Title: Two-dimensional Conformal Symmetry of Short-distance Spacetime

Date: May 11, 2012 09:00 AM

URL: http://pirsa.org/12050072

Abstract: Evidence from several approaches to quantum gravity hints at the possibility that spacetime undergoes a "spontaneous dimensional reduction" at very short distances. If this is the case, the small scale universe might be described by a theory with two-dimensional conformal symmetry. I will summarize the evidence for dimensional reduction and indicate a tentative path towards using this conformal invariance to explore quantum gravity.

Pirsa: 12050072 Page 1/29

Pirsa: 12050072 Page 2/29

Two-Dimensional Conformal Symmetry of Short Distance Spacetime?

Steve Carlip U.C. Davis

Conformal Nature of the Universe Perimeter Institute May 2012

Pirsa: 12050072 Page 3/29

Two-Dimensional Conformal Symmetry of Short Distance Spacetime?

Steve Carlip U.C. Davis

Conformal Nature of the Universe Perimeter Institute May 2012

Pirsa: 12050072 Page 4/29

Alas, general relativity is not conformally invariant in four dimensions

But there is accumulating evidence for "spontaneous dimensional reduction" to two-dimensional spacetime at short distance

Is conformal invariance restored near the Planck scale?

Some evidence from

- Causal dynamical triangulations
- Renormalization group/"asymptotic safety"
- High temperature string theory

Pirsa: 12050072 Page 5/29

Alas, general relativity is not conformally invariant in four dimensions

But there is accumulating evidence for "spontaneous dimensional reduction" to two-dimensional spacetime at short distance

Is conformal invariance restored near the Planck scale?

Some evidence from

- Causal dynamical triangulations
- Renormalization group/"asymptotic safety"
- High temperature string theory

Pirsa: 12050072 Page 6/29

Causal dynamical triangulations

Approximate path integral by sum over discrete triangulated manifolds

$$\int [dg]e^{iI_{EH}[g]} \Rightarrow \sum e^{iI_{Regge}[\Delta]}$$

Fix causal structure (⇒ no topology change)

Pirsa: 12050072 Page 7/29

Nice "de Sitter" phase

- Volume profile fits (Euclidean) de Sitter
- Volume fluctuations fit Wheeler-DeWitt equation

But what about small scale structure?

How do you measure the "dimension" of a space that is not a nice manifold?

Pirsa: 12050072 Page 8/29

Pirsa: 12050072 Page 9/29

Pirsa: 12050072 Page 10/29

Spectral dimension d_S : dimension of spacetime seen by random walker Basic idea: more dimensions \Rightarrow slower diffusion

Heat kernel
$$K(x,x';s)$$
: $\left(rac{\partial}{\partial s}-\Delta_x
ight)K(x,x';s)=0$
$$K(x,x';s)\sim (4\pi s)^{-d_S/2}e^{-\sigma(x,x')/2s}\left(1+\ldots\right)$$

Ambjørn, Jurkiewicz, and Loll:

$$\bullet \ d_S(\sigma \to \infty) = 4,$$

$$\bullet d_S(\sigma \to 0) \approx 2$$

Propagator
$$G(x,x') \sim \int_0^\infty ds \, K(x,x';s) \sim \begin{cases} \sigma^{-1}(x,x') & \sigma \text{ large} \\ \log |\sigma(x,x')| & \sigma \text{ small} \end{cases}$$

Short distances: characteristic behavior of a propagator for two-dimensional CFT (Cooperman: physical scale for reduction $\sim 15\ell_p$)

Pirsa: 12050072

Spectral dimension d_S : dimension of spacetime seen by random walker Basic idea: more dimensions \Rightarrow slower diffusion

Heat kernel
$$K(x,x';s)$$
: $\left(\frac{\partial}{\partial s}-\Delta_x\right)K(x,x';s)=0$
$$K(x,x';s)\sim (4\pi s)^{-d_S/2}e^{-\sigma(x,x')/2s}\left(1+\ldots\right)$$

Ambjørn, Jurkiewicz, and Loll:

$$\bullet \ d_S(\sigma \to \infty) = 4,$$

$$\bullet d_S(\sigma \to 0) \approx 2$$

Propagator
$$G(x, x') \sim \int_0^\infty ds \, K(x, x'; s) \sim \begin{cases} \sigma^{-1}(x, x') & \sigma \text{ large } \\ \log |\sigma(x, x')| & \sigma \text{ small } \end{cases}$$

