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Abstract: | will discuss some joint work with K. Uhlenbeck. There is a general method for constructing soliton hierarchies from a splitting of Lie
algebras. We explain how formal scattering and inverse scattering, Hamiltonian structures, commuting conservation laws, Beacklund
transformations, tau functions, and Virasoro actions on tau functions can all be constructed in a uni ed way from such splittings.
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Outline

e Soliton equations in differential geometry

e A general construction of soliton hierarchies from Lie
algebra splittings and examples

e Use Lie algebra splittings to derive properties of soliton

hierarchies: inverse scattering, Backlund transformations,
bi-Hamiltonian, tau functions, Virasoro action

(Joint work with Karen Uhlenbeck)
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() Soliton equations in DG

e The Gauss-Codazzi eqs for surfaces in R3 with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,
iIsometric immersions of space forms in space forms, ...
etc.
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() Soliton equations in DG

e The Gauss-Codazzi eqs for surfaces in R3 with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,

iIsometric immersions of space forms in space forms, ...
etc.

e Harmonic maps from R':! or R? to symmetric spaces.
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() Soliton equations in DG

e The Gauss-Codazzi eqs for surfaces in R? with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,
iIsometric immersions of space forms in space forms, ...
etc.

Harmonic maps from R':! or R? to symmetric spaces.

Schrédinger map from R' x R' to Hermitian symmetric
spaces: vt = J,(V,,7x)-
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(1) Soliton equations in DG

e The Gauss-Codazzi eqs for surfaces in R3 with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,
iIsometric immersions of space forms in space forms, ...
etc.

Harmonic maps from R':! or R? to symmetric spaces.

Schrédinger map from R' x R' to Hermitian symmetric
spaces: v = J,(V.,7x). For example, eq for Schrédinger

map eq from R' x R to S? or to hyperbolic H? is
equivalent to the focusing or defocusing NLS

qr = i(qx + 2|q|2q) resp.
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() Soliton equations in DG

The Gauss-Codazzi eqs for surfaces in R3 with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,
iIsometric immersions of space forms in space forms, ...
etc.

Harmonic maps from R':! or R? to symmetric spaces.

Schrédinger map from R' x R' to Hermitian symmetric
spaces: v = J,(V.,7x). For example, eq for Schrédinger

map eq from R' x R to S? or to hyperbolic H? is
equivalent to the focusing or defocusing NLS

Gt = i(G £+ 2|q|°q) resp.
YM field on R* and R%? and monopole equations.
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(I) Soliton equations in DG

The Gauss-Codazzi eqgs for surfaces in R with K = —1,
for conformally flat hypersurfaces in R*, Egroff metrics,
iIsometric immersions of space forms in space forms, ...
etc.

Harmonic maps from R':! or R? to symmetric spaces.

Schrédinger map from R' x R' to Hermitian symmetric
spaces: v = J,(V.,7x). For example, eq for Schrédinger
map eq from R' x R to S? or to hyperbolic H? is
equivalent to the focusing or defocusing NLS

Gt = i(G £+ 2|q|°q) resp.

YM field on R* and R%? and monopole equations.

The generating function of the quantum cohomology of a
point is given by the tau function of the KdV that is fixed by

the Virasoro action — Witten's conjecture proved by
Kontsevich.
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(1) Constructing soliton hierarchies from Lie algebra splittings

Zakharov-Shabat, AKNS, Adler, Adler-van Moerbeke,
Gelfand-Dikki, Kuperschmidt-Wilson, Drinfeld-Sokoloy, ...
developed methods to construct soliton hierarchies from Lie

algebras.

Below we give a version given by Terng-Uhlenbeck:

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Pirsa: 12050026 Page 13/102



(1) Constructing soliton hierarchies from Lie algebra splittings

Zakharov-Shabat, AKNS, Adler, Adler-van Moerbeke,
Gelfand-Dikki, Kuperschmidt-Wilson, Drinfeld-Sokoloy, ...
developed methods to construct soliton hierarchies from Lie

algebras.

Below we give a version given by Terng-Uhlenbeck:

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Pirsa: 12050026 Page 14/102



Pirsa: 12050026

(1) Constructing soliton hierarchies from Lie algebra splittings

Zakharov-Shabat, AKNS, Adler, Adler-van Moerbeke,
Gelfand-Dikki, Kuperschmidt-Wilson, Drinfeld-Sokoloy, ...
developed methods to construct soliton hierarchies from Lie
algebras.

