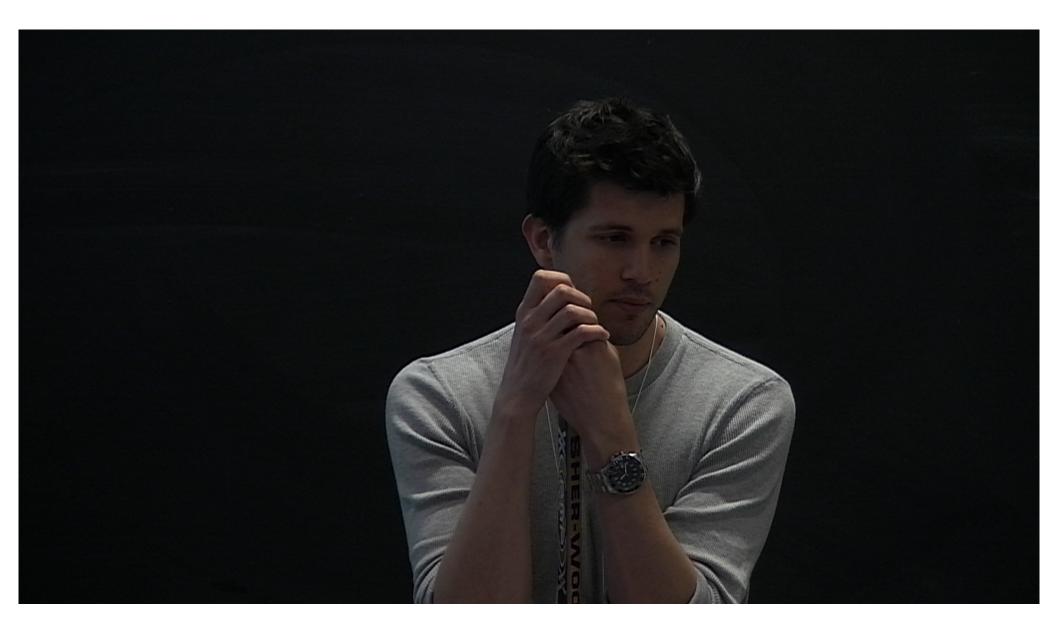
Title: 2+1 gravity as a conformal gauge theory and some frontiers for Shape Dynamics

Date: May 10, 2012 11:10 AM

URL: http://pirsa.org/12050069

Abstract: I will start by showing that gravity, with positive cosmological constant in 2+1 dimensions, can be formulated as a theory of dynamic conformal spatial geometry. Exploiting the isomorphism between the isometry group of de Sitter space in D+1 dimensions and the conformal group in D dimensions, I will reinterpret the Chern--Simons formulation of 2+1 gravity as a gauge theory of a conformal connection. In Cartan's generalization of geometry, this connection represents an evolving spatial geometry locally modeled off the conformal sphere. After a suitable phase space reduction, we obtain shape dynamics. This remodeling explains, in 2+1 dimensions, the remarkable success of the York procedure for solving the initial value problem of general relativity and the uniqueness of the shape dynamics Hamiltonian. I will finish by speculating about possible connections between this work and the general shape dynamics program with holographic renormalization, AdS/CFT, and Horava gravity.

2+1 gravity as a conformal gauge theory and some frontiers for Shape Dynamics


Sean Gryb

Universiteit Utrecht

Institute for Theoretical Physics, Utrecht University

Conformal Nature of the Univserve Perimeter Institute, Waterloo May 10, 2012

Intro OO	Large V OO	Cartan 0000000	Outlook OO
Collaborator	S		
• Large	L: F. Mercati. (paper to app e Volume: H. Gomes, T. Kos eral: J. Barbour, L. Smolin.		.105.0938)
			Universiteit Utrecht 2 / 15

A well-known isomorphism

Shape Dynamics:

Intro

 $\circ \circ$

Spacetime symmetry is *traded* for spatial scale invariance.

