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Abstract: In 2-dim it is known that a unitary, well defined quantum field theory, if scale invariant must also be& nbsp;invariant under conformal
transformations. Whether this is aso true in dimensions higher than two has been an&nbsp;open question for decades. We have discovered
renomalization group flows in 4-epsilon dimensions corresponding& nbsp;to scale but not conformal invariant theories. The flows correspond to
limit cycles or ergodic behavior, & nbsp;neither of & nbsp;which had been reported in relativistic quantum field theories either. & nbsp; There seems
to be a deep connection& nbsp;between scale without conformal invariance and this type of renormalization group & nbsp;behavior. We will present
these& nbsp;results and list some of open questions, including the possibility of such behavior inintegral dimensions.
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C.aution

\ll{l1< I]l]t

C.aution

(‘)‘\1 here
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C.aution

No GR here

C.aution

QM here
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Two Unsolved Mysteries in QFT

* Are there QFT models in D = 4 with SCALE invariance but without being

CONFORMAL (e, invariant under special conformal transformations)?
(In this talk QFT means Quantum Field Theories that are also Poincare

invariant, ie, relativistic; one can ask similar questions about non-relativistic

QFTs but won'’t here)

* Are there Renormalization Group (RG) ows in QFTs with limit cycles? Are

there limit (‘I‘gmlit Hows?

(Known to exist in non-relativistic Quantum Mechanics: Efimov cycl
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(In this talk QFT means Quantum Field Theories that are also Poincare
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there limit ergodic Hows?

(Known to exist in non-relativistic Quantum Mechanics: Efhhmov cycles)
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Wh}«' care’

* (lassification: “Phases” of QFT models. Or

What are the possible behaviors of QFT models at very long distances:
* [R-Free
* With mass gap: exponentially decaying correlators (eg, confinement)
* Without mass gap: trivial correlators leg, « oulomb }1]1.1Ht':'
* [R-Interacting
* Interacting CFTs: power-law correlators

® Interacting SwC (scale without conformal): power-law 7777

* Alternative classification: [R-limit of RG-Hows (Wilson)
* Strong (eg, ()( D)
* Fixed Point (e, IR-CFT)
e Limit Cycles
* Limit ergodic Hows
* New, unknown phenomena/behaviors?
* New, unknown applications? (e.g., “cylcunparticles” as we’ll propose later)
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Why care’

* (lassification: “Phases” of QFT models. On

What are the EH)\\I]I]( behaviors of (‘)[ [’models at very |l1|1_‘_’.lh‘\f‘illt(‘wi
* [R-Free
* With mass gap: exponentially decaying correlators (eg, confinement)
* Without mass gap: trivial correlators (eg, « oulomb }l]].l\t':'
* [R-Interacting
* [nterac ting ( Fls power law correlators

® Interacting SwC (scale without conformal): power-law 7777

Alternative classification: [R-limit of RG-Hows (Wilson)
* Strong (eg, (J( D)
* Fixed Point (e, IR-CFT)
e Limit Cycles

* [imit 1"_‘_{‘([]! Hows

* New, unknown phenomena/behaviors?

* New, unknown applications? (e.g., “cylcunparticles” as we’ll propose later)

Pirsa: 12050071 Page 8/52



Scale without Conformal

* (Condition for Scale Invariance?

9, D" =0

where the dilatation (scale) current is given in terms of the improved energy

momentum tensol

7 . LY
D 2, T

SO l]l‘il

9, D" =T

H

* (Condition for Conformal Invariance?

. - el

A, K T =0
* [t appears that in both cases the condition is

i
Il =0
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Scale without Conformal
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e i]]]|)|u\(‘iﬂl nts? It

one can Improve ‘f-‘”’ SO []1.11 scale and contor 111.1] \[1” conscrved

¢ But! What if the unbroken symmetry is a combination of two broken

symmetries? This happens in other tamiliar contexts:
.

