Title: Molecular rotation in doped superfluid clusters
Date: May 03, 2012 02:30 PM
URL: http://pirsa.org/12050038
Abstract: Experiments where impurities were incorporated into helium nanodroplets have shown that the impurity freely rotates, and this has been attributed to the superfluidity of the nanodroplet [1]. Results from experiments with smaller helium clusters suggest that the onset of superfluidity is linked to system size and bosonic exchange effects [2]. We have used path integral techniques to investigate these systems and predict their spectroscopic behaviour in the microwave and the infrared regions of the spectrum. We are particularly interested in observing the superfluid response in clusters where the helium atoms have been substituted with parahydrogen molecules. Molecular hydrogen has been suggested as a potential candidate for the observation of superfluid response but this substance crystallizes before reaching a temperature low enough for superfluidity to appear. We will show theoretical and experimental results of a molecular superfluid response at the nanoscale via the formation of doped hydrogen clusters with a carbon dioxide probe molecule [3]. Properties such as density distributions, spectroscopic features, and effective rotational inertia can be extracted from the simulations. We will show new results for the case of asymmetric top molecules embedded in superfluid para-hydrogen clusters. A perspective on the current challenges of the field will be presented. [1] Grebenev, Toennies, and Vilesov, Science 279, 2083 (1998); Toennies and Vilesov, Angew. Chem.-Int. Edit. 43, 2622-2648 (2004). [2] Tang, Xu, McKellar and JÃager, Science 297, 2030 (2002) [3] Li, Le Roy, Roy, and McKellar, Phys. Rev. Lett. 105, 133401 (2010)

Motivation

- Experiments on helium droplets and clusters
- Important observable: B constant

J.Tang, Y. Xu, A. R. W. McKellar and W. Jäger, Science 297, 2030 (2002)

Motivation

- Experiments on helium droplets and clusters
- Important observable: B constant

Grebenev, Toennies, and Vilesov, Science 279, 2083 (1998);Toennies and Vilesov, Angew. Chem.-Int Edit 43, 2622-2648 (2004).

J. Tang, Y. Xu, A. R. W. McKellar and W. Jäger, Science 297, 2030 (2002)

Motivation

- Experiments on helium droplets and clusters
- Important observable: B constant

Grebenev, Toennies, and Vilesov, Science 279, 2083 (1998);Toennies and Vilesov, Angew. Chem.-Int Edit 43, 2622-2648 (2004).

J. Tang, Y. Xu, A. R. W. McKellar and W. Jäger, Science 297, 2030 (2002)

Motivation

- Experiments on helium droplets and clusters
- Important observable: B constant

Grebenev, Toennies, and Vilesov, Science 279, 2083 (1998);Toennies and Vilesov, Angew. Chem.-Int Edit 43, 2622-2648 (2004).

J.Tang, Y. Xu, A. R. W. McKellar and W. Jäger, Science 297, 2030 (2002)

Motivation

- Experiments on helium droplets and clusters
- Important observable: B constant

Grebenev, Toennies, and Vilesov, Science 279, 2083 (1998);Toennies and Vilesov, Angew. Chem.-Int Edit 43, 2622-2648 (2004).

$$
\begin{gathered}
\text { Theoretical Tools } \\
\hat{H}=B \hat{L}^{2}+\frac{\hat{P}^{2}}{2 M}+\sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j}^{\text {dopant }} \text { rotation } v\left(\left|r_{i}-r_{j}\right|\right)+\sum_{i}^{i} V\left(r_{i}, R, \Omega\right) \\
\text { translation } \\
\text { bosons: helium atoms } \begin{array}{c}
\text { dopant helium } \\
\text { coupling } \\
\text { Anisotropic }
\end{array} \\
Z=\mathrm{Tr} e^{-\beta \hat{H}} \quad
\end{gathered}
$$

Path integrals with exchange (Bose-Einstein statistics) Sampling using Monte Carlo (PIMC)

Properties:

Energy, Structure (densities)
Correlation functions (imaginary time): dipole-dipole
Response properties: effective inertia
Using worm algorithm: M. Boninsegni, N.V. Prokofev and B.V. Svistunov, Phys. Rev. E 74, 036701
(2006). M. Boninsegni, N. V. Prokof ev and B.V. Svistunov, Phys. Rev. Lett. 96, 070601 (2006).

Can we obtain spectral features?

Rotational spectrum: Fourier transform of the real time dipole autocorrelation function (difficult to calculate for large systems)

We opt for its imaginary time counterpart and model fit:

$$
\langle\hat{\mathbf{n}}(\tau) \cdot \hat{\mathbf{n}}(0)\rangle=\frac{1}{Z} \operatorname{Tr}\left\{e^{-\beta \hat{H}} e^{\tau \hat{H}} \hat{\mathbf{n}} e^{-\tau \hat{H}} \cdot \hat{\mathbf{n}}\right\}
$$

real time

Paths for helium atoms

$\mathrm{N}=6$

Paths for helium atoms

$\mathrm{N}=5$

Recurrences in rotational dynamics

theory: Moroni, Blinov, Roy JCP (2004) experiment:Y. Xu et al, JCP (2006)

