Date: May 22, 2012 01:00 PM
URL: http://pirsa.org/12050015
Abstract: A beautiful understanding of the smallness of the neutrino masses may be obtained via the seesaw mechanism, whereby one takes advantage of the key qualitative distinction between the neutrinos and the other fermions: right-handed neutrinos are gauge singlets, and may therefore have large Majorana masses. The standard seesaw mechanism, however, does not address the apparent lack of hierarchy in the neutrino masses compared to the quarks and charged leptons, nor the large leptonic mixing angles compared to the small angles of the CKM matrix. In this talk, I will show that the singlet nature of the right-handed neutrinos may be taken advantage of in one further way in order to solve these remaining problems: Unlike particles with gauge interactions, whose numbers are constrained by anomaly cancellation, the number of gauge singlet particles is essentially undetermined. If large numbers of gauge singlet fermions are present at high energies - as is suggested, for example, by various string constructions - then the effective low energy neutrino mass matrix may be determined as a sum over many distinct Yukawa couplings, with the largest ones being the most important. This can reduce hierarchy, and lead to large mixing angles. Assuming a statistical distribution of fundamental parameters, we will show that this scenario leads to a good fit to low energy phenomenology, with only a few qualitative assumptions guided by the known quark and lepton masses. The scenario leads to predictions of a normal hierarchy for the neutrino masses, and a value for the $\mid \mathrm{m} _$ee \midmass matrix element of about 1-6 meV.

Large Mixing Angles From
Many Right-Handed Neutrinos
Brian Feldstein

-B.F., William Klemm

Large Mixing Angles From Many Right-Handed Neutrinos

Brian Feldstein

-B.F., William Klemm
-arXiv:1111.6690

The Fundamental Mysteries of Flavor

- Quark and charged lepton masses have large (~6 orders of magnitude) hierarchies.
- With up and down quarks ordered by mass, the CKM matrix is approximately equal to the identity.
- Neutrino masses ~ 10 orders of magnitude smaller than other fermion masses, and seemingly less hierarchical.

The lepton and quark sector mixing angles seem fundamentally different, with the leptons having two near maximal mixing angles.

The See-Saw Mechanism

\rightarrow A simple explanation for the small neutrino masses.
The key point: Neutrinos are unique because V_{R} 's are standard model gauge singlets.

- Majorana masses for the v_{R} 's are allowed, and may be very large, perhaps close to the GUT scale, $\mathrm{M} \sim 10^{15} \mathrm{GeV}$.
\rightarrow Produce low energy Majorana v masses $\sim \lambda^{2} v^{2} / M$
\rightarrow We obtain an extremely elegant understanding of the hique smallness of the neutrino masses.
(More generally, an operator (LH) ${ }^{2} / \mathrm{M}$ is allowed, and there
are a few ways of generating it. We will consider only the type-I
seesaw, but some of our results may extend to other types.)

The See-Saw Mechanism

\rightarrow A simple explanation for the small neutrino masses. The key point: Neutrinos are unique because V_{R} 's are standard model gauge singlets.

- Majorana masses for the v_{R} 's are allowed, and may be very large, perhaps close to the GUT scale, $\mathrm{M} \sim 10^{15} \mathrm{GeV}$.
\rightarrow Produce low energy Majorana v masses $\sim \lambda^{2} v^{2} / M$
\rightarrow We obtain an extremely elegant understanding of the unique smallness of the neutrino masses.
(More generally, an operator (LH) ${ }^{2} / \mathrm{M}$ is allowed, and there
are a few ways of generating it. We will consider only the type-I
seesaw, but some of our results may extend to other types.)
- For the other mysteries, we have many possibilities..
\rightarrow Flavor symmetries of many types..
\rightarrow Extra-dimensional wavefunctions

But perhaps nothing as singularly compelling as the see-saw mechanism..
\rightarrow How about an agnostic approach?
-Can we try to treat the Yukawas as just a bunch of "random" numbers?

- For the other mysteries, we have many possibilities..
\rightarrow Flavor symmetries of many types..
\rightarrow Extra-dimensional wavefunctions

But perhaps nothing as singularly compelling as the see-saw mechanism..
\rightarrow How about an agnostic approach?
-Can we try to treat the Yukawas as just a bunch of "random" numbers?

\rightarrow Neutrinos seem to prefer relative degeneracy ("anarchy").

