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Abstract: | review the best-matching construction, & nbsp;and the striking properties& nbsp;of a Jacobi-type action first introduced by Baierelein,
Sharp and Wheeler. The simplest theories compatible with such an action principle must have a& nbsp;universal light-cone and gauge symmetry. |
also describe the implementation of three-dimensional conformal symmetries on the basis of the BSW action, which gives a first-principles
derivation of Y ork's solution of the initial value problem in General Relativity.
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THE JACOBI PRINCIPLE

For a holonomic conservative system the action

Sy = 2(Eiot — U )ds, ds® = m" dq; - de
. 17 -4q,

where U = U(q) is the potential, and m'/ is the mass tensor and

Eyor 1s a constant, has a minimum on the actual trajectory ¢(1)

The dynamical problem of finding the actual trajectory is reduced

to a geometrical problem: finding the geodesics of the metric

N n J o
j"f!.'b = 2(Etor — U}’”“buh

S is reparametrization-invariant: there is no notion of time
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AN JACOBI-TYPE ACTION FOR GEOMETRODYNAMICS

S=— /'dr /‘(f'{.\' VevVUVT,

T = (;H/J('tf dgapn dgeq
i de drt

T = “Kinetic energy":
gab = 3-D positive-definite metric
Gabed = DeWitt “supermetric’: Gabed — g”"y"’" — g””y""
The momenta are underdetermined by the speeds g;; = primary constraints.
The theory is consistent if the constraints propagate, i.e. close a first-class

system. This is what the RWR approach rests on.

Let’s try the simplest choice: U = R = 3-D Ricci scalar
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AN JACOBI-TYPE ACTION FOR GEOMETRODYNAMICS

S=fdr]d3.r\/ﬁ\/l7\/f.

T =“Kinetic energy™ T = G"”“’ﬂﬁlrm d—ﬁir‘l
Lab = 3-D positive-definite metric
Ged = DaWitt “supermetric™: Gabed gc gbd i gab grd
The momenta are underdetermined by the speeds g;; = primary constraints.
The theory is consistent if the constraints propagate, i.e. close a first-class

system. This is what the RWR approach rests on.

Let's try the simplest choice: U = R = 3-D Ricci scalar
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MOMENTA, PRIMARY CONSTRAINTS AND THEIR PROPAGATION

6% R i
P = ——=/8\[=G" gy, p™ notindependent
08 ab T

| =i b cd - '
H = “ﬁ(c Jabed P P = /ER |=0 (G l)a!n‘d = 8ab&8cd — 5 8ac8bd

the constraint #° has to propagate:

d(veo) =\ ({0 =
T— = 2\/§N (N'pa ):b):“ “ N = T/4R

this requires the introduction of a secondary constraint:

-}?i=pij..j ~0
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We have to check that the new constraint propagates as well:

doe! 1 & TN ;
F=;\/EN ](NJ(’)"——\/—&_:(;JU——;g”p) Hj=0

constraint algebra closes.

H' generates infinitesimal dif! feomorphisms:

Pé = fd3j'€;(\‘) J’(""(.\‘) {P§~gab(-")} - £§&'ab( ).

fﬁ&'nb = Vﬂéb =+ Vf)éﬂ Lie derivative

Our action:

5~ /drfdi‘.r,/g\/;‘e\/f

is invariant under time-independent diffeomorphisms & = &(x)
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MACHIAN FREE-END-POINT VARIATION

Fibre bundle|(Riem)

Trial curve
on fibre bundle
Free end-points

Trial curve

m base space
on base space | Fixed end-points

Base space (Superspace)

. Take a trial curve in Superspace = Riem/3-Diffeos
. Lift it into the fibre bundle through diffeos: you get a sheet in Riem
3. Minimize the action on that sheet leaving the end-points free

4. This is the Best-Matched action on the trial curve. Repeat on all trial ct

with fixed end-points to find the extremal one.
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MACHIAN FREE-END-POINT VARIATION

Take a reference metric g,,(x, T)at each point of the curve 7.
Lift the metric all over the sheet through a field &;(x, 7):

dgap _ dga bed d : d(, e,
dr = dp ~fata Lo VEVRY U (= £tw) g (se—Egtea)

then minimize without keeping the end point fixed.

