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Introduction

e In this talk | will discuss the connection between conformal
gravity and the AdS/CFT correspondence ®

e In AdS/CFT correspondence one relates gravity in AdS to a
non-gravitating CFT in one dimension less, so superficially there
is no connection to conformal gravity: the bulk theory has gravity
but it is not conformal while the boundary theory is conformal but
it does not contain gravity.

e Nevertheless, we will see that AdS/CFT leads to systematic
construction of conformal gravity coupled to conformal matter
and leads to new results and intuition about these theories.
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AdS/CFT: basics

To explain this connection we first need to recall some of the basics of
AdS/CFT.

e Bulk fields correspondent to boundary operators. For example,

> The bulk metric correspond to the bounda% stress energy tensor
T;.

> A bulk scalar field of mass m*> = A(A — d) correspond to a
boundary scalar operator of dimension A.

@ AdS has a conformal boundary and we need to impose boundary
conditions there. The fields parametrizing the boundary
conditions are identified with sources for dual operators.

e The on-shell supergravity action, as a function of the fields
parametrizing the boundary conditions, is identified with the
generating functional of CFT correlators.

) Al gravity and AdS/CFT
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AdS/CFT: asymptotics

e In QFT the sources are unconstrained. This implies that the
gravitational equations must admit a Dirichlet boundary problem

specified by arbitrary functions.

e Such Dirichlet problem is not always possible. For example,
asymptotically flat spacetimes do not admit such Dirichlet
problem. It turns out however that the gravitational equations
with a cosmological constant can be formulated in this way.

) Al gravity and AdS/CFT
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AdS and its conformal structure

To get some intuition let us first discuss Anti-de Sitter spacetime. The
metric in global coordinates is given by

ds? = —) (—dr* + df* + sin® gz{ﬂ?]—l

cos 62

where 0 < 6 < 7/2.

e The conformal boundary of AdS,, is atf = /2.

@ The bulk metric divergences there: there is a second order pole.
So there is no well-defined boundary metric.

@ There is however a well-defined conformal structure, i.e. a metric
up to a Weyl transformation.

Conformal gravity and AdS/CFT
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The boundary conformal structure

e To obtain a boundary metric we use a defining function, i.e. a
function r(x) which is positive in the interior but has a single zero
at the boundary. We then define

oy = lim G

50) 0—121/2 : &y
This limit exits because the second order pole in G is canceled
by the zero of 2.

e However, any other ¥/(x) = r(x)e’™ is as good, so what is
well-defined here is the conformal class

g0 ~ e Wgq

e For AdS we may pick r = cos @, and this leads to the
representative of the conformal class

ds§ = —dt* + dQ3_,

This metric is conformally flat and any other conformally flat
metric (for example, the flat metric) is as good.

Conformal gravity and AdS/CFT
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The boundary conformal structure

e To obtain a boundary metric we use a defining function, i.e. a
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8) ~e€ 8(0)
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The Dirichlet problem for AdS gravity

e Most of the GR literature ([Abbot. Deser] [Henneaux, Teitelboim],
[Ashtekar, Magnon] ...) from the 80’s discussed Asymptotically AdS
spacetimes, i.e. fixed the boundary metric to be
dsg= —dtz-l-dﬂ;‘:._ .

e For AdS/CFT we need to generalize the D??ichlet problem in two
ways:

> We would like to keep fixed a a conformal class.
> We would like this to be a general conformal class.

e We need a general unconstrained [g( (x)] since it will serve as a
source for T;; and QFT sources are always unconstrained (we
need to be able to functionally differentiate w.r.t. them).

@ Spacetimes of this type were considered in the mathematics
literature [Fefferman-Graham (1985)]. We will call them
Asymptotically locally AdS.

Conformal gravity and AdS/CFT
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Asymptotically locally AdS spacetimes

Let's now consider a representative g of [g(] and try to obtain a
solution of Einstein’s equations. It turns out that this can be done in
complete generality near the conformal boundary [Fefferman-Graham
(1985)]. Here we will focus on odd dimensionalggpacetimes because
these yield the connection with conformal gravity.