 \therefore many fingered *time* + global *scale* \Leftrightarrow many fingered *scale* + global *time*

Relation between $g_{ab} \rightarrow e^{\phi}g_{ab}$ and Conf(D)?

Large \

Consider:

Isomorphism:

- Isometry group of $dS^{D,1} = SO(D+1,1) = Conf(D,0)$.
- Isometry group of $AdS^{D,1} = SO(D,2) = Conf(D-1,1)$.

Can this be used to get SD?

2+1: Yes!

- Isomorphism ightarrow spacetime geometry \sim spatial "conformal" geometry.
- Key: relation between different Cartan geometries.
- Dynamic "conformal" geometry \Rightarrow SD constraints.

Higher dimensions? Gauge/gravity duality?

4/15

HJ equation in large volume limit

The large volume expansion (Gomes, Koslowski, Mercati, sg '11)

The SD Ham can be expanded in terms of $1/V^{1/D}$:

Large V ●○

$$H_{\rm sd} = 2\Lambda - \frac{D}{4(D-1)} \left\langle \pi \right\rangle^2 - R_{\rm Yamabe} \left(\frac{V}{V_0} \right)^{-2/D} + \left\langle \pi^{\rm TT} \cdot \pi^{\rm TT} \right\rangle \left(\frac{V}{V_0} \right)^{-2} + \dots$$

for trajectories that reach $V \gg V_0$.

 \Rightarrow diff-invariant def'n of dS boundary + boundary is conformal.

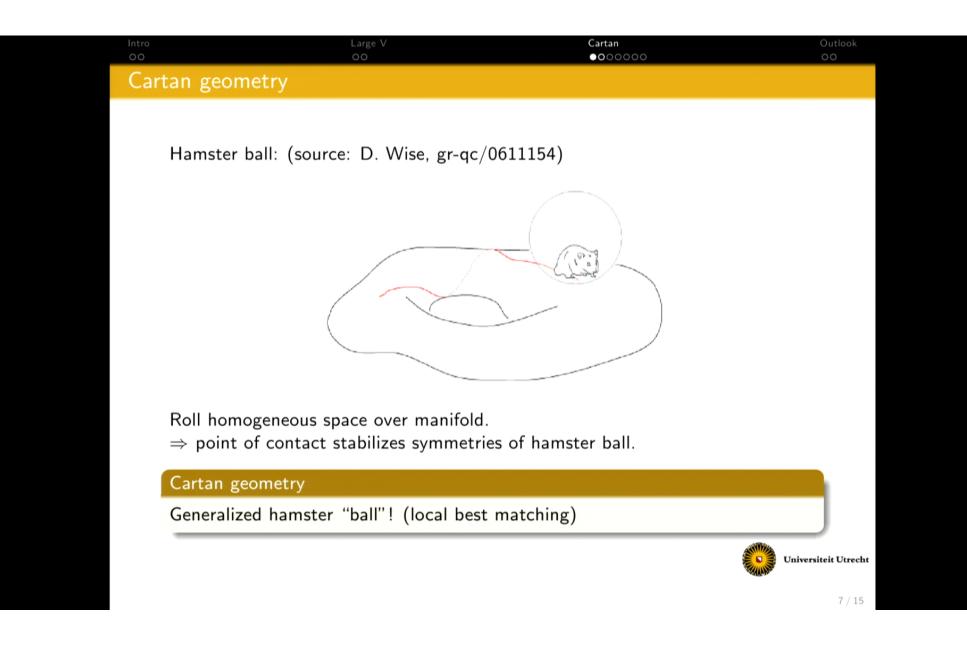
HJ eq'n (in 3 + 1, asymptoticly homogeneous)