Below we give a version given by Terng-Uhlenbeck:

Let L be a formal Lie group with subgroups L. .L_ such that
L.NnL_={e},andits Lie algebras £ = L. & £_ as linear
subspaces. We call L. a splitting of L and £ a splitting of L.
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(1) Constructing soliton hierarchies from Lie algebra splittings

Zakharov-Shabat, AKNS, Adler, Adler-van Moerbeke,
Gelfand-Dikki, Kuperschmidt-Wilson, Drinfeld-Sokoloy, ...
developed methods to construct soliton hierarchies from Lie
algebras.

Below we give a version given by Terng-Uhlenbeck:
Let L be a formal Lie group with subgroups L. .L_ such that

L.NnL_={e},andits Lie algebras £ = L. & L£_ as linear
subspaces. We call L. a splitting of L and £ a splitting of L.

J ={Jj|J =1} C L Is a vacuum sequence If

Q@ J is commuting and linearly independent,
@ J; generates 7 in the enveloping algebra.
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We will construct a soliton hierachy as flows on C*(R, M) from
a splitting £.. and a vacuum sequence {J; | j > 1}, where

M={(ghg )+ lgel}.

Hereforé e L,wewriteé =&, +&_ e L. S L.
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Soliton hierarchy
Given a smooth ¢ : R — M, thereis M : R — L_ such that
¢ = (MJyM~1).. This is equivalent to

O — & = M(UX — J1)M_1.
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Soliton hierarchy
Given a smooth € : R —+ M, thereis M : R — L_ such that
¢ = (MJyM~1).. This is equivalent to

O — & = M(UX — J1)M_1.

The flow on C*(R. M) defined by J; is

) &
&

ot

= [0x — & (MIM~1)4],
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Soliton hierarchy
Given a smooth ¢ : R — M, thereis M : R — L_ such that
¢ = (MJyM~1).. This is equivalent to

Oy — & = M(UX — J1)M_1.

The flow on C*(R. M) defined by J; is

) &
&

Bl £ (MUIAL

or equivalently, written as a Lax pair

[(')X — &, Ug} — (ngl,M—T)+] — /1)
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Soliton hierarchy
Given a smooth € : R —+ M, thereis M : R — L_ such that
¢ = (MJyM~1).. This is equivalent to

Oy — & = M(i)x — J1)M_1.

The flow on C*(R. M) defined by J; is

) &
&

18 — £ (MUM-

or equivalently, written as a Lax pair

[(')X — &, (')tj - (MJJM—T)+] =)

Theorem. These flows on C>°(R. M) commute.
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The C™1 NLS hierarchy

Splitting:
£={A(\) =) A\ for some ng | Aj € u(n+1)}.
I<ng

Lo={AcL|AN) =) AN} L_={AcL|A)) =
j>0 '
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The C™1 NLS hierarchy

Splitting:
£={A(\) =) A\ for some ng | Aj € u(n+ 1)},
I<ng

Lo={AcL|AN) =) AN}, L_={AcL|AD) =
j=>0 '

Let a = diag(il,. —i), and J;(\) = aV. Then
J={Jl121}
is a vacuum sequence.
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The C™1 NLS hierarchy
Splitting:
£={A(\) =) A\ for some ng | A € u(n+ 1)},

I<ng

={Ae L| A ZA\J} L_={AecL|A ZAV.

Let a = diag(il,. —i), and J;(\) = aV. Then
J={Jlj=1}
IS a vacuum sequence. The flows in the hierarchy are for maps

[l 0 q " nx1.
U= (—EI O) with g € C"™*":

at,

Qx.
f _
Q(QXX +2q99°q).

a, =
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The C™' NLS hierarchy
Splitting:
£={A(\) =) A\ for some ng | Aj € u(n+ 1)},

I<ng

={AeL| A ZA\J} L_={AecL|A ZAV.

Let a = diag(il,. —i), and J;(\) = aV. Then
J={Jlj=1}
Is a vacuum sequence. The flows in the hierarchy are for maps

Haic 0 q " nx1i.
U= (—El O) with g € C"™*":

at,

Qx.
I _
2(crxx +299"q).

a, =
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KdV type hierarchies

Let N and B_ denote the subalgebras of strictly lower
triangular and lower triangular matrices in s/(n. C), and
B : sl(n.C) — N_ alinear map such that Ker(B) = B_ and

B([<, B(n)] + [B(£), ) = B([<, n])

for all £, n € sl(n,C).
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KdV type hierarchies

Let N and B_ denote the subalgebras of strictly lower
triangular and lower triangular matrices in s/(n. C), and
B : sl(n.C) — N_ alinear map such that Ker(B) = B_ and
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L_ action on the solution space
The left multiplication of L_ induces an action of L_ on the
space of solutions of the flows: Forf.g e L_,
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(Ill) Derive properties of soliton hierarchy from splittings

Formal inverse scattering

Let L+ be a splitting of L, and {J; | j > 1} a vaccum sequence.