* For spontaneously broken symmetries, as in the SM: SU(2)xU(1) — U(1)

* For anomalous currents, as in B and L in SM., but not B/

[ f ] " 3 ey Y | y f f / f PPTTT ) [ darnel 7
® JOOK Jor a conserved current of the form /r olchinskl &/7)

]))‘i J_“/[‘;”x - ‘—;i

WHET l / ({1 virvial current ) 1S d non=conserved current thal does not depend

(and which 1s not of the form | ), 1 )

Pirsa: 12050071 Page 11/52



| HEN: We can have
(');,[)‘” = ’[;": — (,)“1-” = () scale invariance

while

’[}’,{ = (');,"“ # () no conformal symmetry

A scale transformation together with a U(1) rotation

is still a symmetry,
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Immediate implication: limit cycles or ergodic limit Hows

Let () d’r\ v be the generator of rotations

Rotation on fields:

{ 1t ) i) /
‘]'/ . (¢ ~¢l:,}, ( b‘lf{[,’[
\ scale transformation corresponds to RG-motion of coupling constants: if £ ( O;P
[} f\
(/] {0 .r“' \ /

I'his can undo the rotation (so we have a symmetry) if

Pirsa: 12050071 Page 13/52



For fixed ¢, this transformation is an element of the group of internal global

transformations of the model (the “Havor” symmetry group of the kinetic terms)

As a function of 7: one parameter trajectory in compact space

e lrajectory closes

@ Irajectory comes arbitrarily close to initial point (Poincare recurrence)
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Outline

* Introduction
® Searching for SwC models (in D =4 — ¢)
* Some General Properties of SI'in D = 4
* Scheme D« [n'mit'l\.i C
* Stability Properties
Correlation Functions

* Cyclunparticles

Perturbative Solutions in D = 4

\ word about the #-theorem
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S *;11‘L‘hing For SwC Models

(Sl 5 _;|| vithout ( 'lll(l\"_‘_:i Svmmett
Want: DH = .I',,IWH - ‘_.';f

9, D" =Tl — 9,V =0 TW =9, V" #0
Vi £ 9, L

Considerations:

* Interacting

* Renormalizable

* Perturbative

* Enough DOFs for nontrivial virial current

LD } models \,\l\\11]]‘\14![.“\.”1"\[JIIIEJ]\ Vost mnteresting

* D=4 ¢ models: scalars and spinors. More tractable (avoid complication ot YM

by going to 4 — ¢ to get asymptotic freedom and possibility of fixed points)

Need to be more explicit in order to write candidates for the virial current:

veCTtol H|)(‘|.|[u|\ Ol ti]l!l('!l\]n[l 3 \.\|1]1 non \.l[l]\hl[l‘_‘, 111\{'!'_“1 NCe
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S *;11‘L‘hing For SwC Models

Lowl Scale without Conformal Symmetr

Want: DH = _I-H'I’f”’ —VH
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by gomg to } & to get asymptoti freedom and [Hnaw}lllll\ of hixed points)
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veCTtOl H|){‘|.|[n||\ Ol l!]]!]('!]\][![l 3 \.\|1]! non \.l[l]\hl[l;( (11\( recnce
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\ ] v

For now: focus on D =4 — ¢ models L L+ Lin

L= —MbpaOuda + > Uric" O
/ L+ ! / / IS
e ‘) A

a=1 real k=1 Wevl
scalars SPINOTS

with: Lint 1,«\,,1“..:“..-"w'.'*,f‘ F —Yalij Pa¥i¥; + h.c.

Onlv candidate:

Vi = Q

ab! l-'(rﬂf‘ )b 1 "'/) (! rT"‘“ (I8
Note that:

e O O». (symmetric combination gives total divergence)

P P (current is real)

e (Oand P are generators of SO(n,) and SU(ny) symmetries of L

)

['his U(1) subgroup should be broken by L,
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Recall d,, D" ']'Ii’ oVt =0 with '["’{‘ a,.V* #0

: g al ) DT ars e, l 2 i :
[race anomaly //’ () T dabed PaPCbPePd 5MalijPa¥i¥; T 11.C. .
Div of virial: (-)},’.‘.N[',.’ ) (aa O O,0 P frT’“r'}Nf P..0, V10",