6L _
3 =0 =<
L
0.Y ; e - 1
— =0 selects horizontal section L 56
6&;
—
0.Z ;
5_&5- =(  selects best-matched section
1]
Superipace
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MACHIAN FREE-END-POINT VARIATION

Take a reference metric g, (x. T)at each point of the curve 7.
Lift the metric all over the sheet through a field &;(x. 7):

gy O :  ad ‘ d :
= f;i.’uh- Z— \/.L’ \/R e dt ("s'(.rh e t;"s}h‘f}) dt ("s'uf e té‘:«’*}(‘({)

dr dt
then minimize without keeping the end point fixed.

selects horizontal section

selects best-matched section
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MACHIAN FREE-END-POINT VARIATION

Take a reference metric g, (x. T)at each point of the curve 7.
Lift the metric all over the sheet through a field &;(x. 7):

dg 1 A 3 BTN ‘ d ,
== —=—frga, 2L — JgVR G P (R”h = f;ﬂs’”h) = (L’;-d = f;ﬂ:u/)

dr dt
then minimize without keeping the end point fixed.

selects horizontal section

selects best-matched section
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MACHIAN FREE-END-POINT VARIATION

Take a reference metric g,5(x., T)at each point of the curve 7.
Lift the metric all over the sheet through a field &;(x. 7):

deqay  deap wtd d : ’
_df -—) T -£€gﬂb- —(t,—}ﬁ‘/ﬁ G ”E‘,E(g"h—fég“b)E(&"d_fg&fd)

then minimize without keeping the end point fixed.

0.7 ; ;
— = selects horizontal section

88

3E =0  selects best-matched section
1
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THE BAIERLEIN-SHARP—WHEELER ACTION
What we found is the “BSW action™:
In 1962 Baierlein, Sharp and Wheeler found a way to rewrite

the Arnowitt-Deser-Misner action of General Relativity as a
Jacobi-type action, which is explicitly reparametrization-invariant

Susw= [ dv [ xJavVR\ Wik ol

dg;j
kij == =N

[Baierlein, Sharp, Wheeler, Phys. Rev. 126, (1962))
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THE BAIERLEIN-SHARP—WHEELER ACTION
What we found is the “BSW action™:
In 1962 Baierlein, Sharp and Wheeler found a way to rewrite

the Arnowitt-Deser-Misner action of General Relativity as a
Jacobi-type action, which is explicitly reparametrization-invariant

Sy = jdtfd3.t'ﬁ\/1_?\/kijk;j—wkz

dgi;
kij === =N

[Baierlein, Sharp, Wheeler, Phys. Rev. 126, (1962)]
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RIGIDITY OF BSW

Barbour, Foster and O Murchadha [Class.Quant.Grav. 19 (2002) 3217]

tested the consistency of different choices of the potential:

R-2A, R® R9R,, V2R,

and linear combinations thereof. The propagation of the quadratic constraint

always led to a proliferation of secondary constraints that trivialize the theory,

apart from the case R —2A of a cosmological constant.
(Niall O Murchadha input)

BSW is the simplest consistent matter-free theory

on superspace based on a Jacobi-type action
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RELATIVITY WITHOUT RELATIVITY: SCALAR FIELD
( Barbour, Foster, O Murchadha [Class.Quant.Grav. 19 (2002) 3217] )

Add the simplest ansatz for a scalar field:

2

Kineticterm: Ty = (‘—(',5; —£ny

2 = 5 /REVy/TFTy

Potential term: Vi, =X ¢V, Vi + U ()

dHA" dot
e z :'u e 1 ™ o l f" A 2
7750 ——m(k+1)VEN A
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CONSISTENCY CONDITIONS: THE UNIVERSAL LIGHT-CONE

The consistency of the theory requires:

eN~Y, (N3,;wv"qf) ~0 = k=—]

2 -Lagrange equations for y:
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RELATIVITY WITHOUT RELATIVITY: VECTOR FIELD

A rather generic vector field action depends on three parameters + a potential:

Kinetic term: Ty = g/ (i’;‘i _ 5, ) (7,4 £nA )
Potential term: V4 = at A, A%Y + B Agp APy AAL + U (g% A Ap)

Propagation of the constraints;

d’
— = 0,

dt

‘U?",__')\/_N“ [(a—1/4) (W Py pe) “+ +(B+1/4) (Nl Acs) ]

—2/gN~ }'(N"p ) —EN~ (N'p ’,Aa)
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RELATIVITY WITHOUT RELATIVITY: VECTOR FIELD