-Hall, Murayama, Weiner
-de Gouvea, Murayama

- Well fit by a roughly order 1 distribution.

- Obtaining two large mixing angles from a hierarchical distribution is rather unlikely..

\rightarrow Neutrinos seem to prefer relative degeneracy ("anarchy").

-Hall, Murayama, Weiner
-de Gouvea, Murayama

- Well fit by a roughly order 1 distribution.

- Obtaining two large mixing angles from a hierarchical distribution is rather unlikely..

- Again the neutrinos seem to stand out as being unique..
\rightarrow Perhaps the neutrino Yukawas are just fundamentally different than the others? Let's suppose otherwise.
- How about the see-saw mechanism? Can it explain the large mixing angles?

Naively.. No!

- Without invoking further structure, small angles before the see-saw remain small angles after the see-saw.
(Assuming hierarchical Yukawa eigenvalues..)
$Y . U^{-1} Y^{T} \sim\left[\begin{array}{ll}1 & 0 \\ 0 & c\end{array}\right]\left[\begin{array}{ll}1 & a \\ a & b\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & f\end{array}\right]=\left[\begin{array}{cc}1 & \epsilon a \\ \epsilon & c^{2} b\end{array}\right]$
\rightarrow For e.g. a, b of $O(1)$, the mixing angle is $\sim \varepsilon a$.
- Hierarchical mass matrices tend to have small (or $\sim 90^{\circ}$) mixings.
\rightarrow The see-saw does not remove hierarchy.
- Again the neutrinos seem to stand out as being unique..
\rightarrow Perhaps the neutrino Yukawas are just fundamentally different than the others? Let's suppose otherwise..
- How about the see-saw mechanism? Can it explain the large mixing angles?

Naively.. No!

- Without invoking further structure, small angles before the see-saw remain small angles after the see-saw.
(Assuming hierarchical Yukawa eigenvalues..)
$Y M^{-1} Y^{T} \sim\left[\begin{array}{ll}1 & 0 \\ 0 & \epsilon\end{array}\right]\left[\begin{array}{ll}1 & a \\ a & b\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & \epsilon\end{array}\right]=\left[\begin{array}{cc}1 & \epsilon a \\ \epsilon a & \epsilon^{2} b\end{array}\right]$
\rightarrow For e.g. a, b of $O(1)$, the mixing angle is $\sim \varepsilon$ a.
- Hierarchical mass matrices tend to have small (or $\sim 90^{\circ}$) mixings.
\rightarrow The see-saw does not remove hierarchy.
- Again the neutrinos seem to stand out as being unique..
\rightarrow Perhaps the neutrino Yukawas are just fundamentally different than the others? Let's suppose otherwise.
- How about the see-saw mechanism? Can it explain the large mixing angles?
Naively.. Nol
- Without invoking further structure, small angles before the see-saw remain small angles after the see-saw.
(Assuming hierarchical Yukawa eigenvalues..)
$Y . Y^{-1} Y^{T} \sim\left[\begin{array}{ll}1 & 0 \\ 0 & c\end{array}\right]\left[\begin{array}{ll}1 & a \\ a & b\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & f\end{array}\right]=\left[\begin{array}{cc}1 & \epsilon \\ \epsilon & e^{2} b\end{array}\right]$
\rightarrow For e.g. a, b of $O(1)$, the mixing angle is $\sim \varepsilon a$.
- Hierarchical mass matrices tend to have small (or $\sim 90^{\circ}$) mixings.
\rightarrow The see-saw does not remove hierarchy.

An idea:

- Let's take advantage of the singlet v_{R} 's in one further way:
\rightarrow We don't know how many of them there are!
No anomaly cancellation requirement..

> (Unless SM is extended with e.g.
> SO(10), but additional singlets
> could still appear..)
\rightarrow The low energy mass matrix may be a sum of many terms, which reduces hierarchy, and increases mixing angles!
$Y M^{-1} Y^{T} \sim \sum_{k, l}\left(M^{-1}\right)_{k l} Y_{i k} Y_{j l} \quad \rightarrow$ The biggest terms win!

An idea:

- Let's take advantage of the singlet v_{R} 's in one further way:
\rightarrow We don't know how many of them there are!
No anomaly cancellation requirement..

