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Notational warning!!

This will be a talk focused on 3+1 formulations of gravity.

Here g is a 3D Riemannian metric (the spatial metric) that evolves in
time. If we ever need to use 4D Lorentzian metric, we'll use h.

e Over a closed (compact without boundary) 3-dimensional manifold
x!

e We will avoid indices as much as we can, but they are there!

e When we talk about a conformal transformation, we mean Weyl
transformations, as g — ag.
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What is Shape Dynamics?

What it is
A Hamiltonian formulation of gravity with the following proeminent
features:

o Possesses the same canonical variables as Hamiltonian GR: (g, 7).
e Does not possess refoliation invariance (boosts).

e Trades that symmetry for foliation preserving conformal
transformations (Weyl) + unique, non-local global Hamiltonian.

What it is not

o York's approach to the initial value problem (and its related
constant-mean-curvature gauge for GR).

e Barbour et al's CS+V re-derivation of York.

Both very useful and necessary for Shape Dynamics, but neither has

conformal symmetry manifest in the dynamics.
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Hypersurface foliation

e Assume global hyperbolic: M ~ ¥ x R

or = Nt
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Intermezzo: Dirac analysis

Constraints are a convenient way to encode over-parametrization of
physical degrees of freedom.

Let ¢i(q,p) = 0,7/ € I denote constraints. They define surfaces and flow
in phase space, and can have different degrees of mutual “conservation™:

e Compatible.
These are called first class constraints. They arise when the
dynamical flow generated by one constraint conserves the set:

6¢’;¢j = {d)iaﬁbj} = ak¢k

Impose further constraints. This occurs when the flow is only
conserved on some subsurface:

dg,0j = f(p,q) = f = 0 must now be added to the list of
constraints.

Second class. These arise when the two constraints are conjugate.
04,0 = 1. Must either find a coordinate system where they don't
appear, or project dynamics to constraint surface.
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Canonical framework: ADM

o Use Gauss-Codazzi relations + Einstein equations: *R — (R, K)

e Over-parametrization: relations that extrinsic curvature have to
satisfy.
o Legendre: (g,g)+— (g, )
o Constraints: ensure relations hold.
Ha(x) = Trab:b =0
S(x)=tr(r-7) - i(trm)? ~=R=0

S(x) and H,(x) are first class. They generate compatible
symmetries (on the constraint surface).

Total Hamiltonian: H,ou = [5 d*x (N(x)S(x) + £(x)Ha(x))
Is “pure constraint” . This is the ADM system.
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Momentum and scalar constraints

o H,(x) generates 3-diffeomorphisms.
True (infinite-dimensional) Lie algebra.
e S(x) generates time refoliation (and thus evolution).
In contrast to the action of 3-diffeomorphisms:
Enormous difficulty in giving meaning to GR's physical degrees of

freedom!

Not subalgebra (commutation relations involve 3-diffeomorphisms),
and entire constraint algebra is “soft” (structure functions).

Introduces many, many difficulties in quantization.

o S(x) quadratic in momenta: EJ?WHJ?T  ill-defined.

o Constraints imposed at the quantum level: SW[g] = 0.
Klein-Gordon type equation. Inner product?
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© Shape Dynamics
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Motivation: “pure constraint” systems such as GR may have observables
coinciding with that of systems with different symmetries.

ADM Cravity Shape Dynamics

S(NY = [ NSzl — (R-2A f—) Hsp =V =V,
(N) = [ ( v ri ( I lal a0
H(r-) = ffr"".l:.-!hl’- ”(',] . fﬂuhc“”m’

Refoliation invariance has famous gauge fixing exploring spatial conformal
transformations ([York]).
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Preliminary: intrinsic constant mean curvature gauge

What is the constant mean curvature condition?

e The trace of the extrinsic curvature of each leaf is spatially constant.
Roughly, means that observers use the Hubble constant as a clock.

o Mathematically: set trr = & [trm =: (trr).
Note that trm generates conformal transformations. |.e.

o {trm(e), g} = cg

)
o {trm(e),m} = —em

o trm — % [ trr generates volume-preserving conformal transformations.
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Shape Dynamics: Main message (words)

e On a certain region in phase space, there exists a very special system
dynamically equivalent to ADM.

o Region is that of constant-mean curvature (CMC) foliable Einstein
spacetimes (with closed ). (see Isenberg's talk for
counter-examples)

e System is one that does not possess refoliation symmetry.

¢ Instead it possesses local 3D scale invariance. Symmetry trading!
o All constraints linear in momenta.

o Individual sets of constraints form subalgebras. Easy to quotient.
Physical degrees of freedom clear.

Exists in the original ADM phase space (g, w) with the canonical
Poisson bracket.