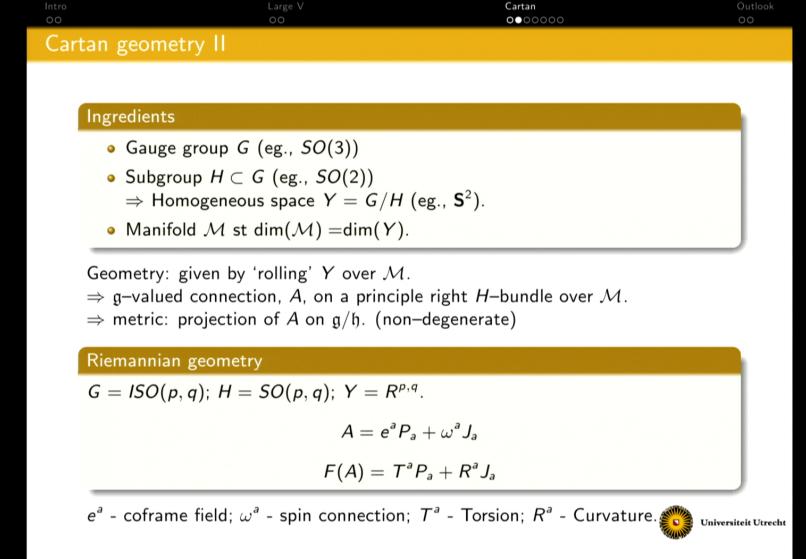
The HJ functional \rightarrow solved for *all* constraints: (Yamabe trick)

$${\cal S}=\pm\left(\sqrt{rac{16}{3}}\Lambda\,V-\sqrt{rac{3}{\Lambda}}R_{ ext{Yamabe}}\,V^{1/3}+\ldots
ight).$$

Structure of holographic RG counter-terms (Skenderis '00) but in V-expansion.

HJ = RG flow equation?





Boundaries:

- $\bullet~dS \rightarrow$ spacelike infinite past.
- $\bullet~\text{AdS} \rightarrow \text{``timelike'' spatial infinity.}$

8/15

2+1 Chern–Simons gravity

Define a Cartan geometry

- G = ISO(2,1), SO(2,2), SO(3,1), k = 0, -1, +1
- $H = SO(2, 1), \therefore \dim(\mathcal{M}) = 2 + 1.$

$$\Rightarrow A = e^{\alpha} P_{\alpha} + \omega^{\alpha} J_{\alpha} \qquad \qquad F = T^{\alpha} P_{\alpha} + \Omega^{\alpha} J_{\alpha}$$

Cartan ○○●**○**○○○

$$\Omega^lpha = {\it R}^lpha + rac{k}{l^2} \epsilon^{lphaeta\gamma} ({\it e}_eta \wedge {\it e}_\gamma) \, ,$$

Action (Witten '89)

Palatini action \rightarrow Chern–Simons for A:

$$S_{ ext{Palatini}}(e,\omega) = S_{ ext{CS}}(A) = rac{k'}{4\pi}\int ext{Tr}\left(A\wedge dA + rac{2}{3}A^3
ight)$$

EOMs: Vanishing curvature

$$T^{lpha}=0$$
 (Torsionless) $R^{lpha}=rac{k}{l^2}\epsilon^{lphaeta\gamma}(e_eta\wedge e_\gamma)$ (EEs)

9/15

2+1 split and ADM

Decompose action:

$$S_{\text{CS}} = rac{k'}{4\pi} \int dt \int d^2 x \left[2\dot{e}^lpha \wedge \omega_lpha + e_0^lpha \Omega_lpha + \omega_0^lpha T_lpha
ight]$$
 (1)

Cartan ○○**○**●○○○

Read off:

- Symplectic structure: $\left\{e^{lpha}_{\mu}(x),\omega^{eta}_{
 u}(y)
 ight\}\propto\epsilon_{\mu
 u}\eta^{lphaeta}\delta(x,y)$
- Lagrange multipliers: $A_0^{\alpha} = (e_0^{\alpha}, \omega_0^{\alpha}).$
- Constraints: $T^{\alpha} = 0$ and $\Omega^{\alpha} = 0$
- Symmetries:
 - $\Omega \rightarrow$ spacetime translations (diffs on-shell).
 - $T \rightarrow SO(2,1)$ rotations.

