URL: http://pirsa.org/12050070
Abstract: I shall describe Relationalism, especially in the Leibniz-Mach-Barbour sense of the word and my variations on that theme. My presentation shall give five extensions to Barbour's work: (more or less) phase space, categorization, subsystems analysis, quantization, and physics as a propositional logic ('questions about physical systems'). I shall also briefly explain how some of Crane and Rovelli's ideas do fit within this scheme, whilst others are at odds with the LMB scheme, leaving one choosing options rather thanjust considering unions. \ I shall also present how scale-invariant and scaled relational particle models (the latter originally discovered by Barbour and Bertotti in 1982) can, in dimension 1 and 2 , which suffice to toy-model many midisuperspace aspects of GR, be very generally solved at the following levels. 1) configuration space geometry following my fortuitous connection with Kendall's work in the statistical theory of shape involving the self-same space of shapes, and then the cone over this in the scaled case. 2) Conserved quantities and classical equations of motion. 3) Quantum equations of motion and their solutions. 4) Parallels of many Problem of Time strategies. I view this second paragraph as relevant not only by 4) but more widely by how it is a model of quantum background independence (BI), with BI being argued to be the other half to 'relativistic gravitation' in that gestalt entity known as General Relativity.

Relationalism

Edward Anderson

Astro Particule et Cosmologie, Uni versité Paris Diderot
$f q \times i \rightarrow \begin{aligned} & \text { Silicon } \\ & \text { valley } \\ & \text { Forndation }\end{aligned} \rightarrow$ Theiss Research $\rightarrow C N R S \rightarrow A P C$.

Chapters

caveat: I've ~ 3000 changes.

31 Introduction FIfe's.
(O) G.R. = relativistic theory AND
(1) Quantum en of gravity GR.
but if field eq's (or replacement for) aren't (quite) E -fe's,
(2) Quantum is bia sed to ward

Gravity. 1 st aspect
(3) Background Independent implies splitting Quantum Gravity
the 2 dspects.
(4) Quantum \qquad 2 Toy models Quantum Gravity Gestalt 2 Toy models \qquad
-(2) \gg (5) [though QGdyn, LQG, Mi'Theory , are (4)'s.BB82 RPM isa(5)]

- Quantum in Bold Indef \Rightarrow kR ?
?roblom of Time.
- Relationalism: 1 word, many meanings "relative to " (but don't confuse w. relativity) "relations 1.1 things"
-opposite of aissolutison or of unnec. background "po thisheadst be " (better: "at least pant-tangible)
"physical things" things")
- Libwe-Mach-Barbour sense - act but cant be actuary yon.
v. different Ravelli-Crane sense . identity of indiscernillas
- LMB-A sense
$R C>L M B(-A)$ in $Q G L i t$.

but in fact LMB-(A) holds V.widely in Theoretical physics.

LMB approach

- Time and Configuration (space + in gauge theory are heterogeneous - each has its own relationalism.
- Temporal reletionalism

1) Leibniz : No time for the universe os a whale
2) Mach: Time is to Primary Notracted from Chance.

What change is quite a pre-occupation in this talk! $\underset{\sim}{\text { details of } h o w ~ t i m e ~ i s ~ e m e n g e n t, ~ w h a t ~ f o r m ~ i t ~ t a k e s . ~}$

- Implement Leibniz :MRI or MPI actions.
$\int d \lambda L$ (home, of deg 1 in $\frac{d a}{d \lambda}$) so $\frac{d}{d x}$ ix or just $\int d s$
No primary $t \Rightarrow N o$ primary v and p defined ito $d s$
$d q / d$ (0 thee)
dime emerges as simplifier. "A (all change"
in LMB. Machuran

LMB approach

- Time and Configuration (space +internal space) are heterogeneous - each has its own relationalism.
- Temporal reletionalism

1) Leibniz : No time for the universe as a whole

Mach: Time Not Primary
2) Mach: Time is to Le abstracted from Chase. ~ Emergent
What change is quite a pre-occupation in this talk! \sim details of how time is emergent, what form it takes.

- Implement Leibniz: MRI or MPI adios. $\int_{N o \text { primary } t}^{d \lambda} \Rightarrow N$ (ho primary v and P defined ito $1 d s$
$d q / d$ (other q)
Then JBB time emerges as simplifier. " "all change" in LMB.

