].$ - a square root Hamiltonian. Final canonical theory: $(q,\pi),(T,p_T),(\phi,P_\phi)$ subject to constraints $\mathcal{H}_G + \mathcal{H}_D + \mathcal{H}_M = 0$ $C_a^G + C_a^D + C_a^M = 0$

Pirsa: 12050076 Page 22/39

Equation of motion for M gives $M = [q]^{-1/2} p_T^2 [p_T^2 + q^{ab} C_a^D C_b^D]^{-1/2}.$ Plug back into dust action gives $S_D = \int d^3x \ dt \left[p_T \dot{T} - N \sqrt{p_T^2 + q^{ab} C_a^D C_b^D} - N^a C_a^D
ight].$ - a square root Hamiltonian. Final canonical theory: $(q,\pi),(T,p_T),(\phi,P_\phi)$ subject to constraints $\mathcal{H}_G + \mathcal{H}_D + \mathcal{H}_M = 0$ $C_a^G + C_a^D + C_a^M = 0$

Pirsa: 12050076 Page 23/39

Equation of motion for M gives $M = [q]^{-1/2} p_T^2 [p_T^2 + q^{ab} C_a^D C_b^D]^{-1/2}.$ Plug back into dust action gives $S_D = \int d^3x \ dt \left[p_T \dot{T} - N \sqrt{p_T^2 + q^{ab} C_a^D C_b^D} - N^a C_a^D
ight].$ - a square root Hamiltonian. Final canonical theory: $(q,\pi),(T,p_T),(\phi,P_\phi)$ subject to constraints $\mathcal{H}_G + \mathcal{H}_D + \mathcal{H}_M = 0$ $C_a^G + C_a^D + C_a^M = 0$

Time gauge fixing

Dirac quantization is difficult.

But the form of the dust Hamiltonian suggest a natural time gauge:

$$T = t$$
.

This is second class with \mathcal{H} .

Preservation of gauge under time evolution gives

$$\dot{T}=\dot{t}=1=\{T,\int_{\Sigma}d^3x(N\mathcal{H}+N^a\mathcal{C}_a)\}|_{T=t}$$

This fixes N = 1 and leaves N^a arbitrary. Lapse and shift decouple!

$$-
ho_{T} = H_{ extsf{phys}} = \mathcal{H}_{G}(\pi,q) + \mathcal{H}_{M}(\phi,P_{\phi})$$

- Physical hamiltonian is not a square root.
- It is independent of time.

Pirsa: 12050076 Page 26/39

Pirsa: 12050076 Page 27/39

 H_{kin}

Connection triad formulation contains Gauss law constraint $D_a E^{ai} = 0$ in addition to $\mathcal{H} = 0$ and $\mathcal{C}_a = 0$.

Connection representation:

$$\psi[A] = f(U_{\gamma_1}^{j_1}(A), U_{\gamma_2}^{j_2}(A), \cdots U_{\gamma_n}^{j_n}(A))$$

 γ_i : curves embedded in spatial slice; collection $\{\gamma_i\}$ is a graph Γ .

 $U_{\gamma_i}^{j_i}$: holonomy of SU(2) connection in representation j_i . Spin network states:

Tie up holonomies at points of intersection of edges using intertwiners \mathcal{I} : eg. trivalent vertex

$$\psi[A] = [U_{\gamma_1}^{j_1}(A)]^{\alpha_1\beta_1} \ [U_{\gamma_2}^{j_2}(A)]^{\alpha_2\beta_2} \ [U_{\gamma_3}^{j_3}(A)]^{\alpha_3\beta_3} \mathcal{I}_{\alpha_1\alpha_2\alpha_3}^{j_1j_2j_3}$$

SU(2) Haar measure provides inner product.

$$|\Gamma; j_1, j_2 \cdots j_n; \mathcal{I}_1 \cdots \mathcal{I}_m \rangle$$

 H_{kin}

Connection triad formulation contains Gauss law constraint $D_a E^{ai} = 0$ in addition to $\mathcal{H} = 0$ and $\mathcal{C}_a = 0$.

Connection representation:

$$\psi[A] = f(U_{\gamma_1}^{j_1}(A), U_{\gamma_2}^{j_2}(A), \cdots U_{\gamma_n}^{j_n}(A))$$

 γ_i : curves embedded in spatial slice; collection $\{\gamma_i\}$ is a graph Γ .