Proposal: dopant molecule as a probe of superfluidity at the microscopic level

Superfluid fraction:

$$
f_{s}=1-\frac{I_{n}}{I_{o}}
$$

with I_{n} deduced from spectroscopic experiments:

$$
I_{n}=\frac{\hbar^{2}}{2 B}-I^{m p}
$$

and I_{0} obtained from MC calculations:

$$
I_{o}=\int \rho_{\text {total }} r_{\perp}^{2} d V
$$

Xu, Blinov, Jager, Roy JCP (2006)

$\mathrm{He}_{\mathrm{N}}-\mathrm{OCS}$ complexes: oscillations in B

Differential densities

13

Reduced Dimension PES

Rotational constant CO_{2} vs. H_{2} :

$$
\frac{\mathrm{B}_{\mathrm{H}_{2}}}{\mathrm{~B}_{\mathrm{CO}_{2}}}=\frac{59.322}{0.390} \approx 152
$$

4D PES

ID PES

Li, Roy, and Le Roy. J. Chem. Phys.J. Chem. Phys. I32, 214309 (2010); ibid 1 33, 104305 (2010).

Structure and magic numbers: partial, fractional filling

$$
\begin{gathered}
B_{\text {clasical }}=\frac{\hbar^{2}}{2\left(I_{\mathrm{CO}_{2}}+I_{\text {classical }}^{\mathrm{H}_{2}}\right)} \\
B_{\text {two fluid }}=\frac{\hbar^{2}}{2\left(I_{\mathrm{CO}_{2}}+I_{\text {effective }}\right)} \\
\frac{I_{\text {effective }}^{\mathrm{H}_{2}} \omega^{2}}{2}=F_{\omega} \\
I_{\text {effective }}^{\mathrm{H}_{2}}=\frac{\partial^{2} F_{\omega}}{\partial \omega^{2}} \\
F_{\omega}=-k_{B} T \ln Z_{\omega}
\end{gathered}
$$

$\mathrm{N}=12$ Maximum corresponds to global fractional filling

Conclusions

- Confirmed superfluid response to probe rotation in doped para- H_{2} clusters
- Turnaround in B constants is a direct sign of the onset of decoupling
- First experimental determination of superfluid fraction in a molecular superfluid. Theory was necessary to interpret this experiment.
- But superfluid response seems to die out as N increases because of solidification

22L. 105, 133401 (2010) PHYSICAL REVIEW LETTERS 24 sumismaine 2010 Molecular Superfluid: Nonclassical Rotations in Doped Para-Hydrogen Clusters

Hui Li, ${ }^{1,2}$ Robert I. Le Roy, ${ }^{1}$ Pierre-Nicholas Roy, ${ }^{\text {1, }}$ and A.R.W. McKellar ${ }^{3,1}$
'Depornment of Chemitry. Univenity of Waterloo, Witerioo, Ontaria, N2L JGI, Canada
${ }^{3}$ Inutinte of Theonetical Chemitrns. State Kioy Lablonutury of Theoretiond and Computational Chemitrns. Jite Univening
Istacie In utitute for Molecolar Sciences, National Reveurch Council of Canods. Omen China
"Stescie Institute for Molecular Sciences, National Reseanch Council of Canoda, Omawa, Ontario KIA ORG, Canade (Received 21 April 2010; published 23 september 2010)
Clusten of paru-hydrogen $\left(\mathrm{pH} \mathrm{H}_{2}\right)$ have been predicted to exhibit superfluid belavior, but direct obvervation of this phenomenon has been elusive. Combining experiments and theoretical simulations, we have determinel the size evolution of uie superilud repponse of $\mathrm{pH}_{\text {, }}$ clusters doped with carbon
 sing arvund CO , correlates with enhanced superfluid response for certain cluster sizen.

CO, a lighter and gentler probe

Raston, Jager, Li, Le Roy, and Roy, Phys. Rev. Lett., accepted

A persistent molecular superfluid response

$H=H_{0}-\mu_{z} E_{z} \cos \alpha$
perturbation theory
$\Delta E_{0}^{(2)}=-\sum_{n} \frac{|\langle 0| \cos \alpha| n\rangle\left.\right|^{2} \mu_{z}^{2} E_{z}^{2}}{E_{n}-E_{0}}$
$\Delta E_{0}^{(2)}=\frac{-\mu_{E}^{2} E_{z}^{2}}{6 B} \quad$ linear rotor model
$I_{\text {eff }}=\frac{-3 \hbar^{2}}{\mu_{2}^{2} E_{z}^{2}} \Delta E_{0}^{(2)}$ total effective inertia
$I_{\text {cff }}=\sum_{n} \frac{\left.3\langle 0| \cos \alpha|n\rangle\right|^{2} \hbar^{2}}{E_{n}-E_{0}}$
$I_{H_{2}}=I_{\text {eff }}-I_{C O}$
New experimental estimator of f_{s} !
Raston, Jager, Li, Le Roy, and Roy, Phys. Rev. Lett, accepted

Beyond linear dopants? Water

- a lighter and faster rotor - asymmetric top molecule - theoretical challenge and important coding work
- first PIMC simulation of a solvated asymmetric top with bosonic exchange for the environment.

Many waters, a few hydrogens: clathrate hydrates