Configurational Relationalism

- Configuration space 9
- $q \rightarrow P(q,)^{\prime} \rightarrow q / \underset{q}{ }=\widetilde{q}$ reducet confis. is locally

wrong No. Vanyingwtg's
direction? $\overrightarrow{\text { constrctasints }}$ $\xrightarrow{\text { constraints }}$ kill 2 l'ld ${ }^{\text {l }}$. at level of actions, is Barbour's Best Matckning rs lation config. indirect
- I did both for $1 \times 2 \mathrm{~d}$ RPM's reduce (Barberer) turns a geomatry into a medonis \qquad
drrect
relational|spacich approach

Composing temporal \& configurational relationalisms (5)
-TR ,CR are logically independent. Dynamical tradition.
- want both, need to be slightly careful.
$\begin{array}{ll}\dot{g} & \underline{q}-\frac{\Omega}{q} \times q \text { breaks MRI } \\ \text { unI }\end{array}$
- Free end point variation ensures of's unaffected.

This mans electric potential Φ is really a $\dot{\Psi}$
and the GR shift $\quad \beta^{\mu}$ is really a $\underset{\text { velocity of the frame }}{\stackrel{\rightharpoonup}{F} \mu}$

- + generally relationalism han a colourfure'g grid, set of principles of dynamics
- append by colic vels, al most-Hamitfonian
almost-Dirac procedure
almost - phase space ...

> Last slide of Introduction, Examples : RPM's
> worning! frouser-shaped talk.
> Geamstredruamics
> Baierlein-Sharp-Wheder type
> CBFO-A) altion.
> $\int \|$ dh- ZyFh Me Cermetric
> $R E=0$ GR Hamiltiviert
> $H_{\mu}=0$ GR momontum
> $\tau_{t \rightarrow B} \pi_{B}=0$ or $\frac{c e l i n a r}{\pi / \sqrt{h}}=0$

> Last slide of Introduction, Examples : RPM's
> - $q(N, d) \rightarrow r(N, d) \xrightarrow{T} P(N, d)+\frac{1}{7} S(N, d) \rightarrow R(N, d)$
> - $y=$ Excl or Sim
> Tr, Rot Dol
> - Dacobiaction relative only
> $2 \int 11 d \underline{q}-\underline{d}-d \underline{b} \times q / 11 M^{\sqrt{E-V\left(q^{i} \cdot q^{J} \text { alone }\right)}}$ flat mas metric
> $\varepsilon:=\frac{" p}{2} "^{2} N^{2}+V=E$ energy constraint
> $\begin{aligned} & \mathcal{L}=\sum^{2} q^{I} \times p_{x}=0 \quad \text { linear } \\ & \left.C P=\sum_{I}=0 g=q^{I} \cdot q_{I}=0 \quad\right] \\ & t J B B\end{aligned}$
> $\rightarrow 0.0$ Notion of clumping,
> inhomogeneity, structure
warning! frouser-shaped talk.
Geometredyonmids

$$
\begin{aligned}
& T=\frac{1}{y} G^{\operatorname{abcd}}\left(O_{F} h a b\right) O_{F} \text { het. } \\
& V=A R
\end{aligned}
$$

$\partial \dot{\partial} \stackrel{\infty}{\sim} \underbrace{(\lambda-1)}_{G R} \underbrace{B}_{\substack{\text { Strong } \\ \text { Carrull }}} \underbrace{\sim}_{\text {Galiles }} i\left(\dot{M}_{\text {cm }}^{D^{2} \pi}\right)$

$$
c=1 \quad c=0 \quad c=\infty
$$

e.9. arkir 0711.0285 .

82 Relationalism Further Developed
Relational ism can't pair any q \& g.

* $\operatorname{dim}(g) \geq \operatorname{dim}(g)-1$ is trivit
* need stunctural compatibility
- Riem(Σ_{1}), Diff(Σ)
- g to have a natume group adion on of
* Dirac proceduve's in put:

Riem($\overline{)}$, id ffeils
but there's still some ambiguity in 9 giveral?

$$
\begin{aligned}
L & =x \quad \text { Dirac } \\
0=\frac{\partial}{\partial \lambda}\left(\frac{\partial L}{\partial x}\right) & =\frac{\partial L}{\partial x}=1
\end{aligned}
$$