Possesses one global Hamiltonian which depends only on (g, ) (no
explicit “time" dependence).
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Shape Dynamics: Main message

Local 1st class constraints: Local 1st class constraints

e 3-diffeomorphisms e 3-diffeomorphisms
e refoliations e Conformal transformations

Hapm = Haual =

J x(N(x)S(x) + £2(x)Ha(x)) Hy+ [ d3x[Nx)D(x) + €(x)Ha(x)]

e Hy(x): momentum constraint (one per x).

S(x): Scalar constraint (one per x).

D(x) = 4(m — (m)./&)(x): conformal constraint (one per x).
° Hg.. Global Shape Dynamics Hamiltonian.
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How is it constructed?
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How is it constructed? Words.

@ Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

@ Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).
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How is it constructed? Words.

Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

Solve 2nd class constraints for extra Stuckelberg variables.

Get back to original phase space g, m with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.
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How is it constructed? Words.

Introduce artificial symmetry (Stuckelberg) and extend phase space
(and functions)

Extra constraint arises (constrains functions on extended phase
space to represent original functions: no extra physical degrees of
freedom).

Impose specific (natural) gauge fixings and separate first and second
class parts of constraints.

Will get that S(x) separates into 1 first class constraint (evolution)
and the rest second class.

Solve 2nd class constraints for extra Stuckelberg variables.

Get back to original phase space g, with canonical Poisson
bracket.

Leftover constraints first class, generating diffeomorphisms, local 3d
conformal transformations, and global evolution.

Pirsa: 12050068 Page 21/30



File Edit Search View Typeset Scripts Window Help

Take away message from SD.

Local symmetries: One Hamiltonian + local symmetries:
e 3-diffeomorphisms e 3-diffeomorphisms
o refoliations e Conformal transformations

Shape Dynamics is to York CMC

as Electromagnetism is to

transverse gauge of vector potential.
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Coupling other fields.

Question: how should fields scale ¢» — e”‘f’w?

Two problems:

@ Foliation depends on the field for scaling n # 0, not geometric (or
worse, for YM depends on the gauge)

Solution: only metric variables scale (“neutral coupling™)

Uniqueness of global Hamiltonian: involves invertibility of elliptic
2nd order diff. op. Requires:

1 ( 6Hy, 1 1
3 (mgab - §Hm) < 15(m)? + o2

Both issues solved with neutral coupling for Yang-Mills (and gauge
invariance respected) and massless scalars.

But invertibility (point 2) doesn't work always for massive scalars:
bound on the field magnitude (e.g. bound on the cosmological

constant).
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Tractability: Large-volume expansion.

e Global Hamiltonian is non-local. Solve order by order in a large
volume expansion. First few terms:

1 5 R,
g = 2(A_ ﬁ (Tf) )_ V2/3
Here R, is the unique constant scalar curvature in the conformal
class of R (Yamabe gauge).

H

1 N
+ vz (0?) + OV

Global Hamiltonian can be seen as reparametrization constraint: for
large volume reparam. invariance implies full conformal invariance.

e Also a Hamilton-Jacobi expansion for the on-shell action:

85
58’.?:;

S=5V+5VI3+SV-1340(v1)

16A 3/2
= (\/%f‘- V= /3R V34 (3)7% (R — §(REPRS,)) V113 +)

(W)—)%, b -
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Possible advantages

Classically matches GR over (g, 7) that satisfy trm = ¢ (gauge choices in
each) but

e Advantage over CMC gauge-fixed ADM in that variables and
constraints on the dofs are “local’.

e Different method to find solutions. Different symmetries. Different
gauges.

e Maybe find different solutions and go back to ADM gauge ( and
covariantize)?

o First try: finding a solution for "KSdS" without imposing the ADM
constraints.

o ADM cosmological perturbation theory complicated (because we
can't separate evolution from constraints). Perturbations must
satisfy all constraints at each level.

o Here, introduce perturbations that only need to satisfy the local
constraints, and use unperturbed global Hamiltonian to evolve?
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Issues and outlook

The elephant in the room: global Hamiltonian is non-local.

e We saw some ways around it: large-volume expansions. Other
expansions?

e Theory is non-local because we include a volume-preserving
condition on conformal transfs.

o This is necessary to have a non-trivial leftover Hamiltonian in Shape
Dynamics. l.e. to match ADM trajectories with Shape Dynamics
trajectories (to just match Cauchy data for a conformal theory and
ADM, no such problem arises).

o If we are interested in the pure quantum theory, so what if we don't
match trajectories?

e BRST: A modification of Shape Dynamics possesses full Weyl and
special conformal symmetry (no diffeos) and serves as a complete
gauge-fixing fermion for the BRST-extended ADM.

e The gauge-fixed ADM BRST-extended Hamiltonian possesses a
hidden symmetry: “symmetry doubling”. (Koslowski's talk)

Pirsa: 12050068

Page 30/30