Let V(x.t) = exp(Jix + Jjt;). Given f € L_, factor

V(x.t)f' = M~ (x, {)E(x.t;)

with E(x.t) € L. and M(x.t) € L_. Then
&= (MIM™T),

Is a solution of the flow generated by J;.
So

f &

Is a map from L_ to the space of solutions of the flow eq
generated by J;. We call f the scattering data of &;.
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L_ action on the solution space
The left multiplication of L_ induces an action of L_ on the
space of solutions of the flows: Forf.g e L_,

g *x{f = {gf-

Backlund transformations and pure solitons

If L is a subgroup of the loop group L(G) and g is rational, then
this action can be computed using residue calculus.
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L_ action on the solution space
The left multiplication of L_ induces an action of L_ on the
space of solutions of the flows: Forf.g e L_,

g *x{f = {gf-

Backlund transformations and pure solitons

If L is a subgroup of the loop group L(G) and g is rational, then
this action can be computed using residue calculus. Moreover,

@ the action of a rational loop in L_ with smallest number of
poles gives a Backlund-Darboux type transformations on
the space of solutions,

©Q the orbit of rational elements at the vacuum is the space of
pure soliton solutions and can be computed explicitly.
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Bi-hamiltonian

If £ has a sequence of ad-invariant non-degenerate bilinear
form (. )k, then we can naturally embed M in £* via (, ), as
Poisson submanifolds and the induced Poisson structures are
compatible. For example, (&, 7)x = res(Atr(£(\)n(N)) is

ad-invariant on £(s/(n)).
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If £ has a sequence of ad-invariant non-degenerate bilinear
form (. )k, then we can naturally embed M in £* via (, ), as
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Bi-hamiltonian

If £ has a sequence of ad-invariant non-degenerate bilinear
form (. )k, then we can naturally embed M in £* via (), as
Poisson submanifolds and the induced Poisson structures are
compatible. For example, (&, 7)x = res(A<tr(£(\)n(N)) is

ad-invariant on £(s/(n)).
Commuting Hamiltonians

(MJ;M—1. Jy)o gives the family of commuting Hamiltonians.
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Tau functions defined by G. Wilson 1991

Central extension of L
Suppose w is a 2-cocycle on Lsuchthat w | £1 = 0. Let L be

the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.
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Tau functions defined by G. Wilson 1991

Central extension of L

Suppose w is a 2-cocycle on £ suchthat w | £1 = 0. Let L be
the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.

Since w | Ly = 0, there exists a section S from L. U L_ to L.
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Tau functions defined by G. Wilson 1991

Central extension of L

Suppose w is a 2-cocycle on £suchthat w | £1 = 0. Let L be
the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.

Since w | L1 = 0, there exists a section S from L. U L_ to L.
Let t = (t, tn), and V(t) = exp(3_;L, ;). Given f € L_,

The tau function is a C*-valued function defined on an open
subset of t = 0 in RN by
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Tau functions defined by G. Wilson 1991

Central extension of L

Suppose w is a 2-cocycle on £ suchthat w | £1 = 0. Let L be
the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.

Since w | Ly = 0, there exists a section S from L. U L_ to L.
Let t = (t, tn), and V(t) = exp(3_;L, tJ;). Given f € L_,

The tau function is a C*-valued function defined on an open
subset of t = 0 in RN by

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Page 69/102






Tau functions defined by G. Wilson 1991

Central extension of L

Suppose w is a 2-cocycle on £ suchthat w | £4 = 0. Let L be
the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.

Since w | Ly = 0, there exists a section S from L. U L_ to L.
Let t = (t, tn), and V(t) = exp(3_;L, tJ;). Given f € L_,

The tau function is a C*-valued function defined on an open
subset of t = 0 in RN by

Recall that (M(t)J; M(t)). solves the flows generated by
Jy in the hierarchy.
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Tau functions defined by G. Wilson 1991

Central extension of L

Suppose w is a 2-cocycle on £Lsuchthat w | £1 = 0. Let L be
the central extension of L given by w. Then L is a principal C*
bundle L — L with c1(L) w.

Since w | Ly = 0, there exists a section S from L. U L_ to L.
Let t = (t, tn), and V(t) = exp(3_;L, ;). Given f € L_,

The tau function is a C*-valued function defined on an open
subset of t = 0 in RN by

Recall that (M(t)J; M(t)). solves the flows generated by
Jy in the hierarchy.