( sing | (quations of Motion (J( }\l',(“,_“
D 1
(L.)wiu.'f'Jr.'f)‘_‘jd' |Tc(L)rF‘wi‘\«f'.iu4.li | (.,)"iiff‘l'\r"il'r."i I (,)v r‘\w;n nf' | (._,)ffr'f)'r’\u’u‘lrr r.J'” ]l”‘l‘f}‘!‘fJ‘ f}‘."
obtain conditions
}r.l/r:‘rll (\_)u'r!'\rr’furf (L)[l'lfh,\r”'j’!”f (\,)l "¢ "\.'H'u'irll (‘_)ff,rf’\riflr r)“
) ) )
Malig (\,)rr’u,"/'r" 17 /i"!.”u v 9 I ,."J”u‘«,r'
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Recall: ~ §,D* =TV -9, V* =0 with T =9,VF #0

[race anomaly T /’(",.') l 2 r l o

Div of virial: r')},,.\'“['..' ) (o 00,0, /"“"-"“TN'-};"’{‘«' + P, i‘);‘«"l‘-";‘TN"'

Using | quations of Motion (EOM). e

{\.)\In.'flji.'fl}‘_rj*i' |Tc(L)r\"\I'\u‘.-ilrr.f | (h)‘iirf‘l'\l"lj‘.lle I () ‘\W;n nf' | (._,)f)'r'f)'r’\ln’lilfrl.f” ]"’u‘r”lrja r}‘f'

i)[lT‘iH] ( t::](|]1|1|]1\

}r.l/r:‘rll (\_)riir!"\rr’furf (L)[l'lfh,\r”'j’!”f (\,)l 'i "\.'H'u'irf‘ (‘_)ff"rf’\riflr r)“
J ) )
a t] (\,)rr’u,ff'r" 1] /#":‘.{/u ;f,r [,.",i”u‘«,r'
13
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'})uf'n'(f — _(-Jrl’u/\u’fn'u' e (Jh’hf\uh'rrf o (-Jf"r'/\uh:"(f G (J(f’r!/\f.fh('r/' s

. ) )]
¥ 7(2r1’u”u' iy ]f'i.‘/u i’ T 1_,“_}.’)’11 i)’

alij

['hese are not functional equations

Solution: specific values of coupling constants (and Q and P)

that satisty these cquations

P =10)

Precisely as in searching for conformal fixed points (with Q

We look for solutions using perturbation theory:

* beta-functions to fixed order in the loop expansion

coupling constants on limit cycle (eg, on solution) remain small

* (and P consistent with beta-function loop expansion

Page 22/52
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Polchinski (‘|87): sc:

ars onlvy, | ]'"’P solutions: if SI then CIF]

)

Jabed = QaeAebed + permutations

-— ) . .
) 3 e ) Jabed (Qae Aebed + permutations)
e e

i‘l "fr ,"‘ (l ’lJr !

now show RHS vanishes identically (for any value ot coupling constant A)

j'ffl"u'l {'\414’”,;” | {\ [

2 aboh Acdgh + permutations)
)T =

' ,I\\]l.ll“[l'[[”: ;,effa.,’llf-‘_)r-'r '\J ."u‘."' X (L).(r \ifll.'rf"\u'fl.lr\"‘ []

| ]lull‘ll‘ll]l, )

’ufu“f{(,).w ,\‘ bed ] X (L,)..'r ,\r ;”“,',\H_r“fl;l,\ ()

( af:,rf‘;

Dorigoni&Rychkov (‘10): scalar plus Weyl termions, 1-loop: if SI then CF]

FGS Crr): obstruction to above argument dppears at 2 ]rm;:\ (for model with Wevl+scalars)

10
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Polchinski (‘|87): scalars only; | ]nm|\ solutions: if SI then CF'1

bl QucAebed + permutations

.

- y - i
‘> ) bed \ J,,;,,,;#(H),,., ,\,fy,,f ]H‘I'Illlli;llinlls]
e AR

il .If | ,"‘ {.’ljr .J'I

now show RHS vanishes identically (for any value ot coupling constant A)

f,,f.,,; f,\,,!,r,;’ f i,\,,f.,f./, \,,a‘,f-f.