A rather generic vector field action depends on three parameters + a potential:

B 1 fdA dA
Kinetic term: Ty = ¢"/ ((?El — £NA ,-) (7,-:1 —£NA j)
Potential term:  Vy = a0 A, A%P + B A,y AP+ y AH9A L +U (g% A,Ap)

Propagation of the constraints:

dA"
— 0,

dt

2N (@ —1/4) (M4 ) +(8+1/4) (N2 A”’).l]

—2/eN~ }'(N"'p ) —EN~ (N‘p !rA“)
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RELATIVITY WITHOUT RELATIVITY: VECTOR FIELD

A rather generic vector field action depends on three parameters + a potential:

Kinetic term: Ty = g'J (‘{f‘g — ;) (fj‘l,i —£yA))

Potential term:  Vy = &t Ay A%+ B A4y AL+ y A 9A, 0 + U (g% Ay Ap)

Propagation of the constraints:

-_NO'

dt
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BEST-MATCHING GAUGE TRANSFORMATIONS
Equivariant action.

Add a Lagrange multiplier A to the Kinetic term
(Best-Matching wrt gauge transformations)
oY

T — ) .-..._‘._.V- — 5 _J_V — " — e
= ( TR AA0 fNA:)( T M) A g

then, in a Euclidean background, the Euler-Lagrange equations read:

% —V(i—‘—’)+v3,1—v (v-,q) — )

dt? d

and Gauss' law:
e oLl Ena
Veip == (9-4) = v2dp =0

these are Maxwell's equations in terms of the four-potential {A. A}.
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BEST-MATCHING GAUGE TRANSFORMATIONS
Equivariant action.

Add a Lagrange multiplier A to the Kinetic term
(Best-Matching wrt gauge transformations)
oY

.1 [(dA; dA
— l‘IJ —...._‘ e ? —— ] _J — ’ —_— —
TA by (dT V,A(; fNA,) ( e V,AU fNAj) . 5A() 9

then, in a Euclidean background, the Euler-Lagrange equations read:

"2‘3_%(5@

e Vzd—ﬁ(--")=
= dr)+ A (9-2)=0

and Gauss’ law:
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YANG-MILLS THEORY

Anderson and Barbour [Class.Quant.Grav. 19 (2002), 3249] showed that N
vector fields A% are forced to have exactly the Yang-Mills couplings:

| ; .
Un =~ (A6 —Afia +8cC*pA8AT) (AG" — AL+ 4cCapaAP“AT")

Ty= (A:f — ENAY — VAR + g.C* pTAE A(’;) (AG — £NAG — VAog + 8cCapaAPaAT)

where the structure constants C* py Satisfy Jacobi identity of a Lie group:

Caﬂ)ﬂapa —+= CaBaCapy'i' Caﬁpcaay =l()

Further generalizations by Ed Anderson:
Strong Gravity case and generalizations thereof [Gen. Rel. Gray. 36, (2004)]

Dirac fermions coupled to Yang-Mills theory [PRD 68, (2003))
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Anderson and Barbour [Class.Quant.Grav. 19 (2002), 3249| showed that N
vector fields A% are forced to have exactly the Yang-Mills couplings:

| : .
Un =~ (A —Afia+8cC*py A8 AT) (AT — AL+ 8cCapadP*A")

Ta= (Ag —£nAq —VaAG + g"caﬁYAE A(Yl) (A% —£nAG — VAgq +82cCapa APy Af)

where the structure constants C* py Satisfy Jacobi identity of a Lie group:

Caﬁy(:apa -+ C“BOCapy'i- CaﬂpCaay =i()

Further generalizations by Ed Anderson:
Strong Gravity case and generalizations thereof [Gen. Rel. Grav. 36. (2004)]

Dirac fermions coupled to Yang-Mills theory [PRD 68, (2003)]
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

G‘f"'d = g% ‘de iy gab g[‘d

What happens if we relax from the DeWitt value A = 17

dot’ - A—1
i A\ ZR =
Two possibilities: either A = 1 (DeWitt value), or we add a new constraint:

) JEN~! (NZ P J-) % (even with bosonic matter)

p is the mean extrinsic curvature, 2 = ()
enforces Constant Mean (extrinsic) Curvature

2=p-Y.g|=0

A
Y is a spatial constant, which must be equal to (p) = -L4X2

I d-l.\‘\/E
2 generates volume-preserving conformal transformations (VPCTs):

