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Abstract: We discuss the extension of the smooth entropy formalism to arbitrary physical systems with no bound on the number of degrees of
freedom, comparing them with already existing notions of entropy for infinite-dimensional systems. Our analysisis both conceptual as well as based
on operational primitives, for example we ask for the ability to perform privacy amplification against any kind of quantum side information.& nbsp;
As an application, we show how to employ a version of the entropic uncertainty relation to provide a security analysis for continuous variable
guantum key distribution protocols. & nbsp; based on arXiv:1107.5460, 1112.2179. This is joint work with Mario Berta, Fabian Furrer as well as
with Torsten Franz, Marco Tomamichel, Reinhard Werner
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o (verview

@ Algebraic description of infinite
dimensional quantum systems

@ Quantum information theoretic
concepts on von Neumann algebras

@ Entropic quantities and their
operational interpretation

@ Entropic uncertainty inequalities and
applications
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o co~dim quan’:u.m svs&ems

..but first a short remainder

quantum system with finitely many degrees of
freedom = finite-dimensional Hilbert space

H~ C% d< oo
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o co~dim quan’:um sv-stems

..but first a short remainder

observables (POVMS) are positive {E:}, E; € M4(C),
elements, summing up fo the identity 0, Z ey

States can be seen as positive, pEeE My p>0Trp=1
normalized functionals M;5 X TrpX eC

tensor product is “unique” Mg, ® Mg, ~ Mg, 4,

every state can be purified p~ |€) = 1® p2e),
6y = " Ji), TrpX = (£,1X ® I¢,)
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o co~dim quahkum svskems

..but first a short remainder

quantum system with finitely many degrees of
freedom = finite-dimensional Hilbert space

H ~ C? d< oo

Examples:

spin systems, finite dimensions are due to physical
symmetry group(s)

[Peter-Weyl theorem: compact Lie groups have
only finite dimensional irreducible representations]
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o co~dim quan&um svs&ems

best example of non-compact symmetry
group: request Poincare invariance

- -

two distant atoms, one excited, the other one in the
ground state, interact via electromagnetic radiation
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o co~dim qu.aml:um svs&ems

best example of non-compact symmetry
group: request Poincare invariance

My M, My

o —

state at time t: [;) € C? @ C2 ® C*

two distant atoms, one excited, the other one in the
ground state, inferact via electromagnetic radiation

Page 9/45




irsa: 12050047

o co~dim quan’:um svstems

best example of non-compact symmetry
group: request Poincare invariance

M 9 il M d M 2
- L
) \i

state at time t: |;) € C? @ C2 ® C*

for a finite time interval T, the probability to find
the second atom in an excited state is zero

Vt € [Oa T) : <wtlpatom 2 is excitcdlwt> =0
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o co~dim quan&um svs&ems

lets try to model the electromagnetic
radiation by one (quantized) mode of light

H ~ L2(R), dimH = oo

we can check that the algebra of matrices is replaced
by all bounded operators on the Hilbert space

these types of algebras are called “type I factors”,
“simplest” infinite dimensional case due to the existence of
enough projections onto finite dimensional subspaces
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o co~dim quahkum sysl:ems

Solution: restrict to a subalgebra of bounded
operators, fulfilling the invariance condition.

von Neumann algebra: *-subalgebra of the bounded
operators on some Hilbert space, closed with respect to
the weak operator topology (“expectation value topology”)

M C B(H) closed under addition and multiplication
XeM=X"(=XNeM
Xi € M : V|g)) € H : im(] Xi|yh) exists
= 3X € M : lm(glXhs) = (61X |y)
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6QIT on vN-algebras

observables (POVMS) are positive 1Ei}, Bi € M,

elements, summing up to the identity E; >0, ) E; =1

States are continuous positive, M>353SX - wX)eC
normalized functionals (1) =1, w(X*X) >0, VX € M

every state can be purified W~ (T, Hesy [€0))

*~-homomorphism 7, : M — B(H.), |€) € Ha
w(X) = (Cwlmw(X)Ew)
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oQIT on vN-algebras

observables (POVMS) are positive {Ei}, Bi € M,

elements, summing up to the identity FE; >0, ) E; =1

States are continuous positive, M>3S3SX - wX)eC
normalized functionals (1) =1, w(X*X) >0, VX € M

every state can be purified W~ (7, Hesy |€0))

*-homomorphism Ty - M — B(Hw) - l{w) = Hw
w(X) = (ulmu(X)Ew)
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6QIT on vN-algebras

observables (POVMS) are positive 1Ei}, Bi € M,

elements, summing up to the identity E; >0, ) E; =1

States are continuous positive, M>3S3SX - wX)eC
normalized functionals (1) =1, w(X*X) >0, VX € M

every state can be purified W~ (T, Hess |€))

*-homomorphism Ty - M — B(Hw) - I{w) =2 Hw
w(X) = (wlmu(X)E)
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6QIT on vN-algebras

tensor products are not unique!