Barbour: q primality
at classical level.
Sub' Q's Quantize
And these are combinealle (Phase, Can) $\xrightarrow[\text { Quantize, }]{\longrightarrow} \operatorname{Prop}($ Sub)

Relational Theories
Frozen GM's. \&l $|\Psi\rangle=0$
rather than

$$
f l|\Psi\rangle=i \frac{\partial}{\partial t}|\Psi\rangle
$$

$$
\mathcal{L}=0 \rightarrow \hat{\mathcal{C}} \mid \Psi \underset{e+c .}{ }=0
$$

Both reduced \& Dirac are relational.
A lot of sti-relationa But $T R, C R$
difference wiped ont re-applicable.

$$
\begin{aligned}
& \sqrt{T V} \mid T_{C_{H 1}}-V \\
L= & x^{\text {Dirac }} \\
0=\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial i}\right)= & \frac{\partial L}{\partial x}=1
\end{aligned}
$$

Problem of Time Facets

- Frozen Formalism C ip. problem.
- Best Matching Problem (formally thin sandwich)
- Foliation dependence Problem
- Functional Evolution problem $\left\{e, e^{1}\right\} \approx 0 \nRightarrow[\hat{\varepsilon}, \hat{\varphi}$ ono
- Multiple Choice problem QM $(t)) \underset{u n i t a y}{\rightarrow} Q\left(t_{2}\right)$
- Global Problem of Time t_{1} not valid avorywhera.
- Problem of Beables (usually of obsemables)

$$
\{\{\{i-0\}=0-\{\sin 0\}=0
$$

- Spacetime Reconstruction $\{\therefore i n-0\}=0-2$
(or Replacement) Problem.

Problem of Time Frets

- Frozen Formalism C_{\rightarrow} ip. problem.
- Best Matching Problem (formally thin sandwich)
- Foliation dependence Problem
- Functional Evolution problem $\left\{\varepsilon, \varepsilon \varepsilon^{\prime}\right\} \approx O \nRightarrow\left[\vec{\varepsilon}, \hat{q}_{\}}=0\right.$
- Multiple Choice problem QM (t) UnitaM(t)
- Global Prole of Time t_{1} not valistay vayumere.
- Problem of Beables (usually of olsemables)

$$
\{\{i n, 0\}=0,\{y\} O\}=0
$$

- Spacetime Reconstruction Pralber

Prollem of Time Strategies
Usually centred about FFP. Hidden? Neels Appendirg? A. emergent
 semid emargent 11 ? 2?? at lonst in ssme rgions? $t^{\text {wKCs }}$ no time atall
and NSI, CPI

Time is to be abstracted from what chaye
Any: Rovelli
All : Leibniz-Barbour
Enough locally-raluvent d ange : E.A. ~genemlized local ephomitis prucedure

Demooraay, esp in agneric case. some times are be fter thom ofthes.
[aurrat reed to insent "bosonic!?

Time is to be abstracted from what change
Any: Rovelli
All : Leibniz-Borbour
Enough locally-reluvent change : E.A. ~genemlized local ephemeris procedure

Demoaraay, esp in generic case. some times are be ter than others. [arrant need to insect "bosonic"]

Time is to be abstracted from what chaye
Any: Rovelli
All : Leibniz-Barbour
Enough locally-reluvent change : E.A. ~genemlized local ephomenis prucedure

Demooraay, esp in agneric case. some times are be fter thom others. [aurant need to insent "basonic"]

- tYork \sim matter change con '- con inboute
- tmalter tends to be unplysial
undorevalle $\leftrightarrow i$ intragith
\& rest of changes con'teontribute.
is very bat-only 1 dof.
[of JBB has all (bosonic) change
But Dossn't unfreere
y
-t
is in on wowlly scaloberd
(onfuet tres is //Lar in pratics).
- tyonk \sim matter change con ': con inbute
- tmalter tends to be umphyssial
and bewalle \leftrightarrow infragithe
$\&$ rest of chayes con'teonitibute.
is very bad -only 1 dof .
[. $t^{\text {JBB }}$ has all (bosonic) change
But Doesn't unfreeze
- t

13: : E ENis usmally scalchond
y
4.
(induet tace is //lar in pratice).

