Title: Classical Wigner Crystals on Flat and Curved Surfaces, Topological Defects, `Pleats â ϵ^{\sim} and Particle Fractionalization
Date: May 03, 2012 01:30 PM
URL: http://pirsa.org/12050037
Abstract: Charged colloidal particles present a controllable system for study a host of condensed matter/many body problems such as crystallization. 2D crystals are invariably hexagonal. Hexagons perfectly tile a flat plane but a soccer ball requires exactly 12 pentagons dispersed among the hexagons on its curved surface. Pentagons and hexagons are positive and negative topological charges, disclinations, sources for positive and negative curvature. But we have discovered that â€œPleatsấ \bullet^{\bullet}, grain boundaries which vanish on the surface (and play a similar role to fabric pleats) can provide a finer control of curvature. We experimentally investigate the generation of topological charge as flat surfaces are curved. For positive curvature, domes and barrels, there is one pentagon added for every $1 / 12$ of a sphere. Negative curvature is different! For capillary bridges forming catenoids, pleats relieve the stress before heptagons appear on the surface. Pleats are important for controlling curvature from crystals on surfaces, to the shape of the spiked crown of the Chrysler building. Adding a particle to a flat surface produces an interstitial - usually an innocuous point defect. On a curved surface interstitials are remarkable, forming pairs or triplets of dislocations which can fission dividing the added particles into fractions which migrate to disclinations.\ \ Work done with William Irvine, e.g. Nature 468, 947 (2010).

Classical Wigner Crystals on Flat and Curved Surfaces

 topological defects, "Pleats" and classical particle fractionalizationCreating dislocation pairs

Dislocations and Disclinations on A Capilary Bridge

Classical Wigner Crystals on Flat and Curved Surfaces

 topological defects, "Pleats" and classical particle fractionalizationCreating dislocation pairs

Dislocations and Disclinations on A Capilary Bridge

Packing Densities for Spheres

Fubsut id. Vemeonteol subic 'ergatal' surreunded by 'licuil' caued to Atoaring boll lexering muss. it face is atoun at the tep wirfiee

van der Waals and excluded volume

$$
\begin{aligned}
S & =N k_{B} \ln (V-N b) \\
& =N k_{B} \ln \left(V\left(1-\phi / \phi_{C}\right)\right) \quad P=\frac{N k_{B} T}{V-N b}=\frac{N k_{B} T}{V\left(1-\phi / \phi_{C}\right)} \quad \text { Exact in 1D }
\end{aligned}
$$

Exact asymptotic form in any dimension

\Rightarrow Entropy drives liquid to crystal

$$
S_{\text {liquid }} \rightarrow 0 \text { as } \phi \rightarrow .64 \quad S_{\text {crystal }} \rightarrow 0 \text { as } \phi \rightarrow .74
$$

Highest Packing Fraction determines Stable High Density Phase

Polymer Hard Spheres - Colloids in Oil

PMMA-PHSA

Steric stabilization in decalin - tetralin
methyl methacrylate (\bullet); methacrylic acid (ㅁ); glycidyl methacrylate ($)$; 12-hydroxystearic acid (ص)

Originally Ron Ottewill - Bristol ours were from Andy Schofield - Edinburgh now home grown by Andy Hollingsworth

"Hard Sphere" Colloidal Sample

60% volume fraction

Crystallized in microgravity in space

Remelted in gravity forms "glass phase"
remains glass after ~
1 year

"Hard Sphere" Colloidal Sample

60% volume fraction

Crystallized in microgravity in space

Remelted in gravity forms "glass phase"
remains glass after ~ 1 year

Try to density match in decalin - CHB (cyclohexylbromide)

Coulomb crystals

Get charge stabilized colloid in oil, and screening length is enormous, $\lambda>30 \mu$

Van Blaaderen - Utrecht

Only get colossal crystals in some samples.

What's different? \qquad Water?

water has much higher ε
should suck ions
out of oil

$$
E=-\frac{\varepsilon E^{2}}{2}
$$

Try to density match in decalin - CHB (cyclohexylbromide)

Coulomb crystals

Get charge stabilized colloid in oil, and screening length is enormous, $\lambda>30 \mu$

Van Blaaderen - Utrecht

Try to density match in decalin - CHB (cyclohexylbromide)

Coulomb crystals

Get charge stabilized colloid in oil, and screening length is enormous, $\lambda>30 \mu$

Van Blaaderen - Utrecht

Only get colossal crystals in some samples.

What's different? \qquad Water?

water has much higher ε
should suck ions
out of oil

$$
E=-\frac{\varepsilon E^{2}}{2}
$$

Add water to half of cell

If water Droplets differentially pump ions from oil then we should see charging effects without colloids present

Two samples of clean cc CHB/decalin, with a drop of water added and sonicated:
-Wigner Crystal of 2-3 micron water droplets
-Emulsion stabilized by charge alone - no surfactants
-Shake instead of sonicate, big, polydisperse, charge stabilized emulsion

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB}$

New form of crystallized water

- Ice 10 ?

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB} /$ decalin

If water Droplets differentially pump ions from oil then we should see charging effects without colloids present

Two samples of clean cc CHB/decalin, with a drop of water added and sonicated:
-Wigner Crystal of 2-3 micron water droplets
-Emulsion stabilized by charge alone - no surfactants
-Shake instead of sonicate, big, polydisperse, charge stabilized emulsion

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB}$

New form of crystallized water

- Ice 10 ?

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB} /$ decalin

If water Droplets differentially pump ions from oil then we should see charging effects without colloids present

Two samples of clean cc CHB/decalin, with a drop of water added and sonicated:
-Wigner Crystal of 2-3 micron water droplets
-Emulsion stabilized by charge alone - no surfactants
-Shake instead of sonicate, big, polydisperse, charge stabilized emulsion

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB}$

New form of crystallized water

- Ice 10 ?

$\mathrm{H} 2 \mathrm{O}-\mathrm{CHB} /$ decalin

Add water to half of cell

An experiment based course on topological defects

An experiment based course on topological defects

An experiment based course on topological defects

Disclinations

Very expensive in the plane

An experiment based course on topological defects
React
 $0.0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ $-x, y, x-1 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$

$$
\leftarrow+1=1
$$

Stretching: From commensurate to incommensurate

Stretch in steps - $t=76.032 \mathrm{sec}$

Organization under dynamical potentials

Organization under dynamical potentials

The Euler Characteristic

Vertices

(1) $1-\frac{6}{2}+\frac{6}{3}=0$

Polyhedron	V	E	F	$V-E+F$

The Euler Characteristic

Curvature and non-euclidean geometry

Pleats on Crystals on Curved Surfaces

Pleats

- Add width as one traverses their length
- As do aligned strings of dislocations grain boundaries which vanish on the surface
- Add an angular wedge from 0 to 30° (disclinations add 60°)
- Pleats produce "coneyness"
- Pleat gradients produce curvature

When do you pleat instead of making disclinations?

Area relieved by disclination $\int \kappa d A=\frac{\pi}{\mathrm{q}} \frac{\pi}{3} \frac{\pi r^{2}}{R_{1} R_{2}^{2}}=\frac{\pi}{3} r=\sqrt{ } \frac{R_{1} R_{2}}{3}$