ADM

Phase space reduction:

- Gauge fix $T^a = 0$ with $e_i^0 = 0$.
- $\omega_i^0 \rightarrow$ metric compatible SO(2) connection.
- Variables left: e_i^a , ω_i^a (spatial)
- Constraints left: Ham + 2-diffs (Ω^{α}), SO(2) Gauss constraint (T^{0}).

10 / 15

Utrecht

 Intro
 Large V
 Cartan
 Outlook

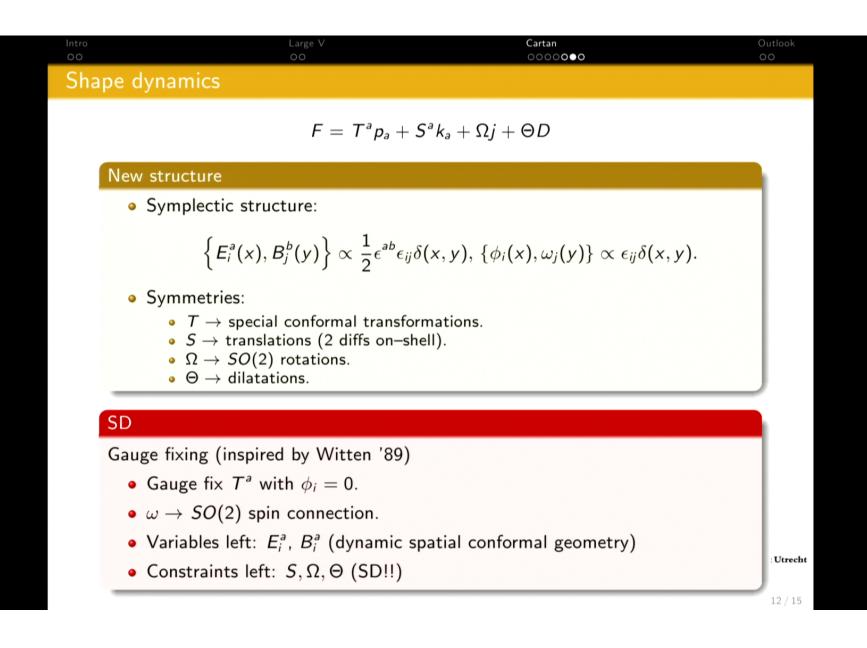
 00
 00