@ Near conformal infinity one can always choose coordinates such
that the metric is

dr* 1 -
dsz = 4—p2 -+ ;8:;(% p)dx dx’!
where p = 0 is the position of the conformal boundary.

e Einstein equations, solved by expanding in p, become algebraic
equations that can be readily solved.

Pirsa: 12050063
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Structure of Asymptotically locally AdS spacetimes

@ The solution is

8ij(x, p) = 8(0)(X) + pg(2yj + -+ + Pd/z(g(&g.j + log phayy) + -+

e The blue coefficient g2, .. ., h(ay; are uniquely and locally
determined in terms of g (x).

@ h,); is called the obstruction tensor in the mathematics literature
and it will play an important role in our story.

e Only the trace and divergence of g,; is determined by
asymptotics. This coefficient is the most important coefficient for
AdS/CFT: it gives the stress energy tensor of the dual theory [de
Haro, Solodukhin, KS (2000)] but it will not play an important role
today.

Conformal gravity and AdS/CFT
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Structure of Asymptotically locally AdS spacetimes

@ The solution is
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Regularizing the on-shell action

e Now that we obtained the general asymptotic solution, the next

step in AdS/CFT is to compute the on-shell gravitational action.

However, the on-shell action is infinite because of the infinite
volume of spacetime, O

S=/dd+]\/5(R+A)~/\/5—>oo

e To regulate this infinity we cut-off the spacetime at p = ¢, with e
small. The result is [Henningson, KS (1998)]

d/2
an(g(0)] .
Sreg(8(0); €] = Z ot a(q)(80)] log € + finite

Conformal gravity and AdS/CFT1
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Holographic renormalization

@ One can now renormalize the on-shell action by adding a set of
boundary covariant counterterms [Henningson, KS (1998)] [de Haro,
Solodukhin, KS (2000)] My

Srenl8(0)] = 1im(Sreg[8(0)3 €] + Serl8(0)3 €])

e The counterterm action is given by

1
Sc'r[g(()); 6] = / ddxﬁ (2(1 - d) + mR o= cer a(d)[fy]log F)
p=c¢

where 7 is the induced metric at p = e.

) 1l gravity and AdS/CFT
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Holographic renormalization

@ One can now renormalize the on-shell action by adding a set of

boundary covariant counterterms [Henningson, KS (1998)] [de Haro,

Solodukhin, KS (2000)] W)

Sren8(0)] = 1im(Sreg[8(0)3 €] + Serl8(0)3 €])

e The counterterm action is given by

1
Sc'r{g(()); 6] = / ddxﬁ (2(1 — d) -+ mR o KRR a(d)[fy]log F)
p=

where 7 is the induced metric at p = e.
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The holographic Weyl anomaly

@ The renormalized on-shell action is now finite, but it turns out it
depends on the specific representative of the conformal structure
we started from &)

Srenl€*”g(0)] = Srenlg(0)] + Alg(0), 0]

@ Considering infinitesimal o one finds

Alg), 0] = / d’x,/g0y0 (xX)ag) (&)

@ In even (bulk) dimensions there is no such anomaly.

gravity and AdS/CFT
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The holographic Weyl anomaly

@ The renormalized on-shell action is now finite, but it turns out it
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@ Considering infinitesimal o one finds

Alg ), 0] =/ddx 20 o (x)aca)(g)]

@ In even (bulk) dimensions there is no such anomaly.
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Properties of the conformal anomaly

The holographic conformal anomaly is now

Algo)] = f d’x\/3()a(a)[8(0)]

It has the following properties: O
e Itis conformally invariant,

Al Wg ] = Alg)]

This means that the fact of whether there is a conformal anomaly
or not depends only on the conformal class of (g .

@ The obstruction tensor is given by [de Haro, Solodukhin, KS (2000)]

| 0A
hiayy ~ ———

V8(0) 38y,

Conformal gravity and AdS/CFT
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Properties of the conformal anomaly

The holographic conformal anomaly is now

Alg(0)] =fddx 2(0)a(a)(8(0))

It has the following properties: O
e Itis conformally invariant,

Al Mg ] = Alg)]

This means that the fact of whether there is a conformal anomaly
or not depends only on the conformal class of (g .