— bahAcdgh + permutations)
|G-

“classical” term: ;,,!F, | (L)--'r \ bed) X (L)"" -\, b ,ff\.;.f'“ il 0

[-loop term: ) { \
I )uflr a,ff "-(_,).;f '\1 b ‘." ) X (L_)..'r ‘\r b .."'\\.‘-’r.fl!'- ‘\a J:fﬁ.‘ ”
Dorigoni&Rychkov (‘10): scalar plus Weyl termions, 1-loop: if SI then CF]

FGS Crr): obstruction to above argument appears at 2-loops (for model with Wevl+scalars)

10
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Polchinski (‘87): scalars only, I-loop solutions: if SI then CF1

babed QaeAebed |H't'lt|1|l;lliur]s

“

\ )2 \ ;’,;,,,,r#(u),,,,\,h,,; 1 |n'|'|||111;|liu||s1

)
4 ..-:JufJ" i (
e P
a.b.e.d 1. h {

now show RHS vanishes identically (for any value ot coupling constant A)

) ibed EAabed — (AabghAcdgh + permutations)
[O7r=
“classical” term: Jabed ! (\.)'-'r Aebed) O (L)m AebedAabed 0
| ]llill) term: ;'f”,” a."“::(.,)u'f ‘\' hed :I X (L,)-.'r ,\[ b n.’l'\u‘-r*-,'.‘l' '\4 "f‘ff"‘ ”

Dorigoni&Rychkov (‘10): scalar plus Weyl termions, 1-loop: if SI then CF]

FGS Cr): obstruction to above argument appears at 2-loops (for model with Wevl+scalars)

10
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& \l\.iH\I(lll

Recall: ' A \ = \° + (y "‘Il t and s

“ V4 & /

n ) n-=2
_\1‘|Ix|1[n:\u{~.n| ' on both sides of J\ (L)\ and ), Qy Py
* [owest order: non-linear. Manv solutions. Discard “bad” ones

L ]

Higher orders: linear
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&~ \il.iHHIllll

Expansion (“Have

()

Mart |! POWETS (

LLowest order: non-linear. Manv solutions

Higher orders: linear

) yy) ) and )y (7] L
| 6 IlF-';

ir” indices implicit)

Y QRMer P=) phn

I ) 1 2
it =2 on both sides of /3y QA an ), Qy Py

Discard “bad” ones
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Summaryv of findings

@ No obstruction for pure scalar theory at 2-loops
@ No obstruction to all orders in perturbation theory for any ny if n )
(that 1s SI implies CI 1n these theories — to all orders 1n perturbation theory)
@ Solutions with 2 = 0 but O # 0 at 3-loops in
@ n=1,n,=2, with unbounded tree-level potential
@ n=2n ), with bounded tree-level potential

Oscillating couplings

().OF
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(too many) Comments

* ‘Iree level potential bounded vs unbounded: not really an issue for perturbative analysis
» \Il]l]]Itl-\l'\IlIt]\lIl‘i_' RG Howsing' inD =6
» Vacuum stability determined by eftective potential

3

¢ Solutions with n 1,2, n 2. already found at 2 loops (used Jack & Osborn betas)
» Numerically
» Via ¢-expansion
» Perfect agreement between them
» Checked by integrating RGE using both full nonlinear 2-loop beta functions
as compared with analytic computation of cycle (in terms of O and P computed

either numerically or analytically via e-expansion)

» However 4 (JA " which means ¢/ " Hence terms 1n beta tfunction of
order of 3-loops can contribute at same order in &: result cannot be trusted
* At 3-loops SI solutions with n I,2, ne= 2, are still obtained
| y
> lll\\ll”llllc [[1.!1 ) ‘_)\ }ili[ NOW 111\1u[(|n1‘-1](n:[h'a.l:lulll\1:1[([
at order

» 3-loop beta functions generally unknown, but:
¥ Only Yukawa’s beta-function can modify Q at this order

¥ About 250 3-loop IPI graphs: only 12 can modify QQ at this order (see next slide)

* Scheme dependence

» Computations described above are all in MS-scheme
» Result is scheme dependent in D = 4 — ¢ : “classical” term in beta-function (—¢4) is not
covariant = could have avoided computation of 3-loop corrections by scheme choice
19
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(too many) Comments

* ‘Iree level potential bounded vs unbounded: not really an issue for perturbative analysis
» Much like study Ing RG Howsing’ inD =6
» Vacuum stability determined by eftective potential

3

¢ Solutions with n 1.2, n 2. already found at 2 Illill\HIll\l'll_].ll. k & Osborn betas)
» Numerically
» Via ¢-expansion
» Perfect agreement between them
» Checked by integrating RGE using both full nonlinear 2-loop beta functions
as compared with analytic computation of cycle (in terms of Q and P computed

either numerically or analytically via e-expansion)