Lab— 9 8ap ¢ = ﬁm. fd3.t¢?6\/l_£ = fd3x\/§
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

G.[?ibcd = g% gbd — 7l gah grd

What happens if we relax from the DeWitt value A = 17

dt <9 ( A—1
dt  “\3A-1
Two possibilities: either A = 1 (DeWitt value), or we add a new constraint:

) JeN~! (N2 p: j)'J (even with bosonic matter)

p is the mean extrinsic curvature, 2 = ()
enforces Constant Mean (extrinsic) Curvature

2=p-Y.g|=0

: . . 3
Y is a spatial constant, which must be equal to (p) = -L4x2

2 generales volume-preserving conformal transformations (VPCTs):

J &% /g = [dPx /g

Page 29/51



VPCT BEST-MATCHING (WITH A = 1)
[Anderson, Barbour, Foster, Kelleher, © Murchadha, CQG 22 (2005)]

Base space: Conformal Superspace + Volume = Superspace/VPCTs.

Lift the action to Riem:  g;j— ¢%g;j.  R— ¢~ (R— 36-1v2q3)

24 T
Lesev = ﬁm\/cabrd d(¢diab) d(¢d§‘.d)

; ol :
ro=3(p—va(p) (pf=rii- $pg)
Pipli— 9" P —gé® (R-8¢3“‘ Vztﬁ) =0

%;{ = py =0 = CMC condition

agar"}—'- _‘S’_:é ) ey PO ey N
3o ¢4(R *’a) Vi@ V) e ()

I8

Primary constraints:

Best-Matching:
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VPCT BEST-MATCHING (WITH A = 1)

[Anderson, Barbour, Foster, Kelleher, O Murchadha, CQG 22 (2005)]

Base space: Conformal Superspace + Volume = Superspace/VPCTs.

Lift the action to Riem:  g;j— ¢%g;j,  R— ¢~ (R— 86-1v26

A4 4 ‘4 ’
Lesev =+/21 /R e 3;5"v-& \/Gabmf d(‘pdi-ab) d(¢d§rd)

Primary constraints:

Best-Matching:

Po=5(p—vE®) (pf=ri-{pg®)

pipl— 4012 p*— gt (R—Sé"‘\?::ﬁ) =0

%f—;’; =pe =0 = CMC condition

5 (R = 35%‘1) —1v, (29iN) + 2

Tg =

W)
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

Gtibcd = g% gbd 2y gab grd

What happens if we relax from the DeWitt value A = 17

dot ~5 ( A—1
dt  “\3A -1
Two possibilities: either 2 = 1 (DeWitt value), or we add a new constraint:

- o ’ :
) VEN ' (N2 P j) (even with bosonic matter)

p is the mean extrinsic curvature, Z = ()
enforces Constant Mean (extrinsic) Curvature

P=p-Y.g|l=0

: 3 . Y
Y is a spatial constant, which must be equal to (p) = fdd - ‘}’_
X\ /E

% generates volume-preserving conformal transformations (VPCTs):

Sab— 6™ gab ¢?=E‘:;Tg. J xS 5= [Px /g
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

G-tibc'd = g% de 277 gab gt‘d

What happens if we relax from the DeWitt value A = 17

do ( A—1
dv = \3A—1
Two possibilities: either A = 1 (DeWitt value), or we add a new constraint:

- ) / .
) JeN~! (N2 p. j) (even with bosonic matter)

1s the mea nsi g D =
P =p—YJg|=0 P N extrinsic cur\Ifature. 2=0
enforces Constant Mean (extrinsic) Curvature

3 : : 3
Y is a spatial constant, which must be equal to (p) = %
X/

2 generates volume-preserving conformal transformations (VPCTs):

Sab 645-':111 ) qs = (_‘Pé;ﬂ?.‘- fds.té(’\/f = fd3x\/§
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

Gabcd r:c bd i) gab cd

What happens if we relax from the DeWitt value 4 = 1?
dH <5 A—
dt 37 -

) N3 N (M2 P j)"" (even with bosonic matter)

Two possibilities: either 2 = 1 (DeWitt value), or we add a new constraint:

: is the mea insi ature, 2 =
P =p—Y . /z|=0 P nexlrnlccur\.mu.lre 2=0
enforces Constant Mean (extrinsic) Curvature