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Pirsa: 12050026 Page 72/102



Theorem (T-U)

Suppose L C L(SL(n)), V(t) = exp(zj’-\’:1 tiJ;), and
V)" =M(t)TE(t)e L_L,.
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Theorem (T-U)

Suppose L C L(SL(n)), V(t) = exp(zj’-\’:1 tiJ;), and
V(t)f~' = M(t)TE(t) e L_L.. Then
Q Forfel_,wehave
o (In7p)y = (MM, Jp),
o (InN7)py, = (MIMT, S ((MIM—T).)), where

dA

(&.n) =res (tr(E(A)n(N))).
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Theorem (T-U)

Suppose L C L(SL(n)), V(t) = exp(zj’-\’:1 tiJ;), and
V(H)f~' = M(t)"TE(t) e L_L.. Then
Q Forfel_,wehave
o (IN7p)y = (M"My.Jp),
o (InN7)py, = (MIMT, S ((MIM—T).)), where

)

(€.n) = res (tr(E(A)n(N)):
Q Iff(s) e L_, then

()

o5 NTi(e) = —(MsM™', EAE™").
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Can we recover solution & from 747?

The NLS hierarchy: Let k = diag(€’. e'?) be a constant, and
fel_.Then &g = késk™ . In fact, if g is a solution of the
NLS g: = 5(gx + 2|q/2q), then €*’q is also a solution. But
Tui—1 = Tf. S0 74 can only recover the solution & up to this S’
symmetry.
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Can we recover solution & from 747?

The NLS hierarchy: Let k = diag(€’. e'?) be a constant, and
fel_.Then &g = késk™ . In fact, if g is a solution of the
NLS g: = 5(gx + 2|q[2q), then €*’q is also a solution. But
Tei—1 = Tf. S0 74 can only recover the solution & up to this S’
symmetry.
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Can we recover solution & from 74?

The NLS hierarchy: Let k = diag(€’. e'?) be a constant, and
fel_ . Then &g = késk™ . In fact, if g is a solution of the
NLS g: = 5(gx + 2|q/2q), then €*’q is also a solution. But
Tui—1 = Tf. S0 74 can only recover the solution & up to this S’
symmetry.

KdV hierarchy: qs = (In7¢)s,¢, is the solution corresponding to
fel_.

n x n KdVg hierarchy: We can recover solution & from
{(In7e)ge |1 <j<n—-1}
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Virasoro algebra
Let D, (S') denote the subgroup of diffeomorphisms of S that
Is the boundary value of a holomorphic map from |A\| < 1 to

GL(1). The Virasoro algebra V is the Lie subalgebra of the Lie
algebra of D. (S') generated by {¢; | j € Z}, where & = V'

)
OA "
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Virasoro algebra

Let D, (S') denote the subgroup of diffeomorphisms of S that
Is the boundary value of a holomorphic map from |\| < 1 to
GL(1). The Virasoro algebra V is the Lie subalgebra of the Lie
algebra of D. (S') generated by {¢; | j € Z}, where & = V71 2.
Note that

(K _f.)ikﬂ'-
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Virasoro algebra

Let D, (S') denote the subgroup of diffeomorphisms of S that
Is the boundary value of a holomorphic map from |A| < 1 to
GL(1). The Virasoro algebra V is the Lie subalgebra of the Lie
algebra of D. (S') generated by {¢; | j € Z}, where & = V71 2.
Note that

(K _f')ikﬂ'-

Let V. denote the subalgebra of V generated by {§; | j > —1}.
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Theorem (T-U 2012)
Let L. be a splitting of L(GL(n)) with L, = L. (GL(n)), and
C: S' — GL(n) a group homomorphism.
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Theorem (T-U 2012)

Let L. be a splitting of L(GL(n)) with L, = L. (GL(n)), and

C: S' — GL(n) a group homomorphism. Given k € D (S')
and f € L_, define

k=1
(ko f)(\) = f(k~1(\))C ( /\(\)) |

(kxf)=9g_, wherekof=g9,9 €L,.L_.
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Theorem (T-U 2012)

Let L. be a splitting of L(GL(n)) with L, = L. (GL(n)), and

C: S' — GL(n) a group homomorphism. Given k € D (S')
and f € L_, define

k(.
(ko f)(\) =f(k~'(\)C ( ---/\-( \)) |

(kxf)=g_, wherekof=g9.9 €L, L_.

Then ¢ defines an action of D (S") on L_.
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Theorem (T-U 2012)

Let L. be a splitting of L(GL(n)) with L, = L. (GL(n)), and

C: S' — GL(n) a group homomorphism. Given k € D.(S')
and f € L_, define

k(.
(koﬂU)—fM%ADC(IfU).