Joint systems consists are generated by
commuting subalgebras

Map=MsaV Mp

= weak-closure ZX,'Y,; : X; €My, Y, € Mp

whether this is leads to correlations unobservable in the
“usual” tensor product setup is a wide open problem
(“Tsirelsons problem®)
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oQIT on vN-aLgebras

norm distance:

lo — wl| = sup{ |o(X) —w(X)| : X € M, [[X|[g) <1}

fidelity:
3 supremum goes over all
F(o,w) = supt [(§o|€w)|” } purifications in the same

Hilbert space

"generalized” fidelity for non-normalized functionals:

1

F(w,0)? = F(w,0)? + (1 — w(X))2(1 — (L))
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oQIT on vN-algebras

two useful operators

purifications of any two states can be mapped onto each
other in a self-adjoint way: the relative modular operator

! R (ﬂ'wa’Hwa I&w))a 0 gt ("Taa%aa |£a>)
Alo/w) : Hy = Hoy |€5) = Ao /w)|Ew)

if one pos. functional dominates another one:

Je' >0 VX e @(X5X) Sea{ X X)
then there exists a bounded operator in the commutant

Doc/w)e M'={Y eBH) : [V, X]=0VX € M}
0(X) = (D(0/w)éw |X D(d/w)én) & ||D|I* = ¢

Page 18/45



irsa: 12050047

6QIT own vN-algebras

two useful operators

purifications of any two states can be mapped onto each
other in a self-adjoint way: the relative modular operator

7 s (Wwa%wa |£w>) Ot (7"0'3%03 |£a>)
Alo/w) : Hy = Ho, [§5) = Ao/w)[Ew)

if one pos. functional dominates another one:

Jde >0 VX M @ X5X) Fea{ X X)
then there exists a bounded operator in the commutant

Do/w)e M'={Y eBH) : [, X]=0VX e M}
0(X) = (D(0/w)éw |X D(d/w)éw) & ||D|I* = ¢
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oEV\Eropic quaw\!:i.l:ies

The relative modular operator allows for the extension of
Renyi relative entropies to states on von Neumann algebras

Sa(w,0) = — (&u | fl[A(o/w)] &w )

1 o
f[a:]_a(l—a)(l_:c )

with the usual properties of relative entropies
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oEV\Eropic qua»xl:i.l:ies

The relative modular operator allows for the extension of
Renyi relative entropies to states on von Neumann algebras

Sa(w,0) = — {&u | fl[A(0/w)] &w )

1 o
f[a:]_a(l—a)(l_x )

with the usual properties of relative entropies

but up to very recently, Renyi entropies had less clear
operational meaning -> smooth entropy formalism of
Renner et.al. captures one-shot scenarios
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etnkro Pi.c qua\vxki‘.&i.es

max-relative entropy
Dinax (wllop=miflc K a < 2 gt
= 2log || D(w/o)|
min-relative entropy

Duin (w || 0) Tk IR logF(w,a)

Prop: These quantities fulfill the usual requirements of
relative entropies. In addition, if the von Neumann
algebra admits nice finite-dimensional approximations,
then the min/max relative entropies can be written as
limits of finite-dimensional quantities.
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etnktro Pic quaubities

B (w) = {o€ S<(M) i /1 =Fr(w,0) =< €}
S<(M) : set of sub-normalized positive functionals

(A|B) = sup Hmin (A|B)

waBEBY, , (waB)

mln w

A|B). = inf Hpmax (A|B)

wABEBY, , . (WAB)

max (
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oEV\EroFE.c quahl:i.l:ies

Thwm: Consider a purification wap ~ (7, Hu, [€u))-
Then we have

Honas (AIB),, = ~Hania (4[C),
H;Enax (A|B)w i _Hﬁnin (AlC)w

where the additional system corresponds to the
commutant of the first two von Neumann algebras,

Me ~m,(Mag)' .

Page 24/45



irsa: 12050047

oEu&ropic quah!:i.l:i‘.es

Thwm: operational interpretation of the
non-smooth min-entropy.

97 Humin(A1B)y = sup F((ida ® £4)(waB), |9))
8*

where the supremum goes over all weakly continuous
completely positive mappings from states on Mp to
density matrices.
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oEV\EroFE.c quam!:i.l:ies

conditional min-entropy for continuous output alphabet:

Hin(X|B),, = — log sup {/w%(Eﬁ)dp(x) ;

EelL®X,Mp+), /Egdy,=1}

conditional max-entropy for continuous output alphabet:

Honex(X|B),, = 2log sup { [ VP onaue
OB S(MB)}

Investigation under uaauj!

(jointly with FFurrer, M.Berta, T.Franz, M.Christand|, M.Tomamichel)
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oEV\Eropic qua\v\!:i.l:i'.es

conditional min-entropy for continuous output alphabet:

Hin(X|B),, = — log sup {/w%(E%)dp,(x) :

EelL®X,Mp+), fEEdu=I}

conditional max-entropy for continuous output alphabet:

Honx(X|B),, = 2log sup { [ VP onane
OB © S(MB)}

Investigation under uaauj!