. : : A
Y is a spatial constant, which must be equal to (p) = -f%’,__':;_
X/

2 generates volume-preserving conformal § qformuuons. (VPCTs):

gnb—’é“gab- 6’=(—¢;¢)'m- R S '—fdax,/'
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AN AMBIGUITY IN THE SUPERMETRIC

Nothing in the structure of configuration space fixes A:

G-tibc'd = g% gbd S gab grd

What happens if we relax from the DeWitt value A = 17

dt 25 ( A-—1
dt  “\3A-1
Two possibilities: either A = 1 (DeWitt value), or we add a new constraint:

- ) / .
) VEN ' (N2 P j) (even with bosonic matter)

p is the mean extrinsic curvature, Z = ()
enforces Constant Mean (extrinsic) Curvature

2?=p-Y.g|l=0

: : : A
Y is a spatial constant, which must be equal to (p) = -L4x2

I d-‘.r‘/ﬂ
2 generates volume-preserving conformal transformations (VPCTs):

Sab — ‘548(1!;- 95 = (_‘P%UK- fd3"'¢?6\/§= fd3x\/§
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VPCT BEST-MATCHING (WITH A = 1)
[Anderson, Barbour, Foster, Kelleher, O Murchadha, CQG 22 (2005)]

Base space: Conformal Superspace + Volume = Superspace/VPCTs.

Lift the action to Riem:

gij—6%¢ij. R—¢H (R— 35""7“15)

vy 7
Leswv =1/ VR _gé-lv—@ \/G“b"d d((pd:ab) d(¢dfrd)

r . oe
ro=%(p—va(p) (pf=pi-} pt)

Primary constraints: {

! y - ﬂ - - o

pipjj— 9% P>~ g 4" (R—s¢*'v-¢) =0

%;{ = pg =0 = CMC condition

$ZL _ N sy -
el Vi ($2VIN) + 58— ()

Best-Matching:

Pirsa: 12050067
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VPCT BEST-MATCHING (WITH A = 1)
[Anderson, Barbour, Foster, Kelleher, O Murchadha, CQG 22 (2005)]

Base space: Conformal Superspace + Volume = Superspace/VPCTs.

Lift the action to Riem:  g;j— ¢%g;j.  R— ¢~ (R- sq‘i—lv?&)

[ - = b4 g 5 o
Lesev =T\ R—86~ lv2¢ \/Gabrd d(‘pd:ab) d(¢d:m')

r ; i1 ]
ro=4(p=vE () (¥ =ri~Lpe)

| pf}"p}rj-—-?';(;‘;':p"—gés (R—S@'lvzé) =)

%% =pe =0 = CMC condition

Primary constraints: ¢

Best-Matching: s~ N
8o =g

,-(453va) +EN_ ()
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THE LICHNEROWICZ-Y ORK EQUATION
J. York solved the initial-value problem of GR [PRL 26-28 (1971-2)]
If p=Y./& Momentum and Hamiltonian constraints decouple:

7 j e
Vierr =0,  prrpj] —g¥?—gR=0

the latter can be transformed into an elliptic equation for a conformal factor:

ARl )| o
gl_j=¢4g::5_fcrcncc‘ P?TP{jr—gfi"le:"'g@"H(R‘Sﬂb lV2¢):=()

the independent initial data are a conformal metric g}fr"m‘“".

a TT-momentum p7y and the constant Y, the York time

York assumed, without justification, a different scalin ¢ of the trace
and the traceless part of the momentum: ¥ — Y, pi/ — =4,

from plf = pii— 1V/&Y ¢ one would expect ¥ — ¢=6y_..

-..however, without that scaling the solution is not unique!
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THE LICHNEROWICZ-Y ORK EQUATION
J. York solved the initial-value problem of GR [PRL 26-28 (1971-2)]
I nE=0Y /& Momentum and Hamiltonian constraints decouple:

[ ] i [
Vipir =0, P?rP;?}T—EY"—RR=0

the latter can be transformed into an elliptic equation for a conformal factor:

P | A 3 fev
gij=9"gl5 =", pirpll —g¢'2}’“~*g¢h (R~s¢ 'v-¢) =0

jtial data are a conformal metric g}?r“"’“‘-‘c,

SStion, a different scaling of the trace
o Y { W
gentum: ¥ =Y, pil — ¢4yt
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THE LICHNEROWICZ~Y ORK EQUATION
J. York solved the initial-value problem of GR [PRL 26-28 (1971-2)]