- $t^{\text {matter }} \sim$ tends to be umplyysicil

3 undbiserville \leftrightarrow sintagith
\& rest of chayes an'teontribute.
is very bal-only 1 lof.
$\left[-t^{J B B}\right.$ has all (bosonic) change
But Dosin't unafreeze
-t
(in futh to 5 is //har in praotion

- attitudes to sem thenee of time in the apprades is a lso clanifiaile by aci, any etz (sugnest howsches)
- tratter tends to be unplyysical undbievalle \leftrightarrow intangith
3
8
8
$\&$ rest of chayes an'teontribute.
is very bat-only 1 lof.
- $t^{J B B}$ has all (bosonic) change

But Doesn't unfreeze

- t 隹
yy
(in fuat tree is //har in practise)
- altitudes to sem thence of time from the appreated is also clanitialle by acl, any etc (resupest Mowselven

Relationalisin and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin $=0$
solving Lag rangien form yf Lin forg
is Best Majiching ∂ solving Hy, for $\beta^{\text {po }}$
- Ein, H algobra of commututros \rightarrow Function E Er. \leftarrow
- RWR is chasical comiterpant of spacetine reconsituaction

Relationalism and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin In $=0$
solving Lag ravirion form of Lin fors
is Best Majching D solving Mn or β
- Lin. H algobre of commututors \rightarrow Functin i Cis.t
- RWR is chassical comiterpait of 5 pactime reconstruction

Relationalism and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin
solving Lag raugian form of hin ford
is Best Matching D solving Mes for β^{μ} sandwich!
- Lin, H algebra of commututros \rightarrow Functimel Er. \leftarrow
- RWR is chessial comiterpast of spacetime reconstruction ce. OircacAlgbor
kills all 3 kills a.l.13

Relationalisin and POT Fraets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin $=0$
solving Lag rangian from of hin forg
is Best Maliching D solving M, for β sandwich.
- Lin, H algabra of commututris \rightarrow Functinal Ex.t
- RWR is elassial comiterpnts c. DirrcA Algchr
kills all3↔ of 5 pacctime reconstruction

Relationalism and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin $=0$
solving Lag rangion form of Lin forg
is Best Majching \supset solving Mo for β sandwich!
- Lin,H algobra of commultoris \rightarrow Function $\operatorname{Er} . \leftarrow$
- RWR is chssical comiterpait of spacetime reconstruction ce. Dircc Algbor
kills all3\& kills a.1. $3 \leftarrow$

Relationalism and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin $3=0$
solving Lagrangrum frrm yf Lin forg
is Best Maliching D solving M, for β^{μ} sandwich!
- Lin, H algebra of commututors \rightarrow Functimi Ex. \leftarrow
- RWR is chessical comiterpant of spactime reconstruction ce. DirrcA Algbor
Kills all3\& kills a.l. $3 \leftarrow$

Relationalism and POT Facets

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lin
solving Lag rangian form of hin forg
is Best Maliching D solving M, for β sandwich!
- Lin, H algobra of commututris \rightarrow Functiond $E r$. \rightarrow
- RWR is chesical comiterpatt of spactime reconstruction ce. DirrcA Algcor
Kills all $13 \leftarrow 4$ kills a.1. $3 \leftrightarrows$

Relationausm ano 101 1.ans.

- $C R \rightarrow$ Lin $=0 \rightarrow \angle i{ }^{2}=0$
solving Lag raugian form of hin forg
is Best Majching \supset solving Mo for β,
- Lin, H algebra of commututris \rightarrow Functind E E $:-$
- RWR is chessial comiterpant of spactime reconstruction ce. DirrcA Alybr
kills all3 Whast P.O.'s ame Rovelli.

Relatohausm ano io 1 1.0.ens

- $C R \rightarrow$ Lin $=0 \rightarrow$ Lis $=0$
solving Lag rangion form of hin forg
is Best Matching \supset solving Me for β^{μ} sandowich.
- Lin. H algebra of commututors \rightarrow Functired Er. \leftarrow
- RWR is chssical comiterpant of spactime reconstruction c. OirrcA Alybbr
Kills all3 Whast P.O.'s ave Rovelli.

Rovelli-Crome Relationalrem
GPerspectivalism)

1) QM only makes cense for subarystems \leftrightarrows CI dispute this
crame \& my \{sub(q)\} doffer slightly.
I) QM of obsowers abserving othor obrenoes obsenting subisyting
2) Ue anything as a tima for mything else.