Short distances: characteristic behavior of a propagator for two-dimensional CFT (Cooperman: physical scale for reduction $\sim 15\ell_p$)

Pirsa: 12050072

Renormalization group

Lauscher, Reuter, Niedermaier, etc.:

Look at renormalization group flow for Einstein gravity plus higher derivative terms

- Truncate effective action
- Use "exact renormalization group" methods
- Find evidence for non-Gaussian fixed point, "asymptotic safety"

At fixed point:

- anomalous dimensions ⇔ two-dimensional field theory
- propagators $\sim \log |x x'|$ (two-dimensional CFT)
- spectral dimension $d_S\sim 2$

General argument (Percacci and Perini):

If gravity has non-Gaussian UV fixed point, propagator must behave as $\ln |x - x'|$

Pirsa: 12050072 Page 13/29

Renormalization group

Lauscher, Reuter, Niedermaier, etc.:

Look at renormalization group flow for Einstein gravity plus higher derivative terms

- Truncate effective action
- Use "exact renormalization group" methods
- Find evidence for non-Gaussian fixed point, "asymptotic safety"

At fixed point:

- anomalous dimensions ⇔ two-dimensional field theory
- propagators $\sim \log |x x'|$ (two-dimensional CFT)
- spectral dimension $d_S\sim 2$

General argument (Percacci and Perini):

If gravity has non-Gaussian UV fixed point, propagator must behave as $\ln |x-x'|$

Pirsa: 12050072 Page 14/29

High temperature string theory (Atick&Witten)

At high temperatures, free energy of a gas of strings is

$$F/VT \sim T \sim$$
 free energy of a 2D QFT

"... a lattice theory with a (1+1)-dimensional field theory on each lattice site" (1988)

Short distance approximation

Wheeler-DeWitt equation:

$$\left\{16\pi\ell_p^2 G_{ijkl} \frac{\delta}{\delta g_{ij}} \frac{\delta}{\delta g_{kl}} - \frac{1}{16\pi\ell_p^2} \sqrt{g}^{(3)} R \right\} \Psi[g] = 0$$

"strong coupling" $(G \to \infty) \Leftrightarrow$ "small distance" $(\ell_p \to \infty) \Leftrightarrow$ "ultralocal"

Classical solution:

- Kasner at each point if $\ell_p o \infty$
- normally BKL/Mixmaster if ℓ_p large but finite

Pirsa: 12050072 Page 15/29

Kasner Space is effectively (1+1)-dimensional

$$ds^2 = dt^2 - t^{2p_1}dx^2 - t^{2p_2}dy^2 - t^{2p_3}dz^2$$

Start timelike geodesic at $t = t_0$, x = 0 with random initial velocity Look at proper distance along each axis:

Particle horizon shrinks to line as $t \to 0$

Geodesics explore a nearly one-dimensional space!

Various approximations of heat kernel (Futamase, Berkin):

$$K(x,x;s) \sim rac{1}{(4\pi s)^2} (1+Qs) \quad ext{with } Q \sim rac{1}{t^2}$$

Small t: Q term dominates, $d_S \sim 2$

[Hu and O'Connor (1986): "effective infrared dimension"]

For BKL behavior, "preferred" dimension changes chaotically in space and time "Nonsystematic" breaking of Lorentz invariance

Kasner Space is effectively (1+1)-dimensional

$$ds^2 = dt^2 - t^{2p_1}dx^2 - t^{2p_2}dy^2 - t^{2p_3}dz^2$$

Start timelike geodesic at $t = t_0$, x = 0 with random initial velocity Look at proper distance along each axis:

Particle horizon shrinks to line as $t \to 0$

Geodesics explore a nearly one-dimensional space!

Various approximations of heat kernel (Futamase, Berkin):

$$K(x,x;s) \sim rac{1}{(4\pi s)^2} (1+Qs) \quad ext{with } Q \sim rac{1}{t^2}$$

Small t: Q term dominates, $d_S \sim 2$

[Hu and O'Connor (1986): "effective infrared dimension"]

For BKL behavior, "preferred" dimension changes chaotically in space and time "Nonsystematic" breaking of Lorentz invariance

Asymptotic silence?

Cosmology near generic spacelike singularity:

- Asymptotic silence: light cones shrink to timelike lines
- Asymptotic locality: inhomogeneities fall outside shrinking horizons faster than they grow
- \Rightarrow "anti-Newtonian" limit (as if c o 0)
- ⇒ spatial points decouple; BKL behavior

Underlying physics: extreme focusing near initial singularity Is this also true at very short distances?