@ The obstruction tensor is given by [de Haro, Solodukhin, KS (2000)]

| 0A
hiayy ~ ———

V8(0) 38,

) Al gravity and AdS/CF1
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Structure of Asymptotically locally AdS spacetimes

@ The solution is

8ij(x, p) = 8(0)(X) + pg(2yj + -+ + Pd/z(g(gu + log phyayij) + -+

e The blue coefficient g2, .. ., h(ay; are uniquely and locally
determined in terms of g (x).

@ h,); is called the obstruction tensor in the mathematics literature
and it will play an important role in our story.

e Only the trace and divergence of g,; is determined by
asymptotics. This coefficient is the most important coefficient for
AdS/CFT: it gives the stress energy tensor of the dual theory [de
Haro, Solodukhin, KS (2000)] but it will not play an important role
today.
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Regularizing the on-shell action

e Now that we obtained the general asymptotic solution, the next

step in AdS/CFT is to compute the on-shell gravitational action.

However, the on-shell action is infinite because of the infinite
volume of spacetime, O

S=/d"+]\/5(R+A)~/\/5—>oo

e To regulate this infinity we cut-off the spacetime at p = ¢, with ¢
small. The result is [Henningson, KS (1998)]

d/2
an(g(0)] -
Sreg[8(0)i €] = Z pra a(q)[8(0)] log € + finite
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Properties of the conformal anomaly

The holographic conformal anomaly is now

Alg(0)] =/ddx 2(0)a(a)(&(0))

It has the following properties: O
e Itis conformally invariant,

Al Wg ] = Alg)]

This means that the fact of whether there is a conformal anomaly
or not depends only on the conformal class of (g

@ The obstruction tensor is given by [de Haro, Solodukhin, KS (2000)]

1 0A
hayj ~ ——5

V&(0) 53{0)

) l gravity and AdS/CF1
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The variational problem

The counterterms that we just derived requiring finiteness of the
on-shell action play another role, perhaps more fundamental.

> In even dimensions, a well-posed variatioral problem where a
conformal class is kept fixed , requires additional boundary terms
and these are precisely the boundary counterterms.

In odd dimensions, one must specify a representative g of the
conformal class [g(y)] for the variational problem to be
well-posed. In this case the boundary counterterms ensure that
the dependence of the theory on the specific g is governed
only by the anomaly A, which itself depends only on the
conformal class [g(y)].

) Al gravity and AdS/CF1
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Conformall gravity from AdS

We have thus just obtained an action for conformal theory of gravity!

e Its Lagrangian, ®
L= a(d)

can be read-off from the logarithmic divergence of the on-shell
action of AdS gravity in one dimension higher.
@ Its field equations
h(ayij = 0

can be read-off from the logarithmic term in the asymptotic
expansion of the bulk metric.

gravity and AdS/CFT
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Holographic conformal gravity ind = 4

@ In this case we get [Henningson, KS (1998)]

. |
L= ag ~ R;RY — 5@%

e This can be expressed also as
ijkl
agg) ~ E4 + W,;HW

where E, is the Euler density and W, is the Weyl tensor.

e This is also exactly equal to the conformal anomaly of N = 4
SYM, providing a highly non-trivial check of the AdS/CFT
correspondence.

Conformal gravity and AdS/CFT
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Einstein gravity from holographic conformal gravity

V]
The holographic conformal gravities have the special property that any
solution of Einstein gravity, with or without cosmological constant is
also a solution of holographic conformal gravity.
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The variational problem
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Properties of holographic conformal gravity

Holographic proof

@ One can prove by straightforward computation that the (d + 1)
dimensional metric, ™

dp*> 1 A o
d82 s + ;(l + Zp)zg(g),-jdx'dx’

=22
is Einstein with negative cosmological constant, provided g, is
an Einstein metric in 4 dimensions,

Ric[g(g)] - /\(d - l)g((}), A= :t],()

) Al gravity and AdS/CF1
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Properties of holographic conformal gravity

Holographic proof

e Recall that the obstruction tensor /), is determined uniquely
and locally in terms of g(. Since the bulk metric does not have a
logarithmic term, &

hayijlg o] = 0,
for Einstein metrics.

e This proves the claim since h);j[g0)] = 0 are the field equations
for the holographic conformal gravity.

