Title: Effective Spin-1/2 Hamiltonians Determined for Er2Ti2O7 & Yb2Ti2O7 Through Inelastic Neutron Scattering

Date: May 03, 2012 11:00 AM

URL: http://pirsa.org/12050035

Abstract: We used time-of-flight inelastic neutron scattering to measure the excitation spectra from field-polarized states of exotic frustrated magnets. A knowledge of these spin-wave excitations in various directions in reciprocal space allows a robust determination of exchange parameters in suitable model Hamiltonians. We have taken this approach with two pyrochlores, Er2Ti2O7 and Yb2Ti2O7, whose magnetic properties have until this point been somewhat puzzling. The model we use is an effective spin-1/2 exchange Hamiltonian that incorporates the full anisotropy allowed by symmetry at the rare earth site. Er2Ti2O7, an XY anti-ferromagnet on the pyrochlore lattice, is found to reach its unexpected ordered ground state via quantum-order-by-disorder. Meanwhile, Yb2Ti2O7's effective Hamiltonian reveals the possibility of a Coulombic quantum spin liquid through what we have revealed to be "quantum spin ice" interactions. I will focus on the experimental side of these collaborative studies.

Outline

fotivation for the model Time-of-flight neutron scattering Tr₂Ti₂O7's Hamiltonian and Quantum Order by Disorder Tb₂Ti₂O7's Hamiltonian: Quantum Spin Ice / Quantum Spin

Outline

Motivation for the model

Time-of-flight neutron scattering

Er₂Ti₂O₇'s Hamiltonian and Quantum Order by Disorder

Yb2Ti2O7's Hamiltonian: Quantum Spin Ice / Quantum Spin Liquid

"Time of Flight" data

Can slice through this volume in several directions

Successes of this Model for Yb2Ti2O7

→ Chang et al show that the diffuse scattering in the zero-field 2D correlated state can be reproduced using parameters close to these in the effective S=1/2 Hamiltonian

-1 Chann et al. arXiv:1111.5406 (2011

→ Applegate et al show that the specific heat is well-described by these parameters and not by other sets of proposed parameters P. Applegate et al. arXiv:1203.4568. (2012)

→ Prediction by Wan et al of signatures for Quantum Strings, excitations arising from Quantum Spin Ice polarized along <100> : still waiting to see this experimentally with inelastic neutron scattering!

Y Wan and O. Tchemyshyov, arXiv 1201.5314 (2012)

L.-J. Chang et al., arXiv:1111.5406

Successes of this Model for Yb₂Ti₂O₇

→ Chang et al show that the diffuse scattering in the zero-field 2D correlated state can be reproduced using parameters close to these in the effective S=I/2 Hamiltonian L.J. Chang et al., arXiv:1111.5406 (2011)

→ Applegate *et al* show that the **specific** heat is well-described by these parameters and not by other sets of proposed parameters R. Applegate *et al*, arXiv:1203.4569, (2012)

→ Prediction by Wan *et al* of signatures for Quantum Strings, excitations arising from Quantum Spin Ice polarized along <100> : still waiting to see this experimentally with inelastic neutron scattering!

Y. Wan and O. Tchernyshyov, arXiv:1201.5314 (2012)

L.-J. Chang et al., arXiv:1111.5406

Collaboration

Team Theory!

Bruce Gaulin

Team Experiment!

L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff, and L. Balents, *Definitive Evidence for Order-by-Quantum-Disorder in Er*₂*Ti*₂O₇, arXiv:1204.1320v1 (2012)

K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents, *Quantum Excitations in Quantum Spin Ice*, Phys. Rev. X **1**, 021002 (2011).

Collaboration

Team Theory!

Bruce Gaulin

Team Experiment!

L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff, and L. Balents, *Definitive Evidence for Order-by-Quantum-Disorder in Er*₂*Ti*₂O₇, arXiv:1204.1320v1 (2012)

K.A. Ross, L. Savary, B. D. Gaulin, and L. Balents, *Quantum Excitations in Quantum Spin Ice*, Phys. Rev. X **1**, 021002 (2011).