If p=Y./g¢ Momentum and Hamiltonian constraints decouple:

i 1,5
ViPdr=0.  prpj] —<¥?—gR=0

the latter can be transformed into an elliptic equation for a conformal factor:

| :
¢4grcfcrcncc. P?TPLT . _¢'3 Y2 _g¢{‘ (R— gl V2¢) =0

the independent mmal dald are a conformal metric g"’r‘“’““"

a TT-momentum Pr'r and the constant Y., the York time

York assumed, without justification, a different sculmg of the trace
and the traceless part of the momentum: ¥ — ¥, pi — ¢=4p/

from p, = plf — 3\/§Yg""’ one would expect Y — ¢~0Y ...

-..however, without that scaling the solution is not unique!
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THE LICHNEROWICZ-Y ORK EQUATION
J. York solved the initial-value problem of GR [PRL 26-28 (1971-2)]

If p=Y./g¢ Momentum and Hamiltonian constraints decouple:

i ..
Vibtr=0.  prpj] - —gR=0

the latter can be transformed into an elliptic equation for a conformal factor:

1 5 : -
¢4grcfcrcncc' pl}{'TPLf_g¢|2y-_g¢b (R-8¢ lv2¢)=0

the independent initial data are a conformal metric gfjrm““.

a TT-momentum piy. and the constant Y, the York time

York assumed, without justification, a different scalmg of the trace
and the traceless part of the momentum: ¥ — Y, pi/ — ¢=4p¥

from pif = pl/—1 /&Y ¢ one would expect Y — ¢=6Y...

-..however, without that scaling the solution is not unique!
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THE LICHNEROWICZ—Y ORK EQUATION
J. York solved the initial-value problem of GR [PRL 26-28 (1971-2)]
If p=Y./¢ Momentum and Hamiltonian constraints decouple:

.9 19 l -
Vierr=0,  pirpj] —¥>—gR=0

the latter can be transformed into an elliptic equation for a conformal factor:

. ;e l ; 0
gij= ¢4g::jfcrcncc‘ p;:JTI,iij_g¢12yl_g¢& (R—S¢ ]V2¢) =0

the independent initial data are a conformal metric g}jf""""“.

a TT-momentum p/, and the constant Y, the York time

York assumed, without justification, a different scaling of the trace
and the traceless part of the momentum: Y =Y, pi/ — ¢=4p¥

from p? = pl/— Wguﬂ” one would expect ¥ — ¢—%y...

-..however, without that scaling the solution is not unique!
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CS+V provides a first-principles derivation of York's scaling: VPCTs.

From the definition of the York time:
[dixgijip  [dPxgpY
= —
[d3x /g fd3,t¢(’\/§
if ¢ = const thenY — ¢—°Y.
But if ¢ is a VPCT, then [ d3x¢® d3x./g and Y is invariant!

Y =(p)

[Anderson, Barbour, Foster, Kelleher, O M N&dha. CQG 22 (2005)]

The equations of CS+V are: S

( P—+/&(p)=0 = CMC condition
P?”r)"j_?I;éuyz*'&"f'g(R—Sé_]V:@)=0 = Lichnerow

V36 I

¢! (R e _],T) 98 WL (ézviN) +L}! —{(-) = Lapse-fixing cd

\
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SHAPE DYNAMICS (A = 1)

The system of constraints of CS+V is second-class:

do# N V26 1 e Y2N
— = | R—=8—1 "':"V'(‘-V,N — -
dr ¢4(R &ap) ;-')("Q )+4 G
the rhs cannot be included as a new constraint. It is instead a gauge-fixing
condition, that ensures that the Lapse N propagates the CMC condition.
One can then perform a Dirac procedure, ending up with a first-class theory
which is a gauge-fixed version of GR.

The Hamiltonian constraint gets all gauge-fixed by the LFE,
apart from a single global mode which is still first-class:

Hiohal = [ d*x N(x) 7 (x) where N(x) is the (unique!) solution of the LFE.

In [Gomes, Gryb, Koslowski, CQG 28, (2011)] this was the starting point
for the definition of a new theory with VPCT gauge invariance, which in a
particular gauge coincides with CMC GR.