= Actually 1, depends only on the conformal structure, so h;[g0)]
vanishes for conformally Einstein metrics. This is a well known fact in
the mathematics literature. In particular, in d = 4, h(,); is the well-known
Bach tensor [Bach (1921)].

Conformal gravity and AdS/CFT
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Properties of holographic conformal gravity

Holographic proof

@ One can prove by straightforward computation that the (d + 1)
dimensional metric, &

dp* 1 A "
dSz s + ;(l + Zp)zg(g),-jdx'dx’

=272
is Einstein with negative cosmological constant, provided g is
an Einstein metric in d dimensions,

Ric[g(g)] - /\(d . l)g((}), A= :t],O
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Properties of holographic conformal gravity

An alternative proof

| will now present a more direct proof.

@ First notice thatinbothd =4andd =6 th@ Lagrangian is at least
quadratic in Ry,

. 1
@m—sﬁ
I ij 3 3 ij pki
- ERRUR - S_OR — R R R,‘kji -+

!
5

.. | - |
RUD,'DJ:R — ERUDRU +

e So it is manifest that Ricci-flat metrics solve the corresponding
field equations.

) Al gravity and AdS/CFT
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Properties of holographic conformal gravity

An alternative proof

So we now focus on the case g (g is Einstein with a cosmological
constant (of any sign).

e One can show that in both case the Lagrangian can be written in
the following way

&
L = E;K™ME, + Ly

where L is the Einstein-Hilbert Lagrangian (with cosmological
constant) and E;; are the corresponding Einstein equations.

e The tensor K" is given by
d=4 KUH — dlgtjgkl + dzgikgjm
d=6 : KM= RN 4 g”‘g”(c‘gR + 30+ ¢4)
+8"&*(csR + c60 + ¢7) + cog"'D'D/

where d,,d, and ¢y, ..., cg are specific numerical coefficients.

Conformal gravity and AdS/CFT
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Properties of holographic conformal gravity

An alternative proof

So we now focus on the case g (g is Einstein with a cosmological
constant (of any sign).

e One can show that in both case the Lagrangian can be written in
the following way

ikl {b
L= EUKU Ek] + L()

where L is the Einstein-Hilbert Lagrangian (with cosmological
constant) and E;; are the corresponding Einstein equations.

e The tensor K" is given by

d=4 KUH - dlgtjgkl a8 dzgikgjm
d=6 : KM= RN 4 g”‘g”(czR + 30 + ¢4)
+g'@*(csR + ce0 + ¢7) + cog'D'D/

where d,,d, and ¢y, ..., cg are specific numerical coefficients.
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Properties of holographic conformal gravity

An alternative proof

So we now focus on the case g is Einstein with a cosmological
constant (of any sign).

e One can show that in both case the Lagrangian can be written in
the following way

ikl {b
L= E,:,'KU Ek] -+ L()

where L is the Einstein-Hilbert Lagrangian (with cosmological
constant) and E;; are the corresponding Einstein equations.

e The tensor K" is given by
d=4 KUH — dlgtjgkl + dzgikgjm
d=6 : K™ =c RN 4+ g”‘g”(c‘gR + 30 + ¢4)
+8"¢*(csR + 600 + ¢7) + cog'D'D

where d,,d, and ¢y, ..., cg are specific numerical coefficients.
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Properties of holographic conformal gravity

An alternative proof

| will now present a more direct proof.

@ First notice thatinbothd =4andd =6 th@ Lagrangian is at least
quadratic in Ry,
R:RY — le
! 3
1 i
= ERR,-,-R’ B

3 )
%Rg' — RURHR,';(J': -+

!
5

.. 1 . |
RUD,'DJ:R - ERUDRU +

e So it is manifest that Ricci-flat metrics solve the corresponding
field equations.