(jointly with FFurrer, M.Berta, T.Franz, M.Christand|, M.Tomamichel)
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otwnktro Pic quam!:i.l:ies

conditional min-entropy for continuous output alphabet:

Huio(X|B), =~ togsup { [ wh(E5)duo):

EelL®X,Mp+), /EEdu=I}

conditional max-entropy for continuous output alphabet:
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oEV\EroFE.c quav\!:i.l:i.es

conditional min-entropy for continuous output alphabet:

Hin(X|B),, = — log sup {/w%(Eg)du(x) :

E e lL®X,Mp+), /EEd/J,:I}

conditional max-entropy for continuous output alphabet:

Honex(X|B),, = 2log sup { [ VP onane)
OB S(MB)}

Investigation under uaauj!

(jointly with FFurrer, M.Berta, T.Franz, M.Christandl, M.Tomamichel)

Page 30/45




irsa: 12050047

otnktro Fic quavxkities

Cor: for classical A system the expression yields

H (XIB)w - logpguess(XIB)w

pguess(XlB)w S Sup{ Z w% (Ex) :
r€X

E, € Mp, E; >0, Y E, =1}
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oAFFLi’.cad:i'.ons

operational meaning of smooth min-entropy
for classical A system: privacy amplification.

idea: Given a classical probability distribution
(possibly correlated with some quantum system)
with a promise on its (conditional) min-entropy. Map
the alphabet to a smaller alphabet such that the
distribution has maximal entropy (and is
uncorrelated).
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oAFFLi’.cad:i'.ons

Thwm: There exists a family of mappings F = {7y : X — K },
acting only on the classical system and reducing the
alphabet size such that

Er|T; ®id(wxe) — Tk ®wg|| < \/|K| B for (X 18w - 4e

where 7k is the state of maximal entropy. No
restriction on the system E has to be made, in
particular, no bound on the dimension.
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oAFFLi’.cad:i'.ons

EF Ty ® id(wxe) — x ®wpll < \/IK] - 2 M XD 4 4¢

Remarks:

-> the conditional max-entropy corresponds to data
compression with quantum side information.

-> extension to quantum case: replace classical system
with quantum system and mappings by completely
positive maps: under investigation, jointly with
M.Berta, O.Szehr.
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Ex||Ty ® id(wxr) — Tk ® wgl| < \/|K| -2 i X1 Bl L

Kemarks:

-> the conditional max-entropy corresponds to data
compression with quantum side information.

-> extension to quantum case: replace classical system
with quantum system and mappings by completely
positive maps: under investigation, jointly with
M.Berta, O.Szehr.

irsa: 12050047
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oAFPLi’.cad:i'.ons

Entropic uncertainty relations: measuring our
uncertainty about measurements performed on
quantum systems in terms of entropic quantities.
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oAFFLi’.cad:i'.ons |

Entropic uncertainty relations: measuring our
uncertainty about measurements performed on
quantum systems in terms of entropic quantities.

Sel:up: tripartite quantum system ABC, subsystems modeled
as commuting von Neumann algebras. Two measurements
(POVMS) {E%}, {F4} on subsystem A, with output
alphabets X,Y. We start with some state w on ABC and
consider the two corresponding post-measurement states
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Entropic uncertainty relations: measuring our
uncertainty about measurements performed on
quantum systems in terms of entropic quantities.

Sekup: tripartite quantum system ABC, subsystems modeled
as commuting von Neumann algebras. Two measurements
(POVMS) {E%}, {F4} on subsystem A, with output
alphabets X,Y. We start with some state w on ABC and
consider the two corresponding post-measurement states

p

i (XIB),, + Heyaoe (Y]C),, = —logmax | (E%)? - (F})
T,y

min max
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p

min

in (X|B),, + Hiae (Y1C),, 2 —log max || (B5)* - (FY)
T,y

RKemarks:

-> extension to continuous alphabets and general Renyi
entropies is under investigation (jointly with FFurrer,
M.Berta, T.Franz, M.Christandl, M.Tomamichel).

-> corresponding version for von Neumann entropy was
recently shown by Lieb & Frank for finite dimensional
side information.
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oAFFLi’.cad:i'.ov\s |

Quantum Key distillation: start with two-partite
quantum state on two commuting von Neumann algebras,
think of the commutant of the purification as Eves
system. Alice performs one out of two complementary
observables.

Goal: estimate min-entropy to do privacy amplification.

Idea: use uncertainty relation to bound min-entropy
of Alice conditioned on Eve via max-entropy between
Alice and Bob.

tnin (X|E),»="canst. — He, .. (¥ | B),

min max

Debails i arXiv:1112.2179

Page 42/45




irsa: 12050047

oAFFLi’.cad:i'.ovxs

Quantum Key distillation: start with two-partite
quantum state on two commuting von Neumann algebras,
think of the commutant of the purification as Eves
system. Alice performs one out of two complementary
observables.

Goal: estimate min-entropy to do privacy amplification.

Idea: use uncertainty relation to bound min-entropy
of Alice conditioned on Eve via max-entropy between
Alice and Bob.

tnin (X|E),#="canst. — HE .. (X | B),

min max

Debails i arXiv:1112.2179
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o Qutloolk

-> conditional entropies for continuous output alphabets
and corresponding uncertainty relations.

-> investigate the possibility of less or no
restrictions on the A system

-> consider quantum statistical systems?
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