 000<00</td>
 00

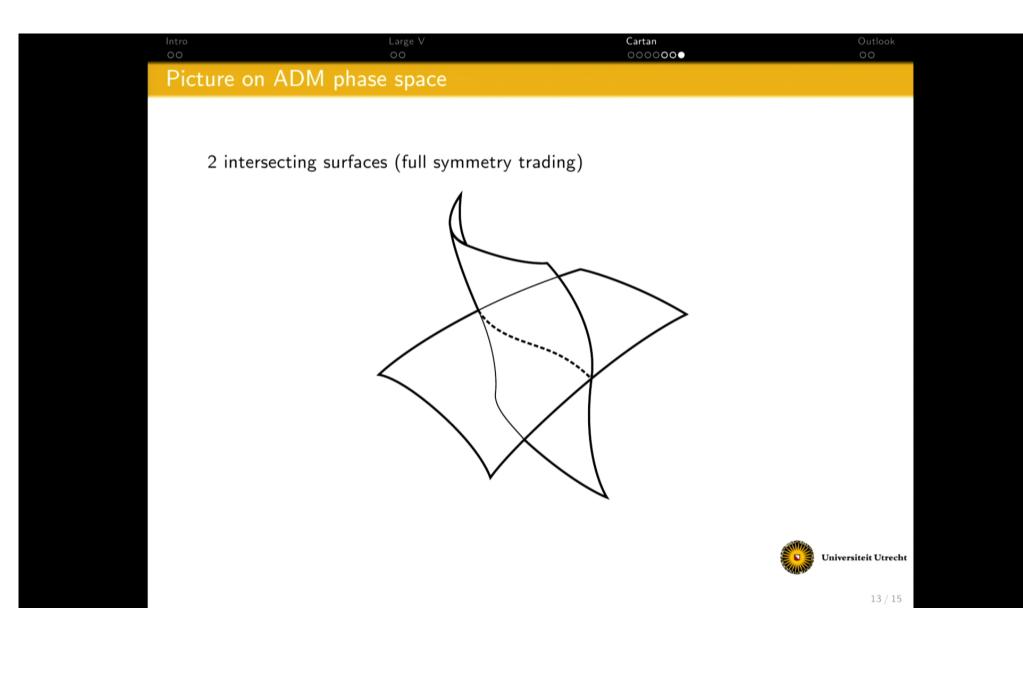
 Isomorphism
 Isomorphism
 Isomorphism

 Note:
 A0 = Lagrange multiplier

 New decomposition:
 Isomorphism

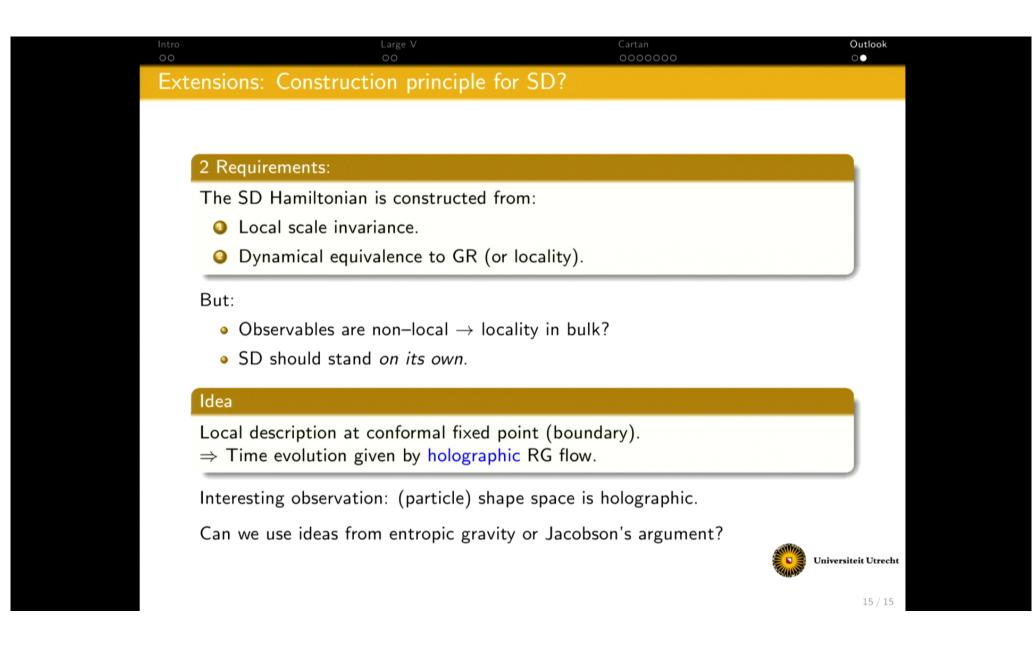
$$A_{i} = e_{i}^{\alpha} P_{\alpha} + \omega_{i}^{\alpha} J_{\alpha}$$
$$= E_{i}^{a} p_{a} + B_{i}^{a} k_{a} + \omega_{i} j + \phi_{i} D$$