> (Unless SM is extended with e.g.
> SO(10), but additional singlets
> could still appear..)
\rightarrow The low energy mass matrix may be a sum of many terms, which reduces hierarchy, and increases mixing angles!
$Y M^{-1} Y^{T} \sim \sum_{k, l}\left(M^{-1}\right)_{k l} Y_{i k} Y_{j l} \quad \rightarrow$ The biggest terms win!
\rightarrow Also note that stringy constructions have often lead to large numbers of right handed neutrinos near the GUT scale..

- KK modes, or Moduli fields
-Tatar, Tsuchiya, Watari
-Buchmuller et. al. (hep-ph/0703078)
-Antoniadis, Ellis, Hagelin, Nanopoulos

$$
M_{K K} \sim M_{p l}\left(\frac{M_{K K}}{M_{s}}\right)^{\frac{n}{2}+1}
$$

\rightarrow Naturally a few orders of magnitude less than M_{p}.

- A simple qualitative idea.. How to quantify it?

Basic starting point: Assume a universal, (almost) scale invariant distribution for Yukawas, with upper and lower cutoffs, random phases.
\rightarrow Following DDR, take a simple ansatz consistent with phenomenology:

$$
\begin{array}{ll}
\rho(\lambda) \propto 1 / \lambda^{1.1} & \lambda_{\max }=1 \\
& \lambda_{\min }=1.2 \times 10^{-6}
\end{array}
$$

	Median			\% below exp.		
δ	$V_{u s}$	$V_{u b}$	$V_{c b}$	$V_{u s}$	$V_{u b}$	$V_{c b}$
1	.162	.018	.060	60	19	42
1.1	.130	.012	.032	65	24	52
1.2	.099	.007	.014	70	32	63
1.3	.076	.004	.006	75	40	73
Exp.	.2252	.00389	.0406			

- A simple qualitative idea.. How to quantify it?

Basic starting point: Assume a universal, (almost) scale invariant distribution for Yukawas, with upper and lower cutoffs, random phases.
\rightarrow Following DDR, take a simple ansatz consistent with phenomenology:

$$
\begin{array}{ll}
\rho(\lambda) \propto 1 / \lambda^{1.1} & \lambda_{\max }=1 \\
& \lambda_{\min }=1.2 \times 10^{-6}
\end{array}
$$

	Median			\% below exp.		
δ	$V_{u s}$	$V_{u b}$	$V_{c b}$	$V_{u s}$	$V_{u b}$	$V_{c b}$
1	.162	.018	.060	60	19	42
1.1	.130	.012	.032	65	24	52
1.2	.099	.007	.014	70	32	63
1.3	.076	.004	.006	75	40	73
Exp.	.2252	.00389	.0406			

- A simple qualitative idea.. How to quantify it?

Basic starting point: Assume a universal, (almost) scale invariant distribution for Yukawas, with upper and lower cutoffs, random phases.
\rightarrow Following DDR, take a simple ansatz consistent with phenomenology:

$$
\begin{array}{ll}
\rho(\lambda) \propto 1 / \lambda^{1.1} & \lambda_{\max }=1 \\
& \lambda_{\min }=1.2 \times 10^{-6}
\end{array}
$$

	Median			\% below exp.		
δ	$V_{u s}$	$V_{u b}$	$V_{c b}$	$V_{u s}$	$V_{u b}$	$V_{c b}$
1	.162	.018	.060	60	19	42
1.1	.130	.012	.032	65	24	52
1.2	.099	.007	.014	70	32	63
1.3	.076	.004	.006	75	40	73
Exp.	.2252	.00389	.0406			

Note: Taking the Majorana mass matrix diagonal would be bad..

$$
m_{i j}=\sum_{k}\left(M^{-1}\right)_{k k} Y_{i k} Y_{j k}
$$

Now compare, e.g.:

$$
\sum_{k}\left(M^{-1}\right)_{k k} Y_{1 k} Y_{1 k} \quad \text { vs } \quad \sum_{k}\left(M^{-1}\right)_{k k} Y_{1 k} Y_{2 k}
$$

\rightarrow Diagonal elements of m_{ij} are sums of N squared terms.
\rightarrow Off-Diagonal elements are sums of N product terms.
Take e.g. 1/30 Yukawa couplings to be $\sim O(1), N=100$..
\rightarrow Perhaps a few $O(1)$ terms in the diagonal sums, typically none in the off-diagonal sums.

Diagonal terms are bigger \rightarrow Small mixing angles!