 $U_{\gamma_i}^{j_i}$: holonomy of SU(2) connection in representation j_i . Spin network states:

Tie up holonomies at points of intersection of edges using intertwiners \mathcal{I} : eg. trivalent vertex

$$\psi[A] = [U_{\gamma_1}^{j_1}(A)]^{\alpha_1\beta_1} \ [U_{\gamma_2}^{j_2}(A)]^{\alpha_2\beta_2} \ [U_{\gamma_3}^{j_3}(A)]^{\alpha_3\beta_3} \mathcal{I}_{\alpha_1\alpha_2\alpha_3}^{j_1j_2j_3}$$

SU(2) Haar measure provides inner product.

$$|\Gamma; j_1, j_2 \cdots j_n; \mathcal{I}_1 \cdots \mathcal{I}_m \rangle$$

Pirsa: 12050076 Page 30/39

Pirsa: 12050076 Page 31/39

Hamiltonian operator

Physical Hamiltonian density is

$$\mathcal{H}_{\mathcal{G}} = rac{\gamma^2}{2\sqrt{\mathrm{det}E}} E_i^a E_j^b \left(\epsilon^{ij}_{k} F_{ab}^k + 2(1-\gamma^2) \mathcal{K}_{[a}^i \mathcal{K}_{b]}^j
ight)$$

A possible operator (following Thiemann):

$$\hat{\mathcal{H}}^G = \sum_{v \in V(\Gamma)} \hat{\mathcal{H}}^G_v$$

The sum is over vertices of a graph.

 $\hat{\mathcal{H}}_{v}^{G}$ is composed of:

(i) the volume operator $\hat{V}(v)$ (ii) the combination $\hat{h}_e[\hat{h}_e^{-1},\hat{V}]$ of holonomies and volume. (iii) the holonomies $\hat{h}_{\square}(v)$ along the minimal closed loops based at v.

(i) and (ii) are diagonal. (iii) changes the spin labels on the edges.

Hamiltonian operator

Physical Hamiltonian density is

$$\mathcal{H}_{\mathcal{G}} = rac{\gamma^2}{2\sqrt{\det\!E}} E_i^a E_j^b \left(\epsilon^{ij}_{k} F_{ab}^k + 2(1-\gamma^2) K_{[a}^i K_{b]}^j
ight)$$

A possible operator (following Thiemann):

$$\hat{\mathcal{H}}^G = \sum_{\mathbf{v} \in V(\Gamma)} \hat{\mathcal{H}}^G_{\mathbf{v}}$$

The sum is over vertices of a graph.

 $\hat{\mathcal{H}}_{v}^{G}$ is composed of:

(i) the volume operator $\hat{V}(v)$ (ii) the combination $\hat{h}_e[\hat{h}_e^{-1},\hat{V}]$ of holonomies and volume. (iii) the holonomies $\hat{h}_{\square}(v)$ along the minimal closed loops based at v.

(i) and (ii) are diagonal. (iii) changes the spin labels on the edges.

Pirsa: 12050076 Page 34/39

Pirsa: 12050076 Page 35/39

Curiosities

1. Another use of spin network Hilbert space: SU(2) theory (VH, K. Kuchar '91)

$$S = \frac{1}{L^2} \int Tr(e \wedge e \wedge F(A)) \left(+\Lambda \int C.S.(A) \right)$$

 e_a^i SU(2) dreibein in 4d. A_a^i connection.

- power counting non-renormalizable.
- 3 local degrees of freedom.
- Hamiltonian constraint vanishes identically. Spatial diffeo + Gauss constraints only.
- Complete non-perturbative quantization: $H_{phys} = H_{diff}$ Hilbert space of diffeomorphism invariant spin networks.
- What is the spinfoam for this model?

Curiosities

1. Another use of spin network Hilbert space: SU(2) theory (VH, K. Kuchar '91)

$$S = \frac{1}{L^2} \int Tr(e \wedge e \wedge F(A)) \left(+\Lambda \int C.S.(A) \right)$$

 e_a^i SU(2) dreibein in 4d. A_a^i connection.

- power counting non-renormalizable.
- 3 local degrees of freedom.
- Hamiltonian constraint vanishes identically. Spatial diffeo + Gauss constraints only.
- Complete non-perturbative quantization: $H_{phys} = H_{diff}$ Hilbert space of diffeomorphism invariant spin networks.
- What is the spinfoam for this model?

2. "Dusty string"

$$S = \int d^2x \sqrt{h} \left(G^{AB} h^{ab} \partial_a X_A \partial_b X_B + M(h^{ab} \partial_a T \partial_b T + 1) \right)$$

- not conformally invariant.
- T = t gauge: physical Hamiltonian with Diff(S^1) constraint.
- manifest target space Poincare invariance.
- gravitons?
- 3. "Little λ ": Can put this in by hand into the gravitational physical Hamiltonian in the dust gauge fixed action.

$$S^{GF} = \int d^3x dt \left[\pi^{ij} \dot{q}_{ij} - rac{1}{\sqrt{q}} (\pi^{ij} \pi_{ij} - \lambda \pi^2) - \sqrt{q} V(q)
ight]$$

Pirsa: 12050076 Page 39/39