In progress: investigating shape of light cones in causal dynamical triangulations (will also test Hořava-Lifshitz/anisotropc scaling model as an alternative)

Pirsa: 12050072 Page 18/29

Vacuum fluctuations and the Raychaudhuri equation

Expansion of a bundle of null geodesics: $\theta = \frac{1}{A} \frac{dA}{d\lambda}$

Raychaudhuri equation:

$$rac{d heta}{d\lambda} = -rac{1}{2} heta^2 - \sigma_a{}^b\sigma_b{}^a + \omega_{ab}\omega^{ab} - 16\pi GT_{ab}k^ak^b$$

Semiclassically:

- Expansion and shear focus geodesics
- Vorticity remains zero if it starts zero
- What about stress-energy tensor?

Fewster, Ford, and Roman:

Vacuum fluctuations of $T_{ab}k^ak^b$ are usually negative (defocusing)

But lower bound, long positive tail (focusing)

Vacuum fluctuations and the Raychaudhuri equation

Expansion of a bundle of null geodesics: $\theta = \frac{1}{A} \frac{dA}{d\lambda}$

Raychaudhuri equation:

$$rac{d heta}{d\lambda} = -rac{1}{2} heta^2 - \sigma_a{}^b\sigma_b{}^a + \omega_{ab}\omega^{ab} - 16\pi GT_{ab}k^ak^b$$

Semiclassically:

- Expansion and shear focus geodesics
- Vorticity remains zero if it starts zero
- What about stress-energy tensor?

Fewster, Ford, and Roman:

Vacuum fluctuations of $T_{ab}k^ak^b$ are usually negative (defocusing)

But lower bound, long positive tail (focusing)

- Frequent negative fluctuations will defocus geodesics, but their effect is limited
- Rare large positive fluctuations will strongly focus geodesics
- Once the focusing is strong enough, nonlinearities take over

"Gambler's ruin":

Whatever the odds, if you bet long enough against a House with unlimited resources, you always lose in the end.

Back-of-the envelope estimate:

Let $\min(T_{ab}k^ak^b) = -\mathcal{T}$

Let "smearing time" be Δt

Let ho be the probability of a positive vacuum fluctuation with a value $> 2\mathcal{T}$

Then the time for θ to be driven to $-\infty$ is approximately described by an exponential distribution

$$rac{
ho}{\Delta t}e^{-
ho t/\Delta t}$$

with a mean value $\sim 15.4\Delta t$

Simulation for dilaton gravity (Mosna, Pitelli, S.C.):

- Dimensionally reduce to two dimensions
- For matter: massless scalar field (central charge c=1)
- Take $\Delta t = t_p$
- Assume fluctuations are independent (not quite right...)
- Run simulation 10 million times, measure time to $heta o -\infty$

Probability of the expansion diverging to $-\infty$ as a function of Planck time steps.

The solid line is the exponential distribution.

Short-distance picture (at perhaps $\sim 15 \ell_P$):

- short distance asymptotic silence
- "random" direction at each point in space
 - not changing too rapidly in space: regions of size $\gg \ell_p$ fairly independent
 - evolving in time; "bouncing," axes rotating, etc.
- effective two-dimensional behavior:
 dynamics concentrated along preferred direction
- Lorentz violation near Planck scale, but "nonsystematic"

But is it conformal invariant?

Pirsa: 12050072 Page 23/29

't Hooft, Verlinde and Verlinde, Kabat and Ortiz: eikonal approximation

$$ds^2 = \ell_{\parallel}^2 g_{\mu\nu} dx^{\mu} dx^{\nu} + \ell_{\perp}^2 h_{ij} dy^i dy^j$$

with different natural scales for the two directions.

$$I = rac{\ell_{\parallel}^2}{\ell_p^2} \int d^2x d^2y \sqrt{g} \left(\sqrt{h} R_h + rac{1}{4} \sqrt{h} h^{ij} \partial_i g_{\mu
u} \partial_j g_{\sigma au} \epsilon^{\mu\sigma} \epsilon^{
u au}
ight)
onumber \ + rac{\ell_{\perp}^2}{\ell_p^2} \int d^2x d^2y \sqrt{h} \left(\sqrt{g} R_g + rac{1}{4} \sqrt{g} g^{\mu
u} \partial_\mu h_{ij} \partial_
u h_{kl} \epsilon^{ik} \epsilon^{jl}
ight)$$

Suppose "transverse" derivatives ∂_i negligible; then action looks like two-dimensional action for $h_{ij}(x)$ in background metric g

Pirsa: 12050072

Action for h not quite conformal:

$$T \sim \Box \sqrt{h}$$

But deviation may be small.