» However 4 (JA " which means ¢/ " Hence terms 1n beta tfunction of
order of 3-loops can contribute at same order in &: result cannot be trusted
* At 3-loops SI solutions with »n I, 2, ne= 2, are still obtained
| {
p It is still true that 7 = QA but now next order (4-loops) can only enter
at order

» 3-loop beta functions generally unknown, but:
¥ Only Yukawa’s beta-function can modify QQ at this order

¥ About 250 3-loop IPI graphs: only 12 can modify Q at this order (see next slide)

* Scheme dependence
» Computations described above are all in MS-scheme
» Result is scheme dependent in D = 4 — ¢ : “classical” term in beta-function (—¢4) is not

covariant = could have avoided computation of 3-loop corrections by scheme choice

1¢)
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Diagrams that can contribute to QQ in the n; = ny= 2 model

3 [llll}l\
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e . L4 - . -
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Some General Properties of SI
Solutions

(in D = 4, but readily extended to other dimensions)
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Scheme Dependence

Properties that have physical consequences must be independent of the scheme:

\]H"_'_il' ( llill)[l]l"_'_ ]Z\l'll EIHIIH

[. The existence of a conformal fixed point
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Scheme Dependence
Properties that have physical consequences must be independent of the scheme:

Single coupling fixed point

[. The existence of a conformal fixed point

[I. The anomalous dimension at a
ICIIH‘]]THJ] “\l (I I)(’””_ W |1|‘ |l ‘h'[!" IMIINCS

the scaling behavior of Green functions

[11.'The first derivative of the beta
function at a conformal fixed point,
\\l”ﬁ h l]('li'[|”|[l('\ [Ill' \]:_’\” .”]‘I rate of
approach of the coupling to the
conformal fixed point and thus modifies

asymptotic formulac

[V.The first two coefhcients in the loop
expansion of the beta function, which
govern the UV or IR asymptotics of the

coupling
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Scheme Dependence
Properties that have physical consequences must be independent of the scheme:

\]H"_'_il' ( llill)[lll"_'_ ]!\l'll E)HHH

[. The existence of a conformal fixed point

[I. The anomalous dimension at a
:cmTu]HLI] 11X« <| |)<r|111. \\|1|| !1 :h'[l'l]ll]:u'\

the scaling behavior ot Green functions

[11.'The first derivative of the beta
function at a conformal fixed point,
which determines the S12n and rate of
approach of the coupling to the
conformal fixed point and thus modifes

asymptotic formulac

[V.The first two coefhicients in the loop
expansion of the beta function, which
govern the UV or IR asymptotics of the
:t1l||3||11_=g\

V. The first coefhicient in the anomalous
dimension, which controls the scale

]

factor of the held in the tar UV or IR
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Scheme Dependence

Properties that have physical consequences must be independent of the scheme:
\1110‘_"|l' ( l'ill)[IIl"_'_ hixed point Lxtension to .\I.m} ( lll]illt[l‘l_"\ '_I P or L J

[. The existence of a conformal hixed point [. The existence of conformal fixed points

and scale-invariant trajectories

[I. The anomalous dimension at a [1.The ¢ 1£7¢ nvalues of v + O at conformal

conformal fixed point, which determines fixed points and scale-invariant trajectories
the scaling behavior of Green functions
(/) at

[II. The first derivative of the beta [11. The C1o( nvalues of ¢f/ce

function at a lH:I’H[EI].Il 1« l{ Plilll|. l(b]]|l![||l‘[[ ]I\I'Ii [H)IHI‘\ .lI‘.I[ S( .I[l' invariant

which determines the sign and rate of trajectories
approach of the coupling to the
conformal fixed point and thus modifies
asymptotic formulac
[V.The first two coefhcients in the loop
expansion of the beta function, which

govern the UV or IR asymptotics of the
l[1l||!|I]]lL'\
V. The first coefhcient in the anomalous

dimension, which controls the scale
factor of the held in the tar UV or IR

Page 36/52
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Scheme Dependence
Properties that have physical consequences must be independent of the scheme:

Single coupling fixed point Fxtension to Many couplings (FP or LC)