(kxf)=g_, where kof=g9.9g €L.L_.

Then ¢ defines an action of D. (S') on L_. Moreover, the
infinitesimal vector field corresponding to §; € V., is

Z(NF' = (XTI L NI, j> -1
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Theorem (T-U 2012)

Let L. be a splitting of L(GL(n)) with L, = L. (GL(n)), and

C: S' — GL(n) a group homomorphism. Given k € D.(S')
and f € L_, define

k(.
(koﬂU):fM%ANC(/JU).

(kxf)=g-, where kof=g9.9g €L.L_.

Then ¢ defines an action of D. (S') on L_. Moreover, the
infinitesimal vector field corresponding to §; € V., is

Z(NF' = (XTI L NI, j> -1
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Virasoro actions

We choose homomorphism C : S — GL(n) so that
A(J1)a + [J1. C'(1)] = Jq. Then the V.. action on L_ induces an
action on tau functions.
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Virasoro actions

We choose homomorphism C : S — GL(n) so that
A(Jy)a + [Ji. C'(1)] = Jy. Then the V. action on L_ induces an
action on tau functions.

Theorem (T-U)
For the C™ " coupled NLS hierarchy, we choose C = 1. The V.
action on X = In 7y is given by

(-1
: 1
00X =5 | = (Xt + XXy )+ Y KXo |, €22,

=1 k>1

o ,
5 X = 2;/@1%. (=0.1.

o ,
01X =5 ) ki,
k>1

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Pirsa: 12050026 Page 94/102



Theorem (T-U)
For the n x n KdVg hierarchy, we choose C so that
C'(1) = +diag(0. 1
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Theorem (T-U)

For the n x n KdVg hierarchy, we choose C so that

C'(1) = +diag(0. 1 n—1). The V. -actionon X = In ¢ is
given by

L , Ml ,
0 X = n Zkrk‘hm vk T on Z (‘hk‘)‘fm k T Xtictne k)‘ £21,
k>1 k=1

1

e 1Z 1 ”Z -
> I=

o ,  [[frieet
0L A= nkafk‘hkn -+ 4n;k(n— k)fkfn_k.
N —
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Some open problems

e Isthere a systematic way to decide whether a geometric
PDE is an integrable system?
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Some open problems

e Isthere a systematic way to decide whether a geometric
PDE is an integrable system?

o If a PDE has a Lax pair with a spectral parameter, is there
systematic way to find a Lie algebra splitting that gives the
PDE? This will give the symmetry group of the PDE.
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Some open problems

e Isthere a systematic way to decide whether a geometric
PDE is an integrable system?

If a PDE has a Lax pair with a spectral parameter, is there
systematic way to find a Lie algebra splitting that gives the
PDE? This will give the symmetry group of the PDE.

Understand the space of solutions of SDYM on R?? and

their reductions with non-compact real and complex gauge
groups.
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Some open problems

e Isthere a systematic way to decide whether a geometric
PDE is an integrable system?

If a PDE has a Lax pair with a spectral parameter, is there
systematic way to find a Lie algebra splitting that gives the
PDE? This will give the symmetry group of the PDE.

Understand the space of solutions of SDYM on R?2 and

their reductions with non-compact real and complex gauge
groups.

Geometrization of integrable systems, i.e., find geometric
problems whose governing PDEs are soliton equations.
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Some open problems

Is there a systematic way to decide whether a geometric
PDE is an integrable system?

If a PDE has a Lax pair with a spectral parameter, is there
systematic way to find a Lie algebra splitting that gives the
PDE? This will give the symmetry group of the PDE.

Understand the space of solutions of SDYM on R?? and

their reductions with non-compact real and complex gauge
groups.

Geometrization of integrable systems, i.e., find geometric
problems whose governing PDEs are soliton equations.

Find soliton hierarchies that have a unique fixed point for
the Virasoro action on tau functions.

Chuu-Lian Terng A Geometric Framework for Integrable Systems

Page 101/102



Pirsa: 12050026

Some open problems

Is there a systematic way to decide whether a geometric
PDE is an integrable system?

If a PDE has a Lax pair with a spectral parameter, is there
systematic way to find a Lie algebra splitting that gives the
PDE? This will give the symmetry group of the PDE.

Understand the space of solutions of SDYM on R?2 and

their reductions with non-compact real and complex gauge
groups.

Geometrization of integrable systems, i.e., find geometric
problems whose governing PDEs are soliton equations.

Find soliton hierarchies that have a unique fixed point for
the Virasoro action on tau functions.
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