E.g.: Kasner space near au=0 —

$$ds^2 = \tau^{2q}(d\tau^2 - dx^2) - h_{ij}(\tau)dy^idy^j$$

with
$$q = \frac{p_1}{(1-p_1)} < 0$$
.

Find

$$h_{11} = \tau^{2r_1}, \quad h_{22} = \tau^{2r_2}, \quad r_1 + r_2 = 1, \quad r_1r_2 = -q$$

$$\sqrt{h} = \tau \to 0$$

Set $h_{ij} = \Omega \sigma_{ij}$ with $\det \sigma = 1$; then

$$I \sim rac{\ell_{\perp}^2 A_{\perp}}{\ell_p^2} \int d^2x \left(\sqrt{g} R_g \Omega + rac{1}{4} rac{\eta^{\mu
u} \partial_{\mu} \Omega \partial_{
u} \Omega}{\Omega} + rac{1}{4} \Omega \eta^{\mu
u} \partial_{\mu} \sigma_{ij} \partial_{
u} \sigma^{ij}
ight)$$

Set
$$\Omega = \bar{\Omega}(1+\varphi)$$
;

Then φ is approximately a Liouville field with central charge

$$c \sim rac{A_{\perp}}{\ell_p^2}$$
 (relation to black holes?)

Question: how to deal with different "domains"?

More general picture: BKL; Yoon

Ideas from condensed matter physics?

Set $h_{ij} = \Omega \sigma_{ij}$ with $\det \sigma = 1$; then

$$I \sim rac{\ell_{\perp}^2 A_{\perp}}{\ell_p^2} \int d^2x \left(\sqrt{g} R_g \Omega + rac{1}{4} rac{\eta^{\mu
u} \partial_{\mu} \Omega \partial_{
u} \Omega}{\Omega} + rac{1}{4} \Omega \eta^{\mu
u} \partial_{\mu} \sigma_{ij} \partial_{
u} \sigma^{ij}
ight)$$

Set
$$\Omega = \bar{\Omega}(1+\varphi)$$
;

Then φ is approximately a Liouville field with central charge

$$c \sim rac{A_{\perp}}{\ell_p^2}$$
 (relation to black holes?)

Question: how to deal with different "domains"?

More general picture: BKL; Yoon

Ideas from condensed matter physics?

't Hooft, Verlinde and Verlinde, Kabat and Ortiz: eikonal approximation

$$ds^2 = \ell_{\parallel}^2 g_{\mu\nu} dx^{\mu} dx^{\nu} + \ell_{\perp}^2 h_{ij} dy^i dy^j$$

with different natural scales for the two directions.

$$I = rac{\ell_{\parallel}^2}{\ell_p^2} \int d^2x d^2y \sqrt{g} \left(\sqrt{h} R_h + rac{1}{4} \sqrt{h} h^{ij} \partial_i g_{\mu
u} \partial_j g_{\sigma au} \epsilon^{\mu\sigma} \epsilon^{
u au}
ight)
onumber \ + rac{\ell_{\perp}^2}{\ell_p^2} \int d^2x d^2y \sqrt{h} \left(\sqrt{g} R_g + rac{1}{4} \sqrt{g} g^{\mu
u} \partial_\mu h_{ij} \partial_
u h_{kl} \epsilon^{ik} \epsilon^{jl}
ight)$$

Suppose "transverse" derivatives ∂_i negligible; then action looks like two-dimensional action for $h_{ij}(x)$ in background metric g

Pirsa: 12050072

Set $h_{ij} = \Omega \sigma_{ij}$ with $\det \sigma = 1$; then

$$I \sim rac{\ell_{\perp}^2 A_{\perp}}{\ell_p^2} \int d^2x \left(\sqrt{g} R_g \Omega + rac{1}{4} rac{\eta^{\mu
u} \partial_{\mu} \Omega \partial_{
u} \Omega}{\Omega} + rac{1}{4} \Omega \eta^{\mu
u} \partial_{\mu} \sigma_{ij} \partial_{
u} \sigma^{ij}
ight)$$

Set
$$\Omega = \bar{\Omega}(1+\varphi)$$
;

Then φ is approximately a Liouville field with central charge

$$c \sim rac{A_{\perp}}{\ell_p^2}$$
 (relation to black holes?)

Question: how to deal with different "domains"?

More general picture: BKL; Yoon

Ideas from condensed matter physics?