Note: Taking the Majorana mass matrix diagonal would be bad..

$$
m_{i j}=\sum_{k}\left(M^{-1}\right)_{k k} Y_{i k} Y_{j k}
$$

Now compare, e.g.:

$$
\left.\sum_{k}(M-)^{1}\right)_{k k} Y_{1 k} Y_{1 k} \quad \text { vs } \quad \sum_{k}\left(M^{-1}\right)_{k k} Y_{1 k} Y_{2 k}
$$

\rightarrow Diagonal elements of m_{ij} are sums of N squared terms.
\rightarrow Off-Diagonal elements are sums of N product terms.
Take e.g. $1 / 30$ Yukawa couplings to 10 (1), $N=100$..
\rightarrow Perhaps a few $O(1)$ terms in the anal sums. typically none in the off-diagonal sums.
Diagonal terms are bigger \rightarrow Small mixing angles

How about some predictions?

- Normal vs inverted hierarchy.
- Unfortunately, as with the see-saw mechanism itself, it is difficult to make concrete predictions..
- There are a number of additional neutrino mass matrix parameters, and we can look at their probability distributions:

$$
\rightarrow m_{e e}, \sum m_{v}, \Theta_{13}, C P \text { phases.. }
$$

How about some predictions?

- Normal vs inverted hierarchy.
- Unfortunately, as with the see-saw mechanism itself, it is difficult to make concrete predictions..
- There are a number of additional neutrino mass matrix parameters, and we can look at their probability distributions:

$$
\rightarrow m_{e e}, \sum m_{v}, \Theta_{13}, C P \text { phases.. }
$$

Let's first look at m_{ee}.

(The 1,1 element of the neutrino mass matrix after diagonalizing the charged leptons)
\rightarrow Determines the neutrinoless double beta decay rate.

- Determines Majorana vs Dirac.
- Must be larger than a few $\times 10^{-2} \mathrm{eV}$ in order that the effect may be seen in planned experiments.

Let's first look at m_{ee}.

(The 1,1 element of the neutrino mass matrix after diagonalizing the charged leptons)
\rightarrow Determines the neutrinoless double beta decay rate.

- Determines Majorana vs Dirac.
- Must be larger than a few $\times 10^{-2} \mathrm{eV}$ in order that the effect may be seen in planned experiments.

Our distribution:

$$
\mathrm{m}_{\mathrm{ee}} \sim 4 \pm 2 \mathrm{meV}
$$

Some comments about radiative corrections..

- Above the see-saw scale, there can be loop effects from the right-handed neutrinos.
\rightarrow Qepends on the nature of physics at the see-saw scale, and on the scale of the subsequent cutoff.
\rightarrow In general, we are not assuming very many neutrinos with large couplings.. Changing this could cause bigger effects..
- With our assumptions, the neutrino Yukawas can have some RGE running, but likely to be a small effect.
\rightarrow Mixing angles should change by a negligible amount.
\rightarrow The Yukawa sizes may run a little bit..
- With SUSY can obtain non-universal slepton masses, leading to dangerous FCNC's., but model dependant, and typically not too big.
-Without high scale SUSY, can obtain Higgs quartic corrections..
\rightarrow In the standard model, can cause problems.. the Higgs may be predicted to be too heavy given LHC constraints..

$\Delta \lambda \sim \frac{1}{6 \pi^{2}} N_{\text {big }}^{2} \lambda_{\text {big }}^{4} \log (\Lambda / M) \ldots$ perhaps $\sim\left(\frac{N}{300}\right)^{2} \log (\Lambda / \mathrm{M})$
\rightarrow Depends on the maximum Yukawa size, high scale physics, and possible cancellations..

Conclusions

- The neutrinos apparently have several unusual flavor properties; very small masses, and large mixing angles.
- Can be explained in the see-saw framework, if we assume that there are many (perhaps 10-100) gauge singlet right-handed neutrinos.
- The framework is flexible, with non-hierarchical masses generically coming from a sum of many hierarchical terms.
- We predict a normal hierarchy, $\mathrm{m}_{\mathrm{ee}} \sim 4 \pm 2 \mathrm{meV}, \sum \mathrm{m}_{\mathrm{v}} \sim .06-.07 \mathrm{eV}$.
- Large values of Θ_{13} are preferred, in good agreement with recent experimental results.