[. The existence of a conformal hixed point [. The existence of conformal fixed points
and scale-invariant trajectories
[I. The anomalous dimension at a [1.The ¢ 1¢ nvalues of v + O at conformal
conformal fixed point, which determines fixed points and scale-invariant trajectories

the scaling behavior of Green functions

[I1.The first derivative of the beta [11. ||1(':'|L'I:|'.\.||m\n|[,-"".f_' (/) at
function at a conformal fixed point, conformal fixed points and scale-invariant
\\|m l] i]('l:'[l”l[ll'\ I!u‘ S12n .i|1<| rate of ]1_3|¢ crories

approach of the coupling to the
conformal fixed point and thus modifies

asymptoti formulac

[V.The first two coefhcients in the loop [V. The first coefhcient in the loop expansion
expansion of the beta function, which of beta functions
govern the UV or IR asymptotics of the
coupling

V. The first coefhcient in the anomalous V. The first coefficient in the anomalous

dimension, which controls the scale dimension matrix.

factor of the held in the tar UV or IR
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[0 be sure, these only guaranteed under natural scheme changes

A scheme change

-\wf'n cl -\\r"u d ",/.rf‘u o | \ Y, _’t”

(

Yalij = Yalij T Salij (A Y, 9)

1s natural if all couplings transform covariantly with respect to Gr (the symmetry

group of the kinetic terms)

that 1s, if

.\,,f.,,,f' r /f',j,, /l’f'.,*"'/l,,r /l,,‘,fu."'.\ "b! e’ el y \,,!,, (1 r II'II-,,JIEPJ.!,'/J’“‘/l’.‘_f,f'.\,.,"i,', U

Raoaw Riit R Yarit i

/

and  y,, » Ryar R /a'f:r‘r/,,- ; Y.,
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Stability Properties

Measures small deviations of How from cvcle

Sq(t) q(t) g (1)]¢ (2t (generic vector of couplings, matrix notation)
()t
gi(t) = g.(0)e
['hen -:‘i_r,f{/] r\_f,r{[]ir
: 9J8) )
where ) : Q) 1s the “stability matrix
dqg
< 1g=g.(0) (scheme independent eigenvalues)

Limit cycle: there is always one vanishing eigenvalue

For example: in ny, n 2 ergenvalues are 2.4, 1, 0.99,0.74., 0.095, -0.19, 0 (1n units of &)
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Correlation Functions

Determined from RGE. Less constrained than in CF'Ts (less symmetry)

By example here (rather than in generality)

Consider scalar and vector operators under SO(n,) C G

scalar-scalar:

7 ~/ \ Y/ 2 (A AY 1
-LN;;)L)( j2) (' p 1€)
Dimensions constrained by unitarity: tor (/y. J ) operator A
(for CF'T, operators with /) j> = 0 have A 2 f ?)
\i.L'.ll VvCCTOl
7 al / 2 . '|_A’ 1) 2 ‘\4\ ) f
L),H!HJL)( D) (—p L€) 2 (—p L€) 2 f (1
ab
25
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Correlation Functions

Determined from RGE. Less constrained than in CF'Ts (less symmetry)

By example here (rather than in generality)

Consider scalar and vector operators under SO(n,) C G

scalar-scalar:

7 Y/ ¢ Y/ 2 (A \ 1)
-LN;))L)q D) C(-—p 1€ ) 2
Dimensions constrained by unitarity: tor (/y. J ) operator A =z
(for CFT, operators with /| j> =0 have A = 2)
\i.t'.ll \Et!lll

y ~/ . 2 N2 (AT 9 AN )) ‘

L),,U'JJL)( p) (—p 1€ ) 2 ( P 1€ )2 s (
ab
25
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vectorvectol

7 ‘ 7 \ 2 i. 2 (4 ) ' 2 )
Ou(p)Op(—p) (—p L€ ) (—p i€) 22+ 0, ie)z (&
ab
with C an n, x n, matrix
and for (Lorentz) vectors:
l)",“/f()j\ P) ( /v‘ ) ( : P L 2@ f"rf € P /1( ) /v‘ u\l =@
( are ng x ny matrices,

relation between them not forced by symmetry
E.i\u]l[n]\u{ to CF1 case)
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vectorvectolr