Rovelli-Crome Relationalrem
Gerspecivalism)

1) QM only makes conse for subasystoms \leftrightarrows (I dispute this
crame \& my \{sub(q) \} dofferslightly.
I) QM of obsowers observing othor obrancos obsenving subiyptins
2) Ue anything as a time for mythin the.

ReVts resolved
(yuy1) \forall modats : une Relative Jacdo Coords

Let reletive Lagrame curats

$$
r_{1}=q_{3}-q_{1}
$$

relative partido separation vichors
-These

Key 2) Kendall \& Casson; only 3 simple "topolagied perids"

(ultra)(splesical) pars diagonalize shape space.
$S^{\text {h }}$ have much easy geometry \& linear methods..

Everything else has Preston spues fid
But then need to remove $\operatorname{Rot}(d)$
N -agorlands: \square easy geom Inhomogeneous coords,
Fuhini-Studv metric
\square
Gibbons-Pope $\mathrm{d} \geqslant 3$ is

fanchanders caisson diagonal | no longer |
| :--- |
| simple | $\measuredangle \mathbb{P}^{\prime}=S S_{\text {, }}^{2}$ so diyonal

coordinates are.
$N \geq 5$ rather len Known : >.:

Key 3) : at metric vever
(ultra) (splerical) pdars dragonalize shape space.
$S^{\text {h }}$ have much casy geometry, \& linear methots...

Key 3) : at metric vower
(ultra) (spherical) pars diagonalize shape space.
$S^{\text {h }}$ have much easy geometry, \& linear methods...

Key 4)
Scaled Confer space $=C$ (she cone over
both at metric and at topological levels.
$C\left(S^{n-1}\right)=\mathbb{R}^{n}$
$C\left(\mathbb{C} \mathbb{P}^{\prime}\right)=C\left(\oiint^{2}\right)=\mathbb{R}^{3}$
but $C\left(\mathbb{C} \mathbb{P}^{N-2}\right)_{N>3}$
is suigeneris.

Key 5) Coords for scaled RPM's

- N-stop: Pi magnitudes as coors
just $\rho 1$ here!
ρ_{2}
ρ_{3}
- also serve as
subsustem-ablantld
$Q_{0}^{1}: \mathbb{R}^{4}$ is natur
$\left.\rho_{x}^{1}, \rho_{y}^{1}, \rho_{x}^{2}, \rho_{y}^{2}\right)$
$\begin{array}{ll}\left.\left(\rho_{x}, \rho_{y}, \rho_{x}\right) \rho_{y}^{2}\right) & \text { has a set of } 6 \\ \text { so not easy tu see }{ }^{3} \quad \text { such shape ca }\end{array}$ how to coortinatize \mathbb{R}^{3}
In fact,

\square sui shape cords, now excluding

$$
\operatorname{DemO}_{4} व \sqrt{\left(\Delta_{\text {area }}\right)^{2}}
$$

The nicest amalnas:

(Keu 9) Isometry Groups

I showed how to inderpet 'isospin' and 'hyperchayge' for a relational quadriateral.

Key 10) Free \& HO-Uke problems remain caay

Key (A) Conformal Shim 34 example
Key 12) qualitative
analysis of HO's

Ke415) well-knows TlSE's for ang is alionally motinutel
16) : Macfarlamu 03 for
16) Well-knowinn witu?

Key 10) Free \& HO-like problems remain oasy

Key 14) Conformal ghernator ovien
Ke/|5) well-known TISE: sorery is relationally motinatio Ke/15) well-known TISE: for $\rightarrow \rightarrow \rightarrow$, \&

Key 10) Free \& HO-like problems remain oasy

Key (4) Conformal operater, oupering is relationally motivatel ke/(15) We ll-known T1se, s formy is rela

Problem of Time Facets in RPM's

- Frozen formalism $\sqrt{ }$ ip X ivs iv) solved $(1,-2-\alpha)$
- Foliation Dependence problem x
- Functional EVolution problem x
- Spacetime reconstruction problem x
- Mutest g otheerwber x and solved (1-22)
- Multiple Choice problem $\sqrt{ }$ - tribal Problem of time \checkmark at lat some of this com leal out by patching?

ERICer
Eeference pantides ?
eimi
fails to work for RPM x (nocris- Crass)

$\frac{K Y I V I}{G R}$

$\underline{\text { Euler }}=\sum_{i}$ pi mi $_{i}$ V
reference particles ?
fails to work for RPM x (no crise-cross)