) Al gravity and AdS/CF1
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Properties of holographic conformal gravity

Remarks

e |t follows that the field equations of holographic conformal gravity
are linear in Einstein equations. We thus conclude that Einstein
metrics are solution of the holographic cofformal gravity.

@ Moreover, the on-shell action of the two theories coincide on any
Einstein metric.

@ One can identify which solutions of conformal gravity are Einstein
via an initial value formulation [\M. Anderson (2004)] [Maldacena
(2012)].

e Our reformulations makes fairly simple to analyze the class of
solutions of the holographic conformal gravity that are not
Einstein metrics.
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Critical gravity

There has recently been renewed interest in higher derivative
gravities,

S = f d*x\/g[R — 2\ + aR'R;; i BR?)

e For general a, /3 this theory describes the propagation of a
massless spin 2 field, a massive spin 2 field and a massive
scalar.

@ [ LU, Pope (2011)] observed that the spectrum of linearized
perturbations around AdS is special when:

@ o = —3/1: the massive scalar is absent.

e When in addition, 7 = —1/(2A) the massive graviton becomes
massless. This theory was dubbed "critical gravity".
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Critical gravity

There has recently been renewed interest in higher derivative
gravities,

S = f d*x\/g[R — 2\ + aR'R; i BR?)

e For general a, /3 this theory describes the propagation of a
massless spin 2 field, a massive spin 2 field and a massive
scalar.

@ [ LU, Pope (2011)] observed that the spectrum of linearized
perturbations around AdS is special when:

e o = —3/3: the massive scalar is absent.
e When in addition, 7 = —1/(2A) the massive graviton becomes
massless. This theory was dubbed "critical gravity".

4 Antoine Van Proeyen
is online
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Critical gravity as the square of Einstein equations

It is easy to understand these results (and all other special properties
of this theory). When a = -3/,

5= [ a'sValR -2 - 35(RIRD- 1K)

and the higher derivative term is proportional to holographic
conformal anomaly. Using our rewriting of the anomaly we obtain

5 = f d*x (6N E;K™MEy + (1+ 8 2A)Lo)

w |n critical gravity, 1 + 3 2A = 0, and the theory is the "square" of
Einstein field equations.
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Critical gravity as the square of Einstein equations

It is easy to understand these results (and all other special properties
of this theory). When a = -3/,

5= [ d'sValR -2 - 35(RIRD- 1R

and the higher derivative term is proportional to holographic
conformal anomaly. Using our rewriting of the anomaly we obtain

5 = f d*x (6N E;K™MEy + (1+ 8 2A)Lo)

w |n critical gravity, 1 + 3 2A = 0, and the theory is the "square" of
Einstein field equations.
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Critical gravity as the square of Einstein equations

It is easy to understand these results (and all other special properties
of this theory). When a = -3,

5= [ a'sValR -2 - 35(RIRD- 1K)

and the higher derivative term is proportional to holographic
conformal anomaly. Using our rewriting of the anomaly we obtain

S = f d*x (6N E;K™Ey + (14 8 2A)L)

w |n critical gravity, 1 + 4 2A = 0, and the theory is the "square" of
Einstein field equations.
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Qutline

0 Adding conformal matter
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Adding conformal matter

Conformal gravity coupled to conformal matter

We would now like to understand how to couple matter to the
conformal gravity.

@ This can be done simply by considering AdS gravity coupled to
matter. Of course, not all bulk matter fields’will lead to conformal
matter couplings in the boundary.

e Their mass should be such that the boundary field (source of
dual operator) has dimension that allows for interaction terms of
dimension d.

> Example: a scalar field ® of mass m? = —3 in AdSs.

w The dual field has dimension A = 3 and thus its source ¢ has
dimensiond — A = 1.

w Terms of the form ¢y0¢y, ¢ have dimension 4.
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Adding conformal matter

Holographic construction

The holographic construction is the same as in the case of pure
gravity. We focus here in the case the matter is a scalar field.

e We start by finding the general asymptotic solution of gravity
coupled to matter. The metric has the same asymptotics as
before. The scalar field has the expansiontide Haro, Solodukhin,
KS],

®(x, p) = P2 (h0)(X)+pd )+ - -+ (D2 —a)HlOg P22 —a)) )

e Computing the on-shell action one finds again that contains a
logarithmic divergence with coefficients a(,), and A = [awis
conformally invariant.