(check out the talks by Gomes, Koslowski and Gryb later...)
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SHAPE DYNAMICS (A = 1)

The system of constraints of CS+V is second-class:

d# N V24 1 o Y2N
el el v | B XL 2Bk
dz 434(1‘) ¢) ¢6 '(‘p N)+ 4 G
the rhs cannot be included as a new constraint. It is instead a gauge-fixing
condition, that ensures that the Lapse N propagates the CMC condition.
One can then perform a Dirac procedure, ending up with a first-class theory
which is a gauge-fixed version of GR.

The Hamiltonian constraint gets all gauge-fixed by the LFE,
apart from a single global mode which is still first-class:

Hoval = [ d*x N(x) H(x) where N(x) is the (unique!) solution of the LFE.

In [Gomes, Gryb, Koslowski, CQG 28, (2011)] this was the starting point
for the definition of a new theory with VPCT gauge invariance, which in a
particular gauge coincides with CMC GR.

(check out the talks by Gomes, Koslowski and Gryb later...)

Page 47/51



Pirsa: 12050067

SHAPE DYNAMICS (A = 1)

The system of constraints of CS+V is second-class:

do# N V24 1 2 i Y2N
e e -8 | ==V, -V’N o\
dz (,H(R gb) ¢6 '(¢ )+ 4 {5
the rhs cannot be included as a new constraint. It is instead a gauge-fixing
condition, that ensures that the Lapse N propagates the CMC condition.
One can then perform a Dirac procedure, ending up with a first-class theory
which is a gauge-fixed version of GR.

The Hamiltonian constraint gets all gauge-fixed by the LFE,
apart from a single global mode which is still first-class:

Hglowal = [ d*x N(x) 7 (x) where N(x) is the (unique!) solution of the LFE.

In [Gomes, Gryb, Koslowski, CQG 28, (2011)] this was the starting point
for the definition of a new theory with VPCT gauge invariance, which in a
particular gauge coincides with CMC GR.

(check out the talks by Gomes, Koslowski and Gryb later...)
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SHAPE DYNAMICS (A = 1)

The system of constraints of CS+V is second-class:

do# N V26 1 o Y2N
e Lo s v Il (v M L
a0 o ("’ ; ) 76 (P = (0

the rhs cannot be included as a new constraint. It is instead a gauge-fixing
condition, that ensures that the Lapse N propagates the CMC condition.

One can then perform a Dirac procedure, ending up with a first-class theory
which is a gauge-fixed version of GR.

The Hamiltonian constraint gets all gauge-fixed by the LFE,
apart from a single global mode which is still first-class:

Hglobal = [ d*x N(x) 7 (x) where N(x) is the (unique!) solution of the LFE.

In [Gomes, Gryb, Koslowski, CQG 28, (2011)] this was the starting point
for the definition of a new theory with VPCT gauge invariance, which in a
particular gauge coincides with CMC GR.

(check out the talks by Gomes, Koslowski and Gryb later...)

Page 49/51



Pirsa: 12050067

...AND WHAT ABOUT A ?

All the steps of CS+V and Gomes, Gryb and Koslowski's version of SD
go through straightforwardly alsoif 1/3 < A < I:

( P—+/2 (p) =0 = CMC condition

p'.ij?;- — G 1212 — g 68 (R —8¢~! quﬁ) =(0 = Lichnerowicz—York equation

V34 - : 2
\ ‘g% (R— 3"‘59') —B'T;V,- (¢2 VW) +§T¥_—n —(+) = Lapse-fixing condition

A # 1 doesn’t affect the propagation speed of gravitational waves:

S p ot i ARy g
p’—Rx:”—R”-E g RJ-3A_]£U$.' ijéxrs (N~1,4/g~1,N;=0)

expanding gij = &;;+ hj; we see that A enters at ﬁ(hz).

look at cosmological data to constrain A... [N. Ashfordi et al.. PRD 75, (2007))

i
-
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THE STRANGE CASEOF A = 1/3

If A = 1/3 the equations are singular, because tr(g;;) is cancelled out of the
action:

| dg,,dg v et | :
T= (g"f gl —— g ged ) _de:&"E;_d =gaclidbapbed:  Lap=Eab—78abtr()

3
in that case we have an additional primary constraint:
t(p) =Y =0 = maximal slicing

and the York time is constantly zero. The Lapse-fixing equation gauge fixes out
all of the Hamiltonian constraint. The theory collapses to two equations stating
that the momentum is transverse and traceless, and there's no evolution.

This is what happens in the infinite-volume fixed points of Shape Dynamges:
[Gomes, Gryb, Koslowski, FM, arXiv:1 105.0938]
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