(')M’[/;]();I[ D) ( ;JJ 1€) ; .4 /i“, X )i p r];( " ,,’J: L€ ) A-Q
ab
with C an n; x ny matrix
and for (Lorentz) vectors:
Ol (P) O (—p)) = (=p* —ie)~* |(=p® — ie) AT (P2 g Cy + pHp” Co)(—p? — i) 2B~V |
( are n, x ny matrices, relation between them not forced by symmetry

‘:J\:l]l[)ll\i'i{lra( 'l case)

) (5
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Cyclunparticles

As ( u'lnl‘,‘_"l'\ unpartic les for CF'15s. use SM to |11|:|1t S§1 sector
* weakly couple SM to SI model (possibly strongly coupled)

* use irrelevant operators to retain IR behavior

®* gee fractional ]l]l‘l\t space, but also [HJ‘-\IIi]\ oscillatory behaviorn

* see odd scaling and oscillations in interference term in scattering

Cyclunparticle phase space: discontinuity of correlation function across real axis

For ('\.i]l][llt af L [P \L'),, - h.c.

\ * X ftorward scattering amplitude M G b\ p° — e : C(=p (
lake imaginary part:
. ) . ( () | y () \
F(p7) Gagn | (p?)2 219 {‘ (%5%) m| Csin (55%) ‘
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Yang-Mills with Weyl spinors and scalars
* Couplings
e YM:¢
® Scalar:
* Yukawa
* Arrange for perturbative Caswell-Banks-Zaks fixed point g

e No —¢/termin betaasin D=4 —¢ , but now g, drives 4 and y toward fixed

}l{rIIlI\ ‘111i| cvcles

* Particular example:
* YM: SU(N)

* ‘[wo real scalars, singlets under SU(N)

[wo Weyl spinors in fundamental + two in anti-fundamental

* ‘| 'he above |>:m|||; es at least as much « ill‘.l}i]l xity in favor space as our

D } —&, non 2.2 model

* Additional spinors in fundamental + anti-fundamental to achieve CBZ
fixed point perturbatively

* Have done N = 2,3 (N = 2 is questionable for perturbation theory)

* (Cvcles found at 2 |un>[s\

* Potentially undone by 3-loops (just as in )

* 3-loop calculation in progress
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Yang-Mills with Weyl spinors and scalars

Couplings
* YM: ¢
® Scalar:
* Yukawa
¢ Arrange for perturbative Caswell-Banks-Zaks fixed point g

e No —¢/ termin betaasin D=4 —¢ , but now e, drives 4 and y toward fixed

points and cvcles

* Particular example:
* YM: SU(N)

* ‘Two real scalars, singlets under SU(N)

[wo Weyl spinors in fundamental + two in anti-fundamental

o ] }]l' .I]Hl\l‘ |):[I(|||i ¢S at |l"l\[ dS IT1LC E] ( ill!]}‘]l X1tV 1N ll.l\ Ol \[LI(( d5 Ol

D } —&, non 2.2 model

* Additional spinors in fundamental + anti-fundamental to achieve CBZ
fixed point perturbatively

* Have done N =23 (N = 2 is questionable for perturbation theory)

* (Cvycles found at 2 |un>[}\

* Potentially undone by 3-loops (just as in )

* 3-loop calculation in progress
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One word on a-theorem

\ perturbative argument for the @-theorem was given by Osborn
in general, tfor the classically scale invariant D = 4 theory with

<|11|!t H\]HH[('\\ ( ull]lll]llg_\ 1]1: Wevl .l!]Hll].\]\ coefthcient ¢ must satishy

f-)n’f . ]
) i(:;;-*--l/;
dgr
where ellipsis = anti-symmetric in /«».J, G is a positive definite metric and B ! 3 (Zg) :
Hence e
l(:'{; 1 "'/J,f }’/
(t
da ! ’
Note that 0« (/ 0 /, ()) |1\l'l[]HlI11|\il| cycles!
(lt
da da
Q=0 Grip’pt <0 with 0 3 =0
(lt dt
31
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Obviously, lots of [|!I[1|L[\ left to do ...

e 3 |:u:|)\

Explore models in D = 4

* Supersymmetry?

* D=2

e G772 3/

* Flows, I;[I:Ji.l”\ (from where to where?)
* Relation to NR-QM cvycles (Effimov)?
* (ravity duals? (Nakayama)

* Strong coupling

The End
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