@ Furthermore [de Haro, Solodukhin, KS],

I 0A 1 0A

hiayij ~ — Yoa-ay ~
S/ 10 680 V8(0) 99 (0)
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Adding conformal matter

Holographic construction

The holographic construction is the same as in the case of pure
gravity. We focus here in the case the matter is a scalar field.

e We start by finding the general asymptotic solution of gravity
coupled to matter. The metric has the same asymptotics as
before. The scalar field has the expansiontide Haro, Solodukhin,
KS],

®(x, p) = P22 (ho) (X)+pd )+ -+ (D 2a—ayHog phaa—ay)+ )

e Computing the on-shell action one finds again that contains a
logarithmic divergence with coefficients a(,), and A = [awis
conformally invariant.

@ Furthermore [de Haro, Solodukhin, KS],

I 0A 1 0A

hiayij ~ — Vaa—a) ~
SV 10 380 V8(0) 09 (0)
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Adding conformal matter

Conformal differential operators

e Conformal differential operators are differential operators whose
conformal transformations depends on o(x), but not on
derivatives of o.

@ An example is the conformal Laplacian wébiust discussed,

d—2
P1=D—4(d_l)R.

It transforms as

P, — e—(d/2+l)rr(x)Ple—(d/2—l)a(.r)

@ An active area of research in mathematics is about the form and
properties of such operators [Graham, ...
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a Conformal differential operators
\dding conformal matter

Conformal differential operators

e Conformal differential operators are differential operators whose
conformal transformations depends on o(x), but not on
derivatives of o.

@ An example is the conformal Laplacian we&iust discussed,

d-—2
P1=D—4(d_l)R.

It transforms as

P — e—(d/2+l)a(.r)Ple—(d/2—l)a(.r)

@ An active area of research in mathematics is about the form and
properties of such operators [Graham, ...
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. Conformal differential operators
\dding conformal matter

Constructing conformal differential operators

@ A scalar conformal operator of weight (d/2 + k) transforms as

P — e—(rl/2-+—k)0'(x)Pke—((!/2—1':)0'(.’.')

This is the conformal differential operator corresponding to the
kth power of the Laplacian.

@ Up until recently only the k = 1,2 operators were known explicitly.
To explicitly construct the remaining operators one may consider
a scalar field of mass m” = —(d/2)” + k> < 0 and compute the log
divergence of the on-shell action.

@ One can use this method to construct non-scalar conformal
operators as well. For example, in d = 4 we get the Maxwell
operator from a gauge field in the bulk.

yrmal gravity and AdS/CF1
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Conclusions

e We discussed how to obtain conformal gravity coupled to
conformal matter using the AdS/CFT correspondence.

= One starts from AdS gravity coupled to matter fields in (d + 1)
dimensions and work out the asymptotic solution to the field
equations. This amounts to solving algebraic equations.

= |f there is a logarithmic term in the asymptotic solution of a given
bulk field then its coefficient is the corresponding field equation of
conformal gravity coupled to conformal matter.

= The logarithmic holographic counterterm is the action for conformal
gravity coupled to conformal matter.

@ We discuss discussed several special properties of these
theories.
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Conclusions

e We discussed how to obtain conformal gravity coupled to
conformal matter using the AdS/CFT correspondence.

= One starts from AdS gravity coupled to matter fields in (d + 1)
dimensions and work out the asymptotic solution to the field
equations. This amounts to solving algebraic equations.

= |f there is a logarithmic term in the asymptotic solution of a given
bulk field then its coefficient is the corresponding field equation of
conformal gravity coupled to conformal matter.

= The logarithmic holographic counterterm is the action for conformal
gravity coupled to conformal matter.

@ We discuss discussed several special properties of these
theories.
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