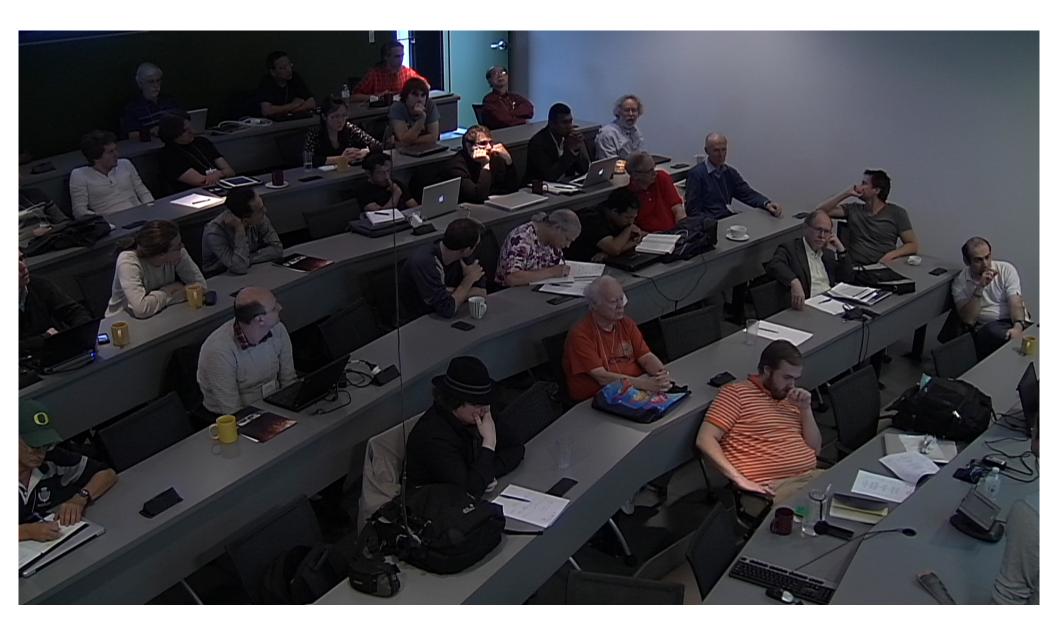

Use isomorphism


$$M=\left(egin{array}{cccccc} 0 & j & -rac{1}{\sqrt{2}}(p_1+k_1) & rac{1}{\sqrt{2}}(p_1-k_1)\ -j & 0 & -rac{1}{\sqrt{2}}(p_2+k_2) & rac{1}{\sqrt{2}}(p_1-k_1)\ rac{1}{\sqrt{2}}(p_1+k_1) & rac{1}{\sqrt{2}}(p_2+k_2) & 0 & D\ -rac{1}{\sqrt{2}}(p_1-k_1) & rac{1}{\sqrt{2}}(p_2-k_2) & -D & 0 \end{array}
ight).$$

Then

$$E_i^a = \frac{1}{\sqrt{2}} \left(\epsilon^{ab} \omega_i^b + e_i^a \right) \qquad \qquad \phi_i = e_i^3$$
$$B_i^a = \frac{1}{\sqrt{2}} \left(\epsilon^{ab} \omega_i^b - e_i^a \right) \qquad \qquad \omega_i = \omega_i^3.$$
Universiteit Utrecht


 $11 \, / \, 15$



Intro 00	Large V OO	Cartan 0000000	Outlook O
Outlook			
 Extend 	to AdS.		
 Extend 	to $\Lambda=0.~(2+1)$ same to	race)	
 Extend 	to $D+1$. (Stabilizer, act	ion, etc)	
gauge/g	gravity: pullback into bulk	, a nice set of variables?	
			Universiteit Utrecht
			THANK -
			14 / 15

Intro 00	Large V OO	Cartan 0000000	Outlook • O
Outlook			
٩	Extend to AdS.		
	Extend to $\Lambda=0.~(2+1)$ same to	race)	
	Extend to $D + 1$. (Stabilizer, act		
•	gauge/gravity: pullback into bulk	, a nice set of variables?	
			Universiteit Utrecht
